1
|
Gapińska N, Wlaź P, Wyska E, Świerczek A, Kamiński K, Jakubiec M, Abram M, Ciepiela K, Latacz G, Słowik T, Krokowski D, Jarosz Ł, Ciszewski A, Socała K. Effect of SSR504734, a Selective Glycine Transporter Type 1 Inhibitor, on Seizure Thresholds, Neurotransmitter Levels, and Inflammatory Markers in Mice. ACS Chem Neurosci 2025; 16:1210-1226. [PMID: 40012256 PMCID: PMC11926788 DOI: 10.1021/acschemneuro.5c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Studies have revealed that inhibition of glycine transporter type 1 (GlyT1) may provide a balanced regulation between excitation and inhibition in some brain structures and, thereby, modulate seizure activity. Data on the role of GlyT1 in epilepsy are, however, very limited. Here, we examined the effect of SSR504734, a highly selective and reversible GlyT1 inhibitor, on three acute seizure tests in mice. We also evaluated its impact on neurotransmitter levels in the relevant brain structures following seizures, possible adverse effects, and changes in the levels of inflammatory mediators in the serum and liver. In addition, in vivo pharmacokinetic profile and in vitro ADME-Tox properties of SSR504734 were investigated. The results show that SSR504734 significantly increased the threshold for tonic hindlimb extension in the MEST test after acute and repeated treatment but had no influence on seizure thresholds in the 6 Hz and i.v. PTZ seizure tests. SSR504734 did not affect the levels of glutamate, GABA, glycine, or adenosine in brain structures of mice with MES-induced seizures. However, after acute treatment, the concentration of glutamate and adenosine in the brainstem of control animals (i.e., without seizures) decreased. Moreover, SSR504734 increased the levels of inflammatory markers (TNF-α, Il-1β, IL-6, IL-10, and TLR4) in serum. In vivo pharmacokinetic profiling and in vitro ADME-Tox data confirmed suitable drug-like properties of SSR504734, including its notable penetration into brain tissue. However, possible hepatotoxicity at higher doses should be taken into account. Further studies should be considered to better characterize the SSR504734-mediated effects as well as to validate GlyT1 as a potential new molecular target in epilepsy treatment.
Collapse
Affiliation(s)
- Nikola Gapińska
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Doctoral
School of Quantitative and Natural Sciences, Maria Curie-Skłodowska University, Weteranów 18, 20-038 Lublin, Poland
| | - Piotr Wlaź
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Artur Świerczek
- Department
of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Krzysztof Kamiński
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Marcin Jakubiec
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Michał Abram
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Katarzyna Ciepiela
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Selvita
S.A., Bobrzyńskiego
14, 30-348 Cracow, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Tymoteusz Słowik
- Experimental
Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Dawid Krokowski
- Department
of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Łukasz Jarosz
- Department
of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary
Medicine, University of Life Sciences in
Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Artur Ciszewski
- Department
of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary
Medicine, University of Life Sciences in
Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Katarzyna Socała
- Department
of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
2
|
Selc M, Macova R, Babelova A. Novel Strategies Enhancing Bioavailability and Therapeutical Potential of Silibinin for Treatment of Liver Disorders. Drug Des Devel Ther 2024; 18:4629-4659. [PMID: 39444787 PMCID: PMC11498047 DOI: 10.2147/dddt.s483140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin-C-2',3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies that investigated the protective effects of silibinin in various forms of liver damage.
Collapse
Affiliation(s)
- Michal Selc
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Macova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andrea Babelova
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Chen YJ, Chen HJ, Chung WH. Endophytic Fungal Diversity in Cirsium kawakamii from Taiwan. J Fungi (Basel) 2023; 9:1076. [PMID: 37998881 PMCID: PMC10671896 DOI: 10.3390/jof9111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The endophytic fungal diversity of Cirsium kawakamii, a herb indigenous to Taiwan, was analyzed in this study. In addition, some fungal isolates were evaluated for the risk they pose as plant pathogens. In total, 1836 endophytic fungi were isolated from C. kawakamii from Hehuanjian, Puli Township, and Tatachia. They were classified into 2 phyla, 8 classes, 40 families, and 68 genera. Colletotrichum, Fusarium, Phomopsis, and Xylaria, (Ascomycota, Sordariomycetes) were the dominant genera. The genus accumulation curve (based on the bootstrap estimator) was non-asymptotic, with estimated richness significantly exceeding the richness captured by our sampling to date. Considering the collection time, the data indicated significant differences in the proportions of the C. kawakamii endophyte genus from Hehuanjan, Puli Township (across two seasons), and Tatachia. The Shannon and Gini-Simpson indices revealed variations in diversity, with C. kawakamii endophytes (Puli Township in winter) significantly reducing alpha diversity compared with other seasons and locations. Meanwhile, the Gini-Simpson index suggested that there were no significant differences in richness among the four sampling sites. The PCA results unveiled distinct community structures across different locations and seasons, explaining 46.73% of the total variation in fungal community composition significantly affected diversity and richness. In addition, a considerable number of Fusarium isolates exhibited harmful properties towards wheat, potatoes, and apples. It is postulated that these fungi belong to the Fusarium tricinctum species complex (FTSC).
Collapse
Affiliation(s)
- Yi-Jeng Chen
- Department of Plant Medicine, National Chiayi University, Chiayi 600, Taiwan;
| | - Hui-Juan Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
- Master Program in Plant Medicine and Good Agricultural Practice, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
4
|
Aydın Kurç M, Orak HH, Gülen D, Caliskan H, Argon M, Sabudak T. Antimicrobial and Antioxidant Efficacy of the Lipophilic Extract of Cirsium vulgare. Molecules 2023; 28:7177. [PMID: 37894654 PMCID: PMC10609082 DOI: 10.3390/molecules28207177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to investigate the compounds in the hexane extract of Cirsium vulgare (Savi.) Ten. and to determine the antibacterial, antifungal, and antioxidant activities of different extracts. The Cirsium vulgare (NGBB 7229) plant was collected from Turkey's Trakya region. Crude extracts were obtained using different solvents. The chemical composition of Cirsium vulgare was determined in hexane extract using gas chromatography mass spectrometry. The antioxidant activities of the extracts were evaluated by Trolox equivalent antioxidant activity (TEAC), ferric-reducing antioxidant power (FRAP), cupric-reducing antioxidant capacity (CUPRAC), the β-carotene bleaching method, and the determination of superoxide anion scavenging activities. The antibacterial activity was tested against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, and Salmonella typhimurium, whereas the antifungal activity was tested against Candida albicans, Candida glabrata, Candida parapsilosis, Candida krusei, Penicillium chrysogenum, and Aspergillus fumigatus by applying microdilution methods. A total of 41 bioactive compounds were identified using the GC-MS library. Terpenoids were found to be dominant (52.89%), and lup-20(29)-en-3-yl-acetate and lupeol were the most abundant terpenoids. The highest total flavonoid content (25.73 mg catechin/g) and antioxidant capacity were found in the methanolic extract. The highest antibacterial activity was detected against Bacillus subtilis in the ethyl acetate extract, and the highest antifungal activity was found against Candida krusei and Aspergillus fumigatus in the hexane extract. The observed antioxidant characteristics of the C. vulgare extracts could be attributed to the presence of flavonoids. The high antifungal activity of the hexane extract against all fungal strains can be attributed to its constituents, i.e., terpenoids. This study discloses the potential antioxidant and antimicrobial activities, including some bioactive components, of Cirsium vulgare and implies that Cirsium vulgare holds possible applications in the food and pharmaceutical industries as an antioxidant, antibacterial, and antifungal agent.
Collapse
Affiliation(s)
- Mine Aydın Kurç
- Department of Medical Microbiology, Faculty of Medicine, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey;
| | - Hakime Hülya Orak
- Department of Food Technology, Vocational School of Technical Sciences, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey;
| | - Dumrul Gülen
- Department of Medical Microbiology, Faculty of Medicine, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey;
| | - Hilmican Caliskan
- Department of Chemistry, Faculty of Science and Arts, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey; (H.C.); (M.A.); (T.S.)
| | - Merve Argon
- Department of Chemistry, Faculty of Science and Arts, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey; (H.C.); (M.A.); (T.S.)
| | - Temine Sabudak
- Department of Chemistry, Faculty of Science and Arts, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey; (H.C.); (M.A.); (T.S.)
| |
Collapse
|
5
|
Yen PL, Lin TA, Chuah WL, Chang CY, Tseng YH, Huang CY, Yang JC, Hsu FL, Liao VHC. Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans. Molecules 2023; 28:6923. [PMID: 37836767 PMCID: PMC10574689 DOI: 10.3390/molecules28196923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cirsium japonicum DC. var. australe Kitam. has been used as an herbal remedy and often involves using the whole plant or roots. However, the bioactivities of different parts of the plant have been far less explored. This study aimed to evaluate the antioxidative ability of methanol extracts from the flowers, leaves, stems, and roots of the Cirsium plant and their possible active components against juglone-induced oxidative stress in the nematode Caenorhabditis elegans. The results showed that the highest dry weight (12.3 g per plant) was observed in leaves, which was followed by stems (8.0 g). The methanol extract yields from the flowers, leaves, and roots were all similar (13.0-13.8%), while the yield from stems was the lowest (8.6%). The analysis of the silymarin contents in the extracts indicated that the flowers, leaves, stems, and roots contained silychristin and taxifolin; however, silydianin was only found in the leaves, stems, and roots. The flower, leaf, and stem extracts, at a concentration of 10 mg/L, significantly reduced juglone-induced oxidative stress in C. elegans, which was potentially due to the presence of silychristin and taxifolin. Overall, C. japonicum DC. var. australe Kitam. contains a significant amount of silymarin and exhibits in vivo antioxidative activity, suggesting that the prospects for the plant in terms of health supplements or as a source of silymarin are promising.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Wei Lin Chuah
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Chih-Yi Chang
- Department of Forestry, National Chung Hsing University, No. 145, Xingda Rd., Taichung 402, Taiwan;
| | - Yen-Hsueh Tseng
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Chia-Yin Huang
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Jeng-Chuann Yang
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Fu-Lan Hsu
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| |
Collapse
|
6
|
Munakarmi S, Gurau Y, Shrestha J, Risal P, Park HS, Lee GH, Jeong YJ. Synergistic Effects of Vitis vinifera L. and Centella asiatica against CCl 4-Induced Liver Injury in Mice. Int J Mol Sci 2023; 24:11255. [PMID: 37511015 PMCID: PMC10379123 DOI: 10.3390/ijms241411255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Liver injury can be acute or chronic, resulting from a variety of factors, including viral hepatitis, drug overdose, idiosyncratic drug reaction, or toxins, while the progression of pathogenesis in the liver rises due to the involvement of numerous cytokines and growth factor mediators. Thus, the identification of more effective biomarker-based active phytochemicals isolated from medicinal plants is a promising strategy to protect against CCl4-induced liver injury. Vitis vinifera L. (VE) and Centella asiatica (CE) are well-known medicinal plants that possess anti-inflammatory and antioxidant properties. However, synergism between the two has not previously been studied. Here, we investigated the synergistic effects of a V. vinifera L. (VE) leaf, C. asiatica (CE) extract combination (VCEC) against CCl4-induced liver injury. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 mL/kg). VCEC was administered orally for three consecutive days at various concentrations (100 and 200 mg/kg) prior to CCl4 injection. The extent of liver injury and the protective effects of VCEC were evaluated by biochemical analysis and histopathological studies. Oxidative stress was evaluated by measuring malondialdehyde (MDA) and glutathione (GSH) levels and Western blotting. VCEC treatment significantly reduced serum transaminase levels (AST and ALT), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by VCEC treatment by reducing cleaved caspase-3 and Bcl2-associated X protein (Bax). VCEC-treated mice significantly restored cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expression in CCl4-treated mice. In addition, VCEC downregulated overexpression of proinflammatory cytokines and hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4-mediated apoptosis. Collectively, VCEC exhibited synergistic protective effects against liver injury through its antioxidant, anti-inflammatory, and antiapoptotic ability against oxidative stress, inflammation, and apoptosis. Therefore, VCEC appears promising as a potential therapeutic agent for CCl4-induced acute liver injury in mice.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal
| | - Prabodh Risal
- Department of Biochemistry, School of Medical Sciences, Kathmandu University, Dhulikhel 45200, Nepal
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Pathology, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Research Institute, Jeonbuk National Hospital, Jeonju 54907, Republic of Korea
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
7
|
Li Q, Zhang W, Cheng N, Zhu Y, Li H, Zhang S, Guo W, Ge G. Pectolinarigenin ameliorates acetaminophen-induced acute liver injury via attenuating oxidative stress and inflammatory response in Nrf2 and PPARa dependent manners. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154726. [PMID: 36863308 DOI: 10.1016/j.phymed.2023.154726] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cirsii Japonici Herba Carbonisata (Dajitan in Chinese) has been used to treat liver disorders in Asian countries. Pectolinarigenin (PEC), an abundant constituent in Dajitan, has been found to possess a wide range of biological benefits, including hepatoprotective effects. However, the effects of PEC on acetaminophen (APAP)-induced liver injury (AILI) and the underlying mechanisms have not been studied. PURPOSES To explore the role and mechanisms of PEC in protecting against AILI. STUDY DESIGN AND METHODS The hepatoprotective benefits of PEC were studied using a mouse model and HepG2 cells. PEC was tested for its effects by injecting it intraperitoneally before APAP administration. To assess liver damage, histological and biochemical tests were performed. The levels of inflammatory factors in the liver were measured using RT-PCR and ELISA. Western blotting was used to measure the expression of a panel of key proteins involved in APAP metabolism, as well as Nrf2 and PPARα. PEC mechanisms on AILI were investigated using HepG2 cells, while the Nrf2 inhibitor (ML385) and PPARα inhibitor (GW6471) were used to validate the importance of either Nrf2 and PPARα in the hepatoprotective effects of PEC. RESULTS PEC treatment decreased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels in the liver. PEC pretreatment increased the activity of superoxide dismutase (SOD) and glutathione (GSH) while decreasing malondialdehyde production (MDA). PEC could also up-regulate two important APAP detoxification enzymes (UGT1A1 and SULT1A1). Further research revealed that PEC reduced hepatic oxidative damage and inflammation, and up-regulated APAP detoxification enzymes in hepatocytes by activating the Nrf2 and PPARα signaling pathways. CONCLUSIONS PEC ameliorates AILI by decreasing hepatic oxidative stress and inflammation while increasing phase Ⅱ detoxification enzymes related to APAP harmless metabolism through activation of Nrf2 and PPARα signaling. Hence, PEC may serve as a promising therapeutic drug against AILI.
Collapse
Affiliation(s)
- Qian Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wen Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Yadi Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
8
|
Traditional Uses, Phytochemical Composition, Pharmacological Properties, and the Biodiscovery Potential of the Genus Cirsium. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Medicinal plants are rich in phytochemicals, which have been used as a source of raw material in medicine since ancient times. Presently they are mostly used to treat Henoch–Schonlein purpura, hemoptysis, and bleeding. The manuscript covers the classification, traditional applications, phytochemistry, pharmacology, herbal formulations, and patents of Cirsium. The main goal of this review is to impart recent information to facilitate future comprehensive research and use of Cirsium for the development of therapeutics. We investigated numerous databases PubMed, Google Scholar, Springer, Elsevier, Taylor and Francis imprints, and books on ethnopharmacology. The plants of the genus Cirsium of the family Asteraceae contain 350 species across the world. Phytochemical investigations showed that it contains flavonoids, phenols, polyacetylenes, and triterpenoids. The biological potential of this plant is contributed by these secondary metabolites. Cirsium plants are an excellent and harmless agent for the cure of liver diseases; therefore, they might be a good clinical option for the development of therapeutics for hepatic infections. The phytochemical studies of different Cirsium species and their renowned pharmacological activities could be exploited for pharmaceutic product development. Furthermore, studies are required on less known Cirsium species, particularly on the elucidation of the mode of action of their activities.
Collapse
|
9
|
Xu R, Qiu S, Zhang J, Liu X, Zhang L, Xing H, You M, Wang M, Lu Y, Zhang P, Zhu J. Silibinin Schiff Base Derivatives Counteract CCl4-Induced Acute Liver Injury by Enhancing Anti-Inflammatory and Antiapoptotic Bioactivities. Drug Des Devel Ther 2022; 16:1441-1456. [PMID: 35601675 PMCID: PMC9122151 DOI: 10.2147/dddt.s356847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Rong Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Siyan Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ling Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Haizhu Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Min You
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Man Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yuting Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Peng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Correspondence: Jing Zhu, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China, Tel +86-15895975410, Email
| |
Collapse
|
10
|
Chenopodium album extract ameliorates carbon tetrachloride induced hepatotoxicity in rat model. Saudi J Biol Sci 2022; 29:3408-3413. [PMID: 35844414 PMCID: PMC9280305 DOI: 10.1016/j.sjbs.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Major objective of this study was to explore the protective effect of the methanolic extract of Chenopodium album against carbon tetrachloride induced hepatotoxicity in rats. Chenopodium album has locally been used for multiple medicinal proposes. Methanolic extract of Chenopodium album (whole plant) was prepared with Soxhlet extractor and rotatory evaporator. Antioxidant activity of Chenopodium album was determined by DPPH free radical scavenging assay. Thirty Wister (albino) rats (150–200 g) were divided into six groups for the evaluation of hepatoprotective potential of different concentrations of Chenopodium album against carbon tetrachloride (1:1 CCl4: Olive oil) under the controlled laboratory conditions. Group-I rats were administrated with olive oil (Normal control), Group-II with CCl4 only, Group-III with Silymarin (positive control), Group-IV with Chenopodium album (100 mg/kg), Group-V with Chenopodium album (200 mg/kg) and Group-VI rats with Chenopodium album (300 mg/kg) for the period of 28 days. Serum was taken to determine the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, cholesterol, triglyceride, creatinine and urea in the blood. Formalin stored tissues were examined for histopathological analysis. DPPH assay showed that Chenopodium album has the potential for reduction of oxidative stress. Chenopodium album minimized the levels of ALT (70 ± 8.68 U/L, 68.75 ± 8.38 U/L & 73.5 ± 10.28 U/L), AST (219.5 ± 19.16 U/L, 140.75 ± 13.35 U/L & 221.25 ± 13.33 U/L) and ALP (289.5 ± 28.21 U/L, 258 ± 11.12 U/L & 248.25 ± 4.03 U/L) at different concentrations (100 mg/kg, 200 mg/kg, 300 mg/kg respectively). Chenopodium album enhanced triglyceride level (64.75 ± 12.66 mg/dl at 200 mg/kg) as compared to CCl4 treated group (33.25 ± 1.26 mg/dl). Carbon tetrachloride elevated urea level (43.25 ± 6.6) was decreased by high dose of Chenopodium album (18 ± 8.17). Moreover, Chenopodium album also improved WBC level (9.69 × 103 /Cu.mr & 10.59 × 103 /Cu.mr at low and medium doses respectively), RBCs level (6.97 × 103 /Cu.mr) and hemoglobin level (13.95 G/dL, 13.467 G/dL & 14.05 G/dL at low, medium and high doses). In vivo study of Chenopodium album methanolic extract demonstrates the potential for protection of liver and after pre-clinical studies the plant can be used as a safe alternative of commercially available hepatoprotective medicines.
Collapse
|
11
|
Hepatoprotective Effects of (-) Epicatechin in CCl 4-Induced Toxicity Model Are Mediated via Modulation of Oxidative Stress Markers in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:4655150. [PMID: 34976093 PMCID: PMC8716200 DOI: 10.1155/2021/4655150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
Objective (−) Epicatechin (EP) is a naturally occurring antioxidant flavonoid found in some green plants. The current study was designed to evaluate the potential role of antioxidant mechanisms in the hepatoprotective properties of EP using the carbon tetrachloride (CCl4)-induced acute liver injury model. Materials and Methods Rats (n = 7 per group) were divided into five groups including control group, (−) epicatechin group (20 mg·kg−1 body weight), CCl4 group (1 mL−1 body weight), CCl4-EP treatment group, and CCl4-silymarin (SILY) group. The levels of enzymes including hepatic malondialdehyde (MDA), glutathione (GSH), catalase (CAT), glutathione S-transferase (GST), nitric oxide synthase (NOS), glutathione peroxidase (GPx), and cytochrome P450 (CYP450) were analyzed via enzyme-linked immunosorbent assay (ELISA). Histological studies were performed on all groups to assess the regenerative effects of test sample and compare it with the control group. Results Test compound EP and standard drug silymarin (SILY) considerably reduced liver function enzyme levels in the blood, which were raised by CCl4 administration, and increased serum albumin and total protein (TP) concentrations. The hepatic malondialdehyde (MDA) level was considerably declined, whereas glutathione (GSH), catalase (CAT), glutathione S-transferase (GST), nitric oxide synthase (NOS), glutathione peroxidase (GPx), and cytochrome P450 (CYP450) levels were upregulated in the EC-treated groups. The hepatoprotective results of the study were further confirmed via the histological assessments, which indicated a regeneration of the damaged hepatic tissue in treated rats. Conclusions The results of this study revealed a significant protective efficacy of EP against CCl4-induced liver injury, which was potentially mediated via upregulation of antioxidant enzymes and direct scavenging effects of the compound against free radicals.
Collapse
|
12
|
Luo W, Wu B, Tang L, Li G, Chen H, Yin X. Recent research progress of Cirsium medicinal plants in China. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114475. [PMID: 34363929 DOI: 10.1016/j.jep.2021.114475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species of the genus Cirsium have been used as traditional Chinese medicine for hundreds of years. It is believed that Cirsium has the efficacies of cooling blood and stopping bleeding, dispelling blood stasis, detoxifying and eliminating carbuncle. At present, they are mainly used in treatment of the hemoptysis, hematemesis, hemoptysis, hematuria, traumatic bleeding and Henoch-Schonlein purpura. They are widely used in traditional Chinese medicine. AIM This paper systematically collated the classification, traditional use, pharmacological action, phytochemistry and clinical application of Cirsium plants in the past ten years, intending to provide a critical appraisal of current knowledge for future in-depth study and rational development and utilization of Cirsium plants. MATERIAL AND METHODS This paper searched various databases (SciFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Weipu Data), Chinese Pharmacopoeia 2020 Edition, Chinese Flora, Chinese Materia Medica and some local books on ethnopharmacology. RESULTS More than ten species of Cirsium have been used as folk medicine, and modern pharmacological studies have shown that Cirsium has the effects of protecting liver, antioxidation, anti-tumor, anti-inflammation, antibacterial, etc. More than 200 chemical constituents such as flavonoids, triterpenes, sterols, phenylpropanoids have been isolated from Cirsium. Some ingredients show a wide variety of bioactivities including hepatoprotective, anti-inflammatory, antioxidant, anti-tumor and other activities. At present, Cirsium medicinal plants, as traditional Chinese medicine, were mainly used to treat nephritis, Henoch-Schonlein purpura and hemorrhage, although some species used in folk lack of quality control systems. CONCLUSION Cirsium plants are a safe and effective medicine for cooling blood and hemostasis. Recent studies on pharmacology and phytochemistry also provide solid scientific evidences for the traditional application of this genus. It also shows significant hepatoprotective activity and may be a potential clinical candidate for the treatment of liver disease. However, the qualitative and quantitative analysis, pharmacokinetics-pharmacodynamics and mechanism of action also need in-depth study.
Collapse
Affiliation(s)
- Wei Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liangjie Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoyou Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xuemei Yin
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Zhao ZW, Chang HC, Ching H, Lien JC, Huang HC, Wu CR. Antioxidant Effects and Phytochemical Properties of Seven Taiwanese Cirsium Species Extracts. Molecules 2021; 26:molecules26133935. [PMID: 34203213 PMCID: PMC8272034 DOI: 10.3390/molecules26133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
In the present investigation, we compared the radical-scavenging activities and phenolic contents of seven Taiwanese Cirsium species with a spectrophotometric method. We further analyzed their phytochemical profiles with high-performance liquid chromatography–photodiode array detection (HPLC–DAD). We found that the flower part of Cirsium japonicum var. australe (CJF) showed the best radical-scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and the hypochlorite ion, for which the equivalents were 6.44 ± 0.17 mg catechin/g, 54.85 ± 0.66 mmol Trolox/g and 418.69 ± 10.52 mmol Trolox/g respectively. CJF also had the highest contents of total phenolics (5.23 ± 0.20 mg catechin/g) and phenylpropanoids (29.73 ± 0.72 mg verbascoside/g). According to the Pearson’s correlation coefficient, there was a positive correlation between the total phenylpropanoid content and ABTS radical-scavenging activities (r = 0.979). The radical-scavenging activities of the phenylpropanoids are closely related to their reducing power (r = 0.986). HPLC chromatograms obtained in validated HPLC conditions confirm that they have different phytochemical profiles by which they can be distinguished. Only CJF contained silicristin (0.66 ± 0.03 mg/g) and silydianin (9.13 ± 0.30 mg/g). CJF contained the highest contents of apigenin (5.56 ± 0.09 mg/g) and diosmetin (2.82 ± 0.10 mg/g). Among the major constituents, silicristin had the best radical-scavenging activities against DPPH (71.68 ± 0.66 mg catechin/g) and ABTS (3.01 ± 0.01 mmol Trolox/g). However, diosmetin had the best reducing power and radical-scavenging activity against the hypochlorite anion (41.57 ± 1.14 mg mmol Trolox/g). Finally, we found that flavonolignans (especial silicristin and silydianin) and diosmetin acted synergistically in scavenging radicals.
Collapse
Affiliation(s)
- Zi-Wei Zhao
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hung-Chi Chang
- Department of Golden-Ager Industry Management, College of Management, Chaoyang University of Technology, Taichung 413, Taiwan;
| | - Hui Ching
- Department of Pharmacy, Taichung Hospital, Ministry of Health and Welfare, Taichung 404, Taiwan;
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan;
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5506)
| |
Collapse
|
14
|
Tian L, Jiang M, Chen H, Li J, Huang L, Liu C. Comparative analysis of the complete chloroplast genomes of Cirsium japonicum from China and Korea. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1468-1470. [PMID: 33969197 PMCID: PMC8079006 DOI: 10.1080/23802359.2021.1912669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cirsium japonicum (C. japonicum) is a traditional Chinese medicine belonging to the family Asteraceae. The previous studies have indicated that the chemical compound content of C. japonicum from different places was different. To distinguish C. japonicum from different geographies, the chloroplast genome of C. japonicum from China was sequenced and compared with that from Korea. The total length of this genome is 152,602 bp, similar to that of Korea (152,606 bp). It has a conservative quartile structure which is composed of a large single-copy (LSC) region, a small single-copy (SSC) region and a pair of inverted repeats (IRs) regions, with lengths of 83,487 bp, 18,721 bp, and 25,197 bp, respectively. It encodes 79 protein-coding, 27 transfer RNAs, and 4 ribosomal RNA genes. The overall GC content of the genome is 37.70%. A total of 20 single nucleotide polymorphisms and 6 insertions and deletions were identified between the chloroplast genome of C. japonicum from China and Korea. These results can be applied to develop molecular markers to distinguish C. japonicum from different geographical origins.
Collapse
Affiliation(s)
- Lixia Tian
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Jiang
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinglin Li
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linfang Huang
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang Liu
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Therapeutic Single Compounds for Osteoarthritis Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020131. [PMID: 33562161 PMCID: PMC7914480 DOI: 10.3390/ph14020131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is an age-related degenerative disease for which an effective disease-modifying therapy is not available. Natural compounds derived from plants have been traditionally used in the clinic to treat OA. Over the years, many studies have explored the treatment of OA using natural extracts. Although various active natural extracts with broad application prospects have been discovered, single compounds are more important for clinical trials than total natural extracts. Moreover, although natural extracts exhibit minimal safety issues, the cytotoxicity and function of all single compounds in a total extract remain unclear. Therefore, understanding single compounds with the ability to inhibit catabolic factor expression is essential for developing therapeutic agents for OA. This review describes effective single compounds recently obtained from natural extracts and the possibility of developing therapeutic agents against OA using these compounds.
Collapse
|
16
|
Song XY, Li RH, Liu WW, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Effect of silibinin on ethanol- or acetaldehyde-induced damge of mouse primary hepatocytes in vitro. Toxicol In Vitro 2020; 70:105047. [PMID: 33137447 DOI: 10.1016/j.tiv.2020.105047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Silibinin, one of the flavonoids isolated from milk thistle seeds of Silybum marianum, has hepatoprotective properties against toxins in clinical. However, the detailed mechanisms have remained unclear. This study investigates the underlying mechanism of silibinin in the protection against ethanol- or acetaldehyde-induced damage of neonatal mouse primary hepatocytes in vitro. The results show that ethanol inhibited proliferation of hepatocytes in a time (12, 24, 36 h) and dose-dependent (0-800 mM) manner. However, silibinin did not show protective effect on ethanol (500 mM)-induced suppression of hepatocyte proliferation. Acetaldehyde, the toxic metabolite of ethanol, appearing immediately in individuals after drink also inhibited the proliferation of hepatocytes in a dose-dependent (0-12 mM) manner. Surprisingly, silibinin significantly increased the cell viability and reduced the leakage of alanine amino transferase (ALT) and aspartate amino transferase (AST) in acetaldehyde-treated hepatocytes, suggesting that silibinin protected cell injury caused by acetaldehyde treatment. The apoptosis-inducing effect of acetaldehyde was demonstrated by the increased number of cells in sub-G1 phase as well as caspase-3 activation. Further study shows that acetaldehyde induced autophagy in the hepatocytes. The autophagy inhibitors, 3-Methyladenine (3-MA) and chloroquine (CQ), further decreased the viability of cells treated with acetaldehyde, suggesting that autophagy plays a protective role against apoptosis. Consistently, silibinin (20 μM) significantly reduced the activation of caspase 3 or apoptosis and increased the conversion of LC3-I to LC3-II or autophagy. Taken together, it is concluded that silibinin does not repress the ethanol- induced hepatocyte injury, whereas silibinin reduces acetaldehyde-caused hepatocyte injury through down-regulation of apoptosis and up-regulation of autophagy.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Rong-Hua Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Wei-Wei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, PR China.
| |
Collapse
|
17
|
Ma X, Jiang Y, Zhang W, Wang J, Wang R, Wang L, Wei S, Wen J, Li H, Zhao Y. Natural products for the prevention and treatment of cholestasis: A review. Phytother Res 2020; 34:1291-1309. [PMID: 32026542 DOI: 10.1002/ptr.6621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Cholestasis is a common manifestation of decreased bile flow in various liver diseases. It results in fibrosis and even cirrhosis without proper treatment. It is believed that a wide range of factors, including transporter dysfunction, oxidative stress, inflammatory damage, and immune disruption, can cause cholestasis. In recent years, natural products have drawn much attention for specific multiple-target activities in diseases. Many attempts have been made to investigate the anticholestatic effects of natural products with advanced technology. This review summarizes recent studies on the biological activities and mechanisms of recognized compounds for cholestasis treatment. Natural products, including various flavonoids, phenols, acids, quinones, saponins, alkaloids, glycosides, and so on, function as comprehensive regulators via ameliorating oxidative stress, inflammation, and apoptosis, restoring bile acid balance with hepatic transporters, and adjusting immune disruption. Moreover, in this progress, nuclear factor erythroid 2-related factor 2, reactive oxygen species production, heme oxygenase-1, NF-κB, cholesterol 7 alpha-hydroxylase, and farnesoid X receptors are thought as main targets for the activity of natural products. Therefore, this review presents the detailed mechanisms that include multiple targets and diverse signalling pathways. Natural products are the valuable when seeking novel therapeutic agents to treat cholestatic liver diseases.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lifu Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Chang HC, Liu KF, Teng CJ, Lai SC, Yang SE, Ching H, Wu CR. Sophora Tomentosa Extract Prevents MPTP-Induced Parkinsonism in C57BL/6 Mice Via the Inhibition of GSK-3β Phosphorylation and Oxidative Stress. Nutrients 2019; 11:nu11020252. [PMID: 30678114 PMCID: PMC6412387 DOI: 10.3390/nu11020252] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Sophora species are used as dietary medicines in aging-associated symptoms. Sophora tomentosa L. (ST) is a native medicinal plant in Southeast Asia; however, there is no pharmacological literature about ST extract. The present study evaluates the antioxidant phytoconstituent contents and radical scavenging capacities of ST extract. The further investigation was to clarify the neuroprotective mechanism of ST extract against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism by assaying the activities of the dopaminergic system and antioxidant defenses, glycogen synthase kinase 3β (GSK3-β) phosphorylation, and α-synuclein levels in C57BL/6 mice. The results show that ST extract alleviated the motor deficits in MPTP-induced Parkinsonism with four behavioral tests, including a rearing locomotor, catalepsy test, balance beam walking test, and pole test. ST extract reversed the number of tyrosine hydroxylase (TH)-positive neurons in substantia nigra (SN) that had decreased by MPTP. ST extract also restored the decreased levels of dopamine and the expression of tyrosine hydroxylase (TH) in the striatum. Furthermore, ST extract restored the levels of glutathione (GSH) and the activities of antioxidant enzymes, and decreased the elevated levels of malondialdehyde (MDA) in mouse striatum. ST extract also decreased α-synuclein overexpression and GSK-3β phosphorylation in mouse striatum. In vitro, ST extract exerted higher 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging capacities through its higher phenolic contents, especially protocatechuic acid and epicatechin. These results suggest that ST extract has the potential to counteract MPTP-induced motor deficit. The neuroprotective mechanism of ST extract against MPTP-induced Parkinsonism might be related to decreasing GSK-3β phosphorylation and restoring the activities of striatal antioxidant defenses to restore the nigrostriatal dopaminergic function and decrease α-synuclein accumulation.
Collapse
Affiliation(s)
- Hung-Chi Chang
- Department of Golden-Ager Industry Management, College of Management, Chaoyang University of Technology, Taichung 41394, Taiwan.
| | - Keng-Fan Liu
- The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Chia-Jen Teng
- The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Shu-Chen Lai
- Department of Pharmacy, Tung's Taichung MetroHarbor Hospital, Taichung 43550, Taiwan.
| | - Shu-Er Yang
- Department of Beauty Science and Graduate, Institute of Beauty Science Technology, Chienkuo Technology University, Changhua City 500, Taiwan.
| | - Hui Ching
- Department of Pharmacy, Taichung Hospital, Ministry of Health and Welfare, Taichung, 40343, Taiwan.
| | - Chi-Rei Wu
- The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|