1
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Mendoza-Jasso ME, Pérez-Villanueva J, Alvarado-Rodríguez JG, González-Andrade M, Cortés-Benítez F. 3-Benzylaminomethyl Lithocholic Acid Derivatives Exhibited Potent and Selective Uncompetitive Inhibitory Activity Against Protein Tyrosine Phosphatase 1B (PTP1B). ACS OMEGA 2024; 9:33224-33238. [PMID: 39100322 PMCID: PMC11292843 DOI: 10.1021/acsomega.4c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a promising drug target for treating type 2 diabetes (T2DM) and obesity. As a result, developing new therapies that target PTP1B is an attractive strategy for treating these diseases. Herein, we detail the synthesis of 15 lithocholic acid (LA) derivatives, each containing different benzylaminomethyl groups attached to the C3 position of the steroid skeleton. The derivatives were assessed against two forms of PTP1B enzyme (hPTP1B1-400 and hPTP1B1-285), and the most potent compounds were then tested against T-cell protein tyrosine phosphatase (TCPTP) to determine their selectivity. The results showed that compounds 6m and 6n were more potent than the reference compounds (ursolic acid, chlorogenic acid, suramin, and TCS401). Additionally, both compounds exhibited greater potency over hPTP1B1-400. Furthermore, enzyme kinetic studies on hPTP1B1-400 revealed that these two lithocholic acid derivatives have an uncompetitive inhibition against hPTP1B1-400 with K i values of 2.5 and 3.4 μM, respectively. Interestingly, these compounds were around 75-fold more selective for PTP1B over TCPTP. Finally, docking studies and molecular dynamics simulations (MDS) were conducted to determine how these compounds interact with PTP1B. The docking studies revealed hydrophobic and H-bond interactions with amino acid residues in the unstructured region. MDS showed that these interactions persisted throughout the 200 ns simulation, indicating the crucial role of the unstructured zone in the biological activity and inhibition of PTP1B.
Collapse
Affiliation(s)
- María-Eugenia Mendoza-Jasso
- Doctorado
en Ciencias Farmacéuticas, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
- Laboratorio
de Biosensores y Modelaje Molecular, Departamento de Bioquímica,
Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de México 04510, Mexico
| | - Jaime Pérez-Villanueva
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
| | | | - Martin González-Andrade
- Laboratorio
de Biosensores y Modelaje Molecular, Departamento de Bioquímica,
Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Cortés-Benítez
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
| |
Collapse
|
3
|
Roy S, Moran J, Danasekaran K, O’Brien K, Dakshanamurthy S. Large-Scale Screening of Per- and Polyfluoroalkyl Substance Binding Interactions and Their Mixtures with Nuclear Receptors. Int J Mol Sci 2024; 25:8241. [PMID: 39125814 PMCID: PMC11312074 DOI: 10.3390/ijms25158241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Despite their significant impact, comprehensive screenings and detailed analyses of per- and polyfluoroalkyl substance (PFAS) binding strengths at the orthosteric and allosteric sites of NRs are currently lacking. This study addresses this gap by focusing on the binding interaction analysis of both common and uncommon PFAS with the nuclear receptors (NRs) vitamin D receptor (VDR), peroxisome proliferator-activated receptor gamma (PPARγ), pregnane X receptor (PXR), and estrogen receptor alpha (ERα). Advanced docking simulations were used to screen 9507 PFAS chemicals at the orthosteric and allosteric sites of PPARγ, PXR, VDR, and ERα. All receptors exhibited strong binding interactions at the orthosteric and allosteric site with a significant number of PFAS. We verified the accuracy of the docking protocol through multiple docking controls and validations. A mixture modeling analysis indicates that PFAS can bind in various combinations with themselves and endogenous ligands simultaneously, to disrupt the endocrine system and cause carcinogenic responses. These findings reveal that PFAS can interfere with nuclear receptor activity by displacing endogenous or native ligands by binding to the orthosteric and allosteric sites. The purpose of this study is to explore the mechanisms through which PFAS exert their endocrine-disrupting effects, potentially leading to more targeted therapeutic strategies. Importantly, this study is the first to explore the binding of PFAS at allosteric sites and to model PFAS mixtures at nuclear receptors. Given the high concentration and persistence of PFAS in humans, this study further emphasizes the urgent need for further research into the carcinogenic mechanisms of PFAS and the development of therapeutic strategies that target nuclear receptors.
Collapse
Affiliation(s)
- Saptarshi Roy
- College of Humanities and Sciences, Virginia Commonwealth University, 907 Floyd Ave, Richmond, VA 23284, USA
| | - James Moran
- College of Arts & Sciences, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| | - Keerthana Danasekaran
- College of Arts and Sciences, University of Rochester, 500 Joseph C. Wilson Blvd, Rochester, NY 14627, USA
| | - Kate O’Brien
- Davidson College, 405 N Main St, Davidson, NC 28035, USA
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
| |
Collapse
|
4
|
Wang J, Mei L, Hao Y, Xu Y, Yang Q, Dai Z, Yang Y, Wu Z, Ji Y. Contemporary Perspectives on the Role of Vitamin D in Enhancing Gut Health and Its Implications for Preventing and Managing Intestinal Diseases. Nutrients 2024; 16:2352. [PMID: 39064795 PMCID: PMC11279818 DOI: 10.3390/nu16142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, a crucial fat-soluble vitamin, is primarily synthesized in the skin upon exposure to ultraviolet radiation and is widely recognized as a bone-associated hormone. However, recent scientific advancements have unveiled its intricate association with gut health. The intestinal barrier serves as a vital component, safeguarding the intestinal milieu and maintaining overall homeostasis. Deficiencies in vitamin D have been implicated in altering the gut microbiome composition, compromising the integrity of the intestinal mucosal barrier, and predisposing individuals to various intestinal pathologies. Vitamin D exerts its regulatory function by binding to vitamin D receptors (VDR) present in immune cells, thereby modulating the production of pro-inflammatory cytokines and influencing the intestinal barrier function. Notably, numerous studies have reported lower serum vitamin D levels among patients suffering from intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, and celiac disease, highlighting the growing significance of vitamin D in gut health maintenance. This comprehensive review delves into the latest advancements in understanding the mechanistic role of vitamin D in modulating the gut microbiome and intestinal barrier function, emphasizing its pivotal role in immune regulation. Furthermore, we consolidate and present relevant findings pertaining to the therapeutic potential of vitamin D in the management of intestinal diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, Peking University, Beijing 100083, China;
| | - Qing Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| |
Collapse
|
5
|
Olszewska AM, Zmijewski MA. Genomic and non-genomic action of vitamin D on ion channels - Targeting mitochondria. Mitochondrion 2024; 77:101891. [PMID: 38692383 DOI: 10.1016/j.mito.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.
Collapse
Affiliation(s)
- A M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland
| | - M A Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| |
Collapse
|
6
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
7
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
8
|
Ionescu CM, Jones MA, Wagle SR, Kovacevic B, Foster T, Mikov M, Mooranian A, Al-Salami H. Bile Acid Application in Cell-Targeting for Molecular Receptors in Relation to Hearing: A Comprehensive Review. Curr Drug Targets 2024; 25:158-170. [PMID: 38192136 DOI: 10.2174/0113894501278292231223035733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects. The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system. Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth 6009, Western Australia, Australia
| |
Collapse
|
9
|
Miolo G, Buonadonna A, Scalone S, Lombardi D, Della Puppa L, Steffan A, Corona G. Metabolic Clues to Bile Acid Patterns and Prolonged Survival in Patients with Metastatic Soft-Tissue Sarcoma Treated with Trabectedin. Metabolites 2023; 13:1035. [PMID: 37887360 PMCID: PMC10608628 DOI: 10.3390/metabo13101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Metastatic soft-tissue sarcomas (mSTS) encompass a highly heterogeneous group of rare tumours characterized by different clinical behaviours and outcomes. Currently, prognostic factors for mSTS are very limited, posing significant challenges in predicting patient survival. Within a cohort of 39 mSTS patients undergoing trabectedin treatment, it was remarkable to find one patient who underwent 73 cycles of trabectedin achieving an unforeseen clinical outcome. To identify contributing factors to her exceptional long-term survival, we have explored circulation metabolomics and biohumoral biomarkers to uncover a potential distinct host biochemical phenotype. The long-term survival patient compared with the other mSTS patients exhibited a distinctive metabolic profile characterized by remarkably higher levels of ursodeoxycholic acid (UDCA) derivatives and vitamin D and lower levels of lithocholic acid (LCA) derivatives, as well as reduced levels of inflammatory C-Reactive Protein 4 (C-RP4) biomarker. Despite its exploratory nature, this study reveals a potential association between specific bile acid metabolic profiles and mSTS patients' prognosis. Enhanced clinical understanding of the interplay between bile acid metabolism and disease progression could pave the way for new targeted therapeutic interventions which may improve the overall survival of mSTS patients.
Collapse
Affiliation(s)
- Gianmaria Miolo
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico (CRO), IRCCS Aviano, 33081 Aviano, Italy; (G.M.); (A.B.); (S.S.); (D.L.)
| | - Angela Buonadonna
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico (CRO), IRCCS Aviano, 33081 Aviano, Italy; (G.M.); (A.B.); (S.S.); (D.L.)
| | - Simona Scalone
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico (CRO), IRCCS Aviano, 33081 Aviano, Italy; (G.M.); (A.B.); (S.S.); (D.L.)
| | - Davide Lombardi
- Department of Medical Oncology, Unit of Medical Oncology and Cancer Prevention, Centro di Riferimento Oncologico (CRO), IRCCS Aviano, 33081 Aviano, Italy; (G.M.); (A.B.); (S.S.); (D.L.)
| | - Lara Della Puppa
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico (CRO), IRCCS Aviano, 33081 Aviano, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico (CRO), IRCCS Aviano, 33081 Aviano, Italy, 33081 Aviano, Italy;
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico (CRO), IRCCS Aviano, 33081 Aviano, Italy, 33081 Aviano, Italy;
| |
Collapse
|
10
|
Thompson B, Lu S, Revilla J, Uddin MJ, Oakland DN, Brovero S, Keles S, Bresnick EH, Petri WA, Burgess SL. Secondary bile acids function through the vitamin D receptor in myeloid progenitors to promote myelopoiesis. Blood Adv 2023; 7:4970-4982. [PMID: 37276450 PMCID: PMC10463201 DOI: 10.1182/bloodadvances.2022009618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/20/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Metabolic products of the microbiota can alter hematopoiesis. However, the contribution and site of action of bile acids is poorly understood. Here, we demonstrate that the secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA), increase bone marrow myelopoiesis. Treatment of bone marrow cells with DCA and LCA preferentially expanded immunophenotypic and functional colony-forming unit-granulocyte and macrophage (CFU-GM) granulocyte-monocyte progenitors (GMPs). DCA treatment of sorted hematopoietic stem and progenitor cells (HSPCs) increased CFU-GMs, indicating that direct exposure of HSPCs to DCA sufficed to increase GMPs. The vitamin D receptor (VDR) was required for the DCA-induced increase in CFU-GMs and GMPs. Single-cell RNA sequencing revealed that DCA significantly upregulated genes associated with myeloid differentiation and proliferation in GMPs. The action of DCA on HSPCs to expand GMPs in a VDR-dependent manner suggests microbiome-host interactions could directly affect bone marrow hematopoiesis and potentially the severity of infectious and inflammatory disease.
Collapse
Affiliation(s)
- Brandon Thompson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Shan Lu
- Department of Statistics, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Julio Revilla
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - David N. Oakland
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Savannah Brovero
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Sunduz Keles
- Department of Statistics, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
11
|
Aggeletopoulou I, Marangos M, Assimakopoulos SF, Mouzaki A, Thomopoulos K, Triantos C. Vitamin D and Microbiome: Molecular Interaction in Inflammatory Bowel Disease Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:656-668. [PMID: 36868465 DOI: 10.1016/j.ajpath.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Studies of systemic autoimmune diseases point to characteristic microbial patterns in various diseases, including inflammatory bowel disease (IBD). Autoimmune diseases, and IBD in particular, show a predisposition to vitamin D deficiency, leading to alterations in the microbiome and disruption of intestinal epithelial barrier integrity. This review examines the role of the gut microbiome in IBD and discusses how vitamin D-vitamin D receptor (VDR)-associated molecular signaling pathways contribute to the development and progression of IBD through their effects on gut barrier function, the microbial community, and immune system function. The present data demonstrate that vitamin D promotes the proper function of the innate immune system by acting as an immunomodulator, exerting anti-inflammatory effects, and critically contributing to the maintenance of gut barrier integrity and modulation of the gut microbiota, mechanisms that may influence the IBD development and progression. VDR regulates the biological effects of vitamin D and is related to environmental, genetic, immunologic, and microbial aspects of IBD. Vitamin D influences the distribution of the fecal microbiota, with high vitamin D levels associated with increased levels of beneficial bacterial species and lower levels of pathogenic bacteria. Understanding the cellular functions of vitamin D-VDR signaling in intestinal epithelial cells may pave the way for the development of new treatment strategies for the therapeutic armamentarium of IBD in the near future.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece; Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
12
|
Kubota H, Ishizawa M, Kodama M, Nagase Y, Kato S, Makishima M, Sakurai K. Vitamin D Receptor Mediates Attenuating Effect of Lithocholic Acid on Dextran Sulfate Sodium Induced Colitis in Mice. Int J Mol Sci 2023; 24:ijms24043517. [PMID: 36834927 PMCID: PMC9965401 DOI: 10.3390/ijms24043517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Bile acids are major components of bile; they emulsify dietary lipids for efficient digestion and absorption and act as signaling molecules that activate nuclear and membrane receptors. The vitamin D receptor (VDR) is a receptor for the active form of vitamin D and lithocholic acid (LCA), a secondary bile acid produced by the intestinal microflora. Unlike other bile acids that enter the enterohepatic circulation, LCA is poorly absorbed in the intestine. Although vitamin D signaling regulates various physiological functions, including calcium metabolism and inflammation/immunity, LCA signaling remains largely unknown. In this study, we investigated the effect of the oral administration of LCA on colitis in a mouse model using dextran sulfate sodium (DSS). Oral LCA decreased the disease activity of colitis in the early phase, which is a phenotype associated with the suppression of histological injury, such as inflammatory cell infiltration and goblet cell loss. These protective effects of LCA were abolished in VDR-deleted mice. LCA decreased the expression of inflammatory cytokine genes, but this effect was at least partly observed in VDR-deleted mice. The pharmacological effect of LCA on colitis was not associated with hypercalcemia, an adverse effect induced by vitamin D compounds. Therefore, LCA suppresses DSS-induced intestinal injury in its action as a VDR ligand.
Collapse
Affiliation(s)
- Hitomi Kubota
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Department of Surgery, The Nippon Dental University School of Life Dentistry, 2-3-16 Fujimi, Chiyoda-ku, Tokyo 102-8158, Japan
| | - Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.I.); (M.M.); Tel.: +81-3-3972-8111 (M.I. & M.M.)
| | - Makoto Kodama
- Department of Pathology, Tokyo Yamate Medical Center, 3-22-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yoshihiro Nagase
- Department of Pathology, Tokyo Yamate Medical Center, 3-22-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Shigeaki Kato
- Graduate School of Science and Technology, Iryo Sosei University, 5-5-1 Iino, Chuodai, Iwaki, Fukushima 970-8044, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Kaminodai-57 Jobankamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.I.); (M.M.); Tel.: +81-3-3972-8111 (M.I. & M.M.)
| | - Kenichi Sakurai
- Department of Surgery, The Nippon Dental University School of Life Dentistry, 2-3-16 Fujimi, Chiyoda-ku, Tokyo 102-8158, Japan
| |
Collapse
|
13
|
Fraser D, Ganesan SM. Microbiome, alveolar bone, and metabolites: Connecting the dots. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1074339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oral microbiome (OM) is a diverse and dynamic collection of species, separated from alveolar bone by the oral mucosa. Pathogenic shifts in the OM (dysbiosis) during periodontitis are associated with an inflammatory response in the oral mucosa that drives alveolar bone resorption. Alveolar bone is also affected by metabolic disorders such as osteoporosis. Accumulating evidence has linked another microbial community, the gut microbiome (GM), to systemic bone metabolism and osteoporosis. Underlying this connection is the biologic activity of metabolites, byproducts of host and bacterial activity. Limited evidence also suggests that metabolites in the oral cavity signal between the OM and immune system, influencing both alveolar bone homeostasis and pathologic bone destruction in periodontitis. While the oral cavity and gut are connected through the gastrointestinal tract, dissimilar roles for known metabolites between these two niches exemplify the difficulty in translating knowledge on gut-derived metabolites and bone metabolism to alveolar bone. Integrated metabolomic, transcriptomic, and metagenomic approaches hold promise for resolving these challenges and identifying novel metabolites which impact alveolar bone health. Further interrogation through mechanistic testing in pre-clinical models and carefully controlled clinical studies have potential to lead toward translation of these discoveries into meaningful therapies.
Collapse
|
14
|
Qiao X, Zhang K, Li X, Lv Z, Wei W, Zhou R, Yan L, Pan Y, Yang S, Sun X, Li P, Xu C, Feng Y, Tian Z. Gut microbiota and fecal metabolic signatures in rat models of disuse-induced osteoporosis. Front Cell Infect Microbiol 2022; 12:1018897. [PMID: 36590590 PMCID: PMC9798431 DOI: 10.3389/fcimb.2022.1018897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Assessing the correlation between gut microbiota (GM) and bone homeostasis has increasingly attracted research interest. Meanwhile, GM dysbiosis has been found to be associated with abnormal bone metabolism. However, the function of GM in disuse-induced osteoporosis (DIO) remains poorly understood. In our research, we evaluated the characteristics of GM and fecal metabolomics to explore their potential correlations with DIO pathogenesis. Methods DIO rat models and controls (CON) underwent micro-CT, histological analyses, and three-point bending tests; subsequently, bone microstructures and strength were observed. ELISAs were applied for the measurement of the biochemical markers of bone turnover while GM abundance was observed using 16S rDNA sequencing. Metabolomic analyses were used to analyze alterations fecal metabolites. The potential correlations between GM, metabolites, and bone loss were then assessed. Results In the DIO group, the abundance of GM was significantly altered compared to that in the CON group. Moreover, DIO significantly altered fecal metabolites. More specifically, an abnormally active pathway associated with bile acid metabolism, as well as differential bacterial genera related to bone/tissue volume (BV/TV), were identified. Lithocholic acid, which is the main secondary bile acid produced by intestinal bacteria, was then found to have a relationship with multiple differential bacterial genera. Alterations in the intestinal flora and metabolites in feces, therefore, may be responsible for DIO-induced bone loss. Conclusions The results indicated that changes in the abundance of GM abundance and fecal metabolites were correlated with DIO-induced bone loss, which might provide new insights into the DIO pathogenesis. The detailed regulatory role of GM and metabolites in DIO-induced bone loss needs to be explored further.
Collapse
Affiliation(s)
- Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, Jinzhong, Shanxi, China
| | - Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Xiaoyan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Wenhao Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yongchun Pan
- Department of Orthopedics, Third People’s Hospital of Datong City, Datong, Shanxi, China
| | - Sen Yang
- Department of Orthopedics, The Second People’s Hospital of Changzhi, Changzhi, Shanxi, China
| | - Xiaojuan Sun
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Chen X, An Z, Wei L, Zhang J, Li J, Wang Z, Gao C, Wei D. Vitamin D 3 Metabolic Enzymes in Plateau Zokor ( Myospalax baileyi) and Plateau Pika ( Ochotona curzoniae): Expression and Response to Hypoxia. Animals (Basel) 2022; 12:ani12182371. [PMID: 36139230 PMCID: PMC9495108 DOI: 10.3390/ani12182371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 (D3) is produced endogenously from 7-dehydrocholesterol by irradiation and is an important secosteroid for the absorption of calcium and phosphate. Lithocholic acid (LCA) increases intestinal paracellular calcium absorption in a vitamin D receptor-dependent manner in vitamin D-deficient rats. The plateau zokor (Myospalax baileyi), a strictly subterranean species, and plateau pika are endemic to the Qinghai-Tibet Plateau. To verify whether the zokors were deficient in D3 and reveal the effects of hypoxia on D3 metabolism in the zokors and pikas, we measured the levels of 25(OH)D3, calcium, and LCA, and quantified the expression levels of D3 metabolism-related genes. The results showed an undetectable serum level of 25(OH)D3 and a significantly higher concentration of LCA in the serum of plateau zokor, but its calcium concentration was within the normal range compared with that of plateau pika and Sprague-Dawley rats. With increasing altitude, the serum 25(OH)D3 levels in plateau pika decreased significantly, and the mRNA and protein levels of CYP2R1 (in the liver) and CYP27B1 (in the kidney) in plateau pika decreased significantly. Our results indicate that plateau zokors were deficient in D3 and abundant in LCA, which might be a substitution of D3 in the zokor. Furthermore, hypoxia suppresses the metabolism of D3 by down-regulating the expression of CYP2R1 and CYP27B1 in plateau pika.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jiayu Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jimei Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhijie Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Conghui Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dengbang Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: ; Tel.: +86-971-531-0695
| |
Collapse
|
17
|
Takei H, Narushima S, Suzuki M, Kakiyama G, Sasaki T, Murai T, Yamashiro Y, Nittono H. Characterization of long-chain fatty acid-linked bile acids: a major conjugation form of 3β-hydroxy bile acids in feces. J Lipid Res 2022; 63:100275. [PMID: 36089004 PMCID: PMC9587409 DOI: 10.1016/j.jlr.2022.100275] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Although most bile acids (BAs) in feces are present in noncovalent forms that can be extracted with ethanol, non-negligible amounts of saponifiable BAs are also present. It is a major concern that such saponifiable BAs are routinely omitted from fecal BA measurements. We compared the BA profiles of healthy stools that were obtained with/without alkaline hydrolysis and found that as much as 29.7% (2.1–67.7%) of total BAs were saponifiable. Specifically, alkaline treatment led to significant elevations of isodeoxycholic acid (isoDCA) and isolithocholic acid (isoLCA) concentrations, suggesting that considerable proportions of isoDCA and isoLCA were esterified. Precursor ion scan data from LC/MS suggested the presence of long-chain FA-linked BAs. We chemically synthesized a series of fatty acid 3β-acyl conjugates of isoDCA and isoLCA as analytical standards and analyzed their fecal profiles from newborns to adults (n = 64) by LC/MS. FA-conjugated isobile acids (FA-isoBAs) were constantly present from 2 years of age to adulthood. C16- and C18-chain FA-isoBA esters were predominantly found regardless of age, but small amounts of acetic acid esters were also found. FA-isoBA concentrations were not correlated to fecal FA concentrations. Interestingly, there were some adults who did not have FA-isoBAs. Gut bacteria involved in the production of FA-isoBAs have not been identified yet. The present study provides insight into the establishment of early gut microbiota and the interactive development of esterified BAs.The contribution of FA-isoBAs to gut physiology and their role in pathophysiologic conditions such as inflammatory bowel disease are currently under investigation.
Collapse
Affiliation(s)
- Hajime Takei
- Junshin Clinic Bile Acid Institute, 2-1-24 Haramachi, Meguro-ku, Tokyo 152-0011, Japan.
| | - Seiko Narushima
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Genta Kakiyama
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
| | - Takahiro Sasaki
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tohbetsu-cho, Ishikari, Hokkaido 061-0293, Japan
| | - Tsuyoshi Murai
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tohbetsu-cho, Ishikari, Hokkaido 061-0293, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, 3rd floor, Hongo-Asakaze Bldg., 2-9-8 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Nittono
- Junshin Clinic Bile Acid Institute, 2-1-24 Haramachi, Meguro-ku, Tokyo 152-0011, Japan
| |
Collapse
|
18
|
Youness RA, Dawoud A, ElTahtawy O, Farag MA. Fat-soluble vitamins: updated review of their role and orchestration in human nutrition throughout life cycle with sex differences. Nutr Metab (Lond) 2022; 19:60. [PMID: 36064551 PMCID: PMC9446875 DOI: 10.1186/s12986-022-00696-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Age and Gender are vital determinants for the micronutrient demands of normal indviduals. Among these micronutrients are vitamins that are required in small amounts for optimum metabolism, homeostasis, and a healthy lifestyle, acting as coenzymes in several biochemical reactions. The majority of previous studies have examined such issues that relates to a specific vitamin or life stage, with the majority merely reporting the effect of either excess or deficiency. Vitamins are classified into water-soluble and fat-soluble components. The fat-soluble vitamins include vitamins (A, D, E, and K). Fat-soluble vitamins were found to have an indisputable role in an array of physiological processes such as immune regulation, vision, bone and mental health. Nonetheless, the fat-soluble vitamins are now considered a prophylactic measurement for a multitude of diseases such as autism, rickets disease, gestational diabetes, and asthma. Herein, in this review, a deep insight into the orchestration of the four different fat-soluble vitamins requirements is presented for the first time across the human life cycle beginning from fertility, pregnancy, adulthood, and senility with an extensive assessment ofthe interactions among them and their underlying mechanistic actions. The influence of sex for each vitamin is also presented at each life stage to highlight the different daily requirements and effects.
Collapse
Affiliation(s)
- Rana A Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt.
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Omar ElTahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| |
Collapse
|
19
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
20
|
Vitamin–Microbiota Crosstalk in Intestinal Inflammation and Carcinogenesis. Nutrients 2022; 14:nu14163383. [PMID: 36014889 PMCID: PMC9414212 DOI: 10.3390/nu14163383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC) are common diseases of the digestive system. Vitamin deficiencies and gut microbiota dysbiosis have a close relationship with the risk, development, and progression of IBD and CAC. There is a strong link between vitamins and the gut microbiome. Vitamins are extremely crucial for maintaining a healthy gut microbiota, promoting growth and development, metabolism, and innate immunity. Gut microbiota can not only influence the transport process of vitamins, but also produce vitamins to compensate for insufficient food intake. Emerging evidence suggests that oral vitamin supplementation can reduce inflammation levels and improve disease prognosis. In addition, improving the diet structure and consuming foods rich in vitamins not only help to improve the vitamin deficiency, but also help to reduce the risk of IBD. Fecal microbiota transplantation (FMT) and the application of vitamin-producing probiotics can better assist in the treatment of intestinal diseases. In this review, we discuss the interaction and therapeutic roles of vitamins and gut microbiota in IBD and CAC. We also summarize the methods of treating IBD and CAC by modulating vitamins. This may highlight strategies to target gut-microbiota-dependent alterations in vitamin metabolism in the context of IBD and CAC therapy.
Collapse
|
21
|
Gong J, He L, Zou Q, Zhao Y, Zhang B, Xia R, Chen B, Cao M, Gong W, Lin L, Lin X, Wang G, Guo M, He J, Xiao C, Chen J. Association of serum 25-hydroxyvitamin D (25(OH)D) levels with the gut microbiota and metabolites in postmenopausal women in China. Microb Cell Fact 2022; 21:137. [PMID: 35820909 PMCID: PMC9275287 DOI: 10.1186/s12934-022-01858-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Vitamin D insufficiency or deficiency is associated with an altered microbiota in older men. However, the relationship between the gut microbiota and 25-hydroxyvitamin D (25(OH)D) levels remains unknown in postmenopausal women. In this study, fecal microbiota profiles for 88 postmenopausal women in the high 25(OH)D (HVD) group (n = 44) and the low 25(OH)D (LVD) group (n = 44) were determined. An integrated 16S rRNA gene sequencing and liquid chromatography–mass spectrometry (LC–MS)-based metabolomics approach was applied to explore the association of serum 25(OH)D levels with the gut microbiota and fecal metabolic phenotype. Adjustments were made using several statistical models for potential confounding variables identified from the literature. Results The results demonstrated that the community diversity estimated by the Observe, Chao1 and ACE indexes was significantly lower in the LVD group than in the HVD group. Additionally, two kinds of characteristic differences in the microflora were analyzed in the HVD group, and ten kinds of characteristic differences in the microflora were analyzed in the LVD group. We observed that some bacteria belonging to the genera Bifidobacterium, Bacillus, F0332 and Gemella, were enriched in the LVD group, as were other genera, including Lachnoclostridium, UC5_1_2E3, Ruminococcus_gnavus_group and un_f_Lachnospiraceae. Christensenellaceae, Eggerthellaceae and Cloacibacillus were enriched in the HVD group. The L-pyroglutamic acid, inosine, and L-homocysteic acid levels were higher in the HVD group and were negatively correlated with the 1,2-benzenedicarboxylic acid and cholic acid metabolic levels. Conclusions These observations provide a better understanding of the relationships between serum 25(OH)D levels and the fecal microbiota and metabolites in postmenopausal women. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01858-6.
Collapse
Affiliation(s)
- Jinhua Gong
- Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Lina He
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Qinyuan Zou
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Yangyang Zhao
- School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rongmu Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baolong Chen
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Man Cao
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wenxiu Gong
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Lin Lin
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Xiujuan Lin
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Guowei Wang
- Institute of Basic Theories of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Muyun Guo
- Pulmonary and Critical Care Medicine, Anyang District Hospital, Anyang, China
| | - Jianquan He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China. .,Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Chuanxing Xiao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China. .,Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China. .,School of Basic Medical Science, Central South University, Changsha, China.
| | - Jian Chen
- Department of Rehabilitation, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
22
|
Sheng W, Ji G, Zhang L. The Effect of Lithocholic Acid on the Gut-Liver Axis. Front Pharmacol 2022; 13:910493. [PMID: 35873546 PMCID: PMC9301130 DOI: 10.3389/fphar.2022.910493] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
Lithocholic acid (LCA) is a monohydroxy bile acid produced by intestinal flora, which has been found to be associated with a variety of hepatic and intestinal diseases. LCA is previously considered to be toxic, however, recent studies revealed that LCA and its derivatives may exert anti-inflammatory and anti-tumor effects under certain conditions. LCA goes through enterohepatic circulation along with other bile acids, here, we mainly discuss the effects of LCA on the gut-liver axis, including the regulation of gut microbiota, intestinal barrier, and relevant nuclear receptors (VDR, PXR) and G protein-coupled receptor five in related diseases. In addition, we also find that some natural ingredients are involved in regulating the detoxification and excretion of LCA, and the interaction with LCA also mediates its own biological activity.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Keely SJ, Urso A, Ilyaskin AV, Korbmacher C, Bunnett NW, Poole DP, Carbone SE. Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. Am J Physiol Gastrointest Liver Physiol 2022; 322:G201-G222. [PMID: 34755536 PMCID: PMC8782647 DOI: 10.1152/ajpgi.00125.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.
Collapse
Affiliation(s)
- Stephen J Keely
- Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Andreacarola Urso
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Oral benzo[a]pyrene administration attenuates dextran sulfate sodium-induced colitis in mice. Chem Biol Interact 2022; 353:109802. [PMID: 34998820 DOI: 10.1016/j.cbi.2022.109802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022]
Abstract
Benzo[a]pyrene (BaP) is an environmental pollutant produced by combustion processes and is present in grilled foods as well as in tobacco smoke. BaP acts as an agonist for the aryl hydrocarbon receptor (AHR), and is metabolized by AHR-inducing enzymes. BaP metabolism can result in either detoxification or metabolic activation, the latter leads to an increased risk of disease, particularly lung cancer and cardiovascular disease, in a context-dependent manner. Although AHR activation has been thought to protect against inflammatory bowel disease, it remains unknown whether BaP exerts a protective or deleterious effect on colitis. In this study, we examined the effect of oral BaP administration on colitis induced by dextran sulfate sodium (DSS) in mice, an animal model of inflammatory bowel disease. BaP administration attenuated weight loss, shortening of the colon, disease activity index scores, and histological damage in DSS-induced colitis mice. BaP also suppressed colonic expression of inflammation-associated genes and plasma interleukin-6 secretion induced by DSS treatment. BaP-DNA adduct formation, a marker of BaP metabolic activation, was not enhanced in the colon after DSS treatment. Thus, oral BaP exerts an anti-inflammatory effect on DSS-induced colitis, without the toxicity associated with metabolic activation. The results provide insights into the disease-specific roles of BaP.
Collapse
|
25
|
Liu J, Chen Y, Luo Q. The Association of Serum Total Bile Acids With Bone Mineral Density in Chinese Adults Aged 20-59: A Retrospective Cross-Sectional Study. Front Endocrinol (Lausanne) 2022; 13:817437. [PMID: 35518936 PMCID: PMC9063409 DOI: 10.3389/fendo.2022.817437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE According to a recent study, serum total bile acids (TBA) may preserve lumbar bone mineral density (BMD) in Cushing syndrome patients, and BMD is directly linked to bone health. We were interested in examining the association between TBA and in Chinese adults aged 20-59 years. METHODS We retrospectively analyzed the physical examination results of 2,490 general healthy subjects in Hainan West Central Hospital. Femoral neck BMD and TBA were measured, and the relationship between TBA and femoral neck BMD was evaluated by curve fitting, a generalized additive model, and multiple linear regression analysis. RESULTS The fitted smooth curve and generalized additive model showed a nonlinear relationship between TBA and femoral neck BMD, and a positive correlation between TBA and femoral neck BMD was found after we made adjustments for the potential confounders. CONCLUSION TBA is positively associated with femoral neck BMD in Chinese adults aged 20-59 years.
Collapse
Affiliation(s)
- Jingxin Liu
- Department of Orthopedics Ward 1, Hainan Western Central Hospital, Danzhou, China
| | - Yuxing Chen
- Department of Orthopedics Ward 1, Hainan Western Central Hospital, Danzhou, China
| | - Qi Luo
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Qi Luo,
| |
Collapse
|
26
|
Boutte HJ, Chen J, Wylie TN, Wylie KM, Xie Y, Geisman M, Prabu A, Gazit V, Tarr PI, Levin MS, Warner BW, Davidson NO, Rubin DC. Fecal microbiome and bile acid metabolome in adult short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2022; 322:G154-G168. [PMID: 34816756 PMCID: PMC8793869 DOI: 10.1152/ajpgi.00091.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to 2 yr to determine which patients will wean from PN. Here, we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN. Stool and sera were collected from healthy controls and from patients with SBS (n = 52) with ileostomy, jejunostomy, ileocolonic, and jejunocolonic anastomoses fed with PN plus enteral nutrition or who were exclusively enterally fed. We undertook 16S rRNA gene sequencing, BA profiling, and 7α-hydroxy-4-cholesten-3-one (C4) quantitation with LC-MS/MS and serum amino acid analyses. Patients with SBS exhibited altered gut microbiota with reduced gut microbial diversity compared with healthy controls. We observed differences in the microbiomes of patients with SBS with ileostomy versus jejunostomy, jejunocolonic versus ileocolonic anastomoses, and PN dependence compared with those who weaned from PN. Stool and serum BA composition and C4 concentrations were also altered in patients with SBS, reflecting adaptive changes in enterohepatic BA cycling. Stools from patients who were weaned from PN were enriched in secondary BAs including deoxycholic acid and lithocholic aicd. Shifts in gut microbiota and BA metabolites may generate a favorable luminal environment in select patients with SBS, promoting the ability to wean from PN. Proadaptive microbial species and select BA may provide novel targets for patient-specific therapies for SBS.NEW & NOTEWORTHY Loss of intestinal surface area causes short bowel syndrome, intestinal failure, and parenteral nutrition dependence. We analyzed the gut microbiota and bile acid metabolome of a large cohort of short bowel syndrome adult patients with different postsurgical anatomies. We report a novel analysis of the microbiome of patients with ileostomy and jejunostomy. Enrichment of specific microbial and bile acid species may be associated with the ability to wean from parenteral nutrition.
Collapse
Affiliation(s)
- Harold J. Boutte
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline Chen
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Todd N. Wylie
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Kristine M. Wylie
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mackenzie Geisman
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Anirudh Prabu
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Vered Gazit
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I. Tarr
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri,4Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| | - Marc S. Levin
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,7Veterans Administration Saint Louis Health Care System, St. Louis, Missouri
| | - Brad W. Warner
- 5Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O. Davidson
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah C. Rubin
- 1Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,6Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
27
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
28
|
Zhang S, Zhou J, Wu W, Zhu Y, Liu X. The Role of Bile Acids in Cardiovascular Diseases: from Mechanisms to Clinical Implications. Aging Dis 2022; 14:261-282. [PMID: 37008052 PMCID: PMC10017164 DOI: 10.14336/ad.2022.0817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bile acids (BAs), key regulators in the metabolic network, are not only involved in lipid digestion and absorption but also serve as potential therapeutic targets for metabolic disorders. Studies have shown that cardiac dysfunction is associated with abnormal BA metabolic pathways. As ligands for several nuclear receptors and membrane receptors, BAs systematically regulate the homeostasis of metabolism and participate in cardiovascular diseases (CVDs), such as myocardial infarction, diabetic cardiomyopathy, atherosclerosis, arrhythmia, and heart failure. However, the molecular mechanism by which BAs trigger CVDs remains controversial. Therefore, the regulation of BA signal transduction by modulating the synthesis and composition of BAs is an interesting and novel direction for potential therapies for CVDs. Here, we mainly summarized the metabolism of BAs and their role in cardiomyocytes and noncardiomyocytes in CVDs. Moreover, we comprehensively discussed the clinical prospects of BAs in CVDs and analyzed the clinical diagnostic and application value of BAs. The latest development prospects of BAs in the field of new drug development are also prospected. We aimed to elucidate the underlying mechanism of BAs treatment in CVDs, and the relationship between BAs and CVDs may provide new avenues for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Shuwen Zhang
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Lajczak-McGinley NK, Porru E, Fallon CM, Smyth J, Curley C, McCarron PA, Tambuwala MM, Roda A, Keely SJ. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol Rep 2021; 8:e14456. [PMID: 32562381 PMCID: PMC7305237 DOI: 10.14814/phy2.14456] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Increased epithelial permeability is a key feature of IBD pathogenesis and it has been proposed that agents which promote barrier function may be of therapeutic benefit. We have previously reported the secondary bile acid, ursodeoxycholic acid (UDCA), to be protective in a mouse model of colonic inflammation and that its bacterial metabolism is required for its beneficial effects. The current study aimed to compare the effects of UDCA, LCA, and a non‐metabolizable analog of UDCA, 6‐methyl‐UDCA (6‐MUDCA), on colonic barrier function and mucosal inflammation in a mouse model of colonic inflammation. Bile acids were administered daily to C57Bl6 mice by intraperitoneal injection. Colonic inflammation, induced by addition of DSS (2.5%) to the drinking water, was measured as disease activity index (DAI) and histological score. Epithelial permeability and apoptosis were assessed by measuring FITC‐dextran uptake and caspase‐3 cleavage, respectively. Cecal bile acids were measured by HPLC‐MS/MS. UDCA and LCA, but not 6‐MUDCA, were protective against DSS‐induced increases in epithelial permeability and colonic inflammation. Furthermore, UDCA and LCA inhibited colonic epithelial caspase‐3 cleavage both in DSS‐treated mice and in an in vitro model of cytokine‐induced epithelial injury. HPLC‐MS/MS analysis revealed UDCA administration to increase colonic LCA levels, whereas LCA administration did not alter UDCA levels. UDCA, and its primary metabolite, LCA, protect against intestinal inflammation in vivo, at least in part, by inhibition of epithelial apoptosis and promotion of barrier function. These data suggest that clinical trials of UDCA in IBD patients are warranted.
Collapse
Affiliation(s)
- Natalia K Lajczak-McGinley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Emanule Porru
- Department of Chemistry, University of Bologna, Bologna, Italy
| | - Ciara M Fallon
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Jessica Smyth
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Caitriona Curley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Aldo Roda
- Department of Chemistry, University of Bologna, Bologna, Italy.,INBB, National Institute of Bio structures and Biosystems, Rome, Italy
| | - Stephen J Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
30
|
Miura K, Oshima T, Ito C, Horikawa T, Yamada M, Tomita T, Fukui H, Miwa H. Vitamin D receptor is overexpressed in the duodenum of patients with irritable bowel syndrome. J Gastroenterol Hepatol 2021; 36:951-958. [PMID: 32839988 DOI: 10.1111/jgh.15225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/21/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, and bile acids are thought to be associated with the pathogenesis of IBS. Bile acid receptors are expressed on intestinal epithelial cells. However, no study has assessed bile acid receptor proteins in IBS. Therefore, we examined the intestinal mucosal expression of bile acid receptors in patients with IBS. METHODS Intestinal biopsies were performed in patients with IBS and controls. Mast cells, vitamin D receptor (VDR), and somatostatin were stained with specific antibodies. Levels of VDR, farnesoid X receptor (FXR), takeda-G-protein-receptor-5 (TGR5), claudins, and transient-receptor-potential-cation-channel-subfamily-V-member 6 (TRPV6) were assessed by western blotting. RESULTS 3Mast cell counts in the second part of the duodenum were significantly higher in patients with IBS than in controls. VDR protein levels were significantly elevated in the duodenum and terminal ileum of patients with IBS compared with controls, although this difference was not seen in the cecum or rectum. FXR and TGR5 protein levels did not differ in any part of the intestine. VDR-positive cryptal epithelia in IBS were distributed not only at basal crypt but also along the upper part of the basal crypt epithelial cells. In contrast, the pattern of gut somatostatin-positive cells, claudins, and TRPV6 levels did not differ. CONCLUSIONS The number of mast cells in the duodenum was significantly increased, and the protein expression levels of VDR, but not those of FXR or TGR5, were elevated in the duodenal epithelial crypt in patients with IBS.
Collapse
Affiliation(s)
- Ko Miura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Chiyomi Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomoki Horikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mayumi Yamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
31
|
Sasaki H, Masuno H, Kawasaki H, Yoshihara A, Numoto N, Ito N, Ishida H, Yamamoto K, Hirata N, Kanda Y, Kawachi E, Kagechika H, Tanatani A. Lithocholic Acid Derivatives as Potent Vitamin D Receptor Agonists. J Med Chem 2020; 64:516-526. [PMID: 33369416 DOI: 10.1021/acs.jmedchem.0c01420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lithocholic acid (2) was identified as a second endogenous ligand of vitamin D receptor (VDR), though its activity is very weak. In this study, we designed novel lithocholic acid derivatives based on the crystal structure of VDR-ligand-binding domain (LBD) bound to 2. Among the synthesized compounds, 6 bearing a 2-hydroxy-2-methylprop-1-yl group instead of the 3-hydroxy group at the 3α-position of 2 showed dramatically increased activity in HL-60 cell differentiation assay, being at least 10 000 times more potent than lithocholic acid (2) and 3 times more potent than 1α,25-dihydroxyvitamin D3 (1). Although the binding affinities of 6 and its epimer 7 were less than that of 1, their transactivation activities were greater than that of 1. X-ray structure analyses of VDR LBD bound to 6 or 7 showed that the binding positions of these compounds in the ligand-binding pocket are similar to that of 1.
Collapse
Affiliation(s)
- Harue Sasaki
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Hiroyuki Masuno
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Haru Kawasaki
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Ayana Yoshihara
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Bunkyo, Tokyo 113-8510, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Bunkyo, Tokyo 113-8510, Japan
| | - Hiroaki Ishida
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machidashi, Tokyo 194-8543, Japan
| | - Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Emiko Kawachi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Chiyoda, Tokyo 101-0062, Japan
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Bunkyo, Tokyo 112-8610, Japan
| |
Collapse
|
32
|
Wren SN, Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. A Villin-Driven Fxr Transgene Modulates Enterohepatic Bile Acid Homeostasis and Response to an n-6-Enriched High-Fat Diet. Int J Mol Sci 2020; 21:ijms21217829. [PMID: 33105708 PMCID: PMC7659968 DOI: 10.3390/ijms21217829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
A diet high in n-6 polyunsaturated fatty acids (PUFAs) may contribute to inflammation and tissue damage associated with obesity and pathologies of the colon and liver. One contributing factor may be dysregulation by n-6 fatty acids of enterohepatic bile acid (BA) metabolism. The farnesoid X receptor (FXR) is a nuclear receptor that regulates BA homeostasis in the liver and intestine. This study aims to compare the effects on FXR regulation and BA metabolism of a palm oil-based diet providing 28% energy (28%E) from fat and low n-6 linoleic acid (LA, 2.5%E) (CNTL) with those of a soybean oil-based diet providing 50%E from fat and high (28%E) in LA (n-6HFD). Wild-type (WT) littermates and a transgenic mouse line overexpressing the Fxrα1 isoform under the control of the intestine-specific Villin promoter (Fxrα1TG) were fed the CNTL or n-6HFD starting at weaning through 16 weeks of age. Compared to the CNTL diet, the n-6HFD supports higher weight gain in both WT and FxrαTG littermates; increases the expression of Fxrα1/2, and peroxisome proliferator-activated receptor-γ1 (Pparγ1) in the small intestine, Fxrα1/2 in the colon, and cytochrome P4507A1 (Cyp7a1) and small heterodimer protein (Shp) in the liver; and augments the levels of total BA in the liver, and primary chenodeoxycholic (CDCA), cholic (CA), and β-muricholic (βMCA) acid in the cecum. Intestinal overexpression of the Fxra1TG augments expression of Shp and ileal bile acid-binding protein (Ibabp) in the small intestine and Ibabp in the proximal colon. Conversely, it antagonizes n-6HFD-dependent accumulation of intestinal and hepatic CDCA and CA; hepatic levels of Cyp7a1; and expression of Pparγ in the small intestine. We conclude that intestinal Fxrα1 overexpression represses hepatic de novo BA synthesis and protects against n-6HFD-induced accumulation of human-specific primary bile acids in the cecum.
Collapse
Affiliation(s)
- Spencer N. Wren
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
| | - Micah G. Donovan
- Interdisciplinary Cancer Biology Graduate Program, The University of Arizona, Tucson, AZ 85724, USA;
| | - Ornella I. Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Tom C. Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA;
| | - Donato F. Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA; (S.N.W.); (O.I.S.)
- The University of Arizona Cancer Center, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-520-626-9108
| |
Collapse
|
33
|
Uchitomi R, Oyabu M, Kamei Y. Vitamin D and Sarcopenia: Potential of Vitamin D Supplementation in Sarcopenia Prevention and Treatment. Nutrients 2020; 12:nu12103189. [PMID: 33086536 PMCID: PMC7603112 DOI: 10.3390/nu12103189] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle, the largest organ in the human body, accounting for approximately 40% of body weight, plays important roles in exercise and energy expenditure. In the elderly, there is often a progressive decline in skeletal muscle mass and function, a condition known as sarcopenia, which can lead to bedridden conditions, wheelchair confinement as well as reducing the quality of life (QOL). In developed countries with aging populations, the prevention and management of sarcopenia are important for the improvement of health and life expectancy in these populations. Recently, vitamin D, a fat-soluble vitamin, has been attracting attention due to its importance in sarcopenia. This review will focus on the effects of vitamin D deficiency and supplementation on sarcopenia.
Collapse
|
34
|
Cao Y, Shu XB, Yao Z, Ji G, Zhang L. Is vitamin D receptor a druggable target for non-alcoholic steatohepatitis? World J Gastroenterol 2020; 26:5812-5821. [PMID: 33132636 PMCID: PMC7579753 DOI: 10.3748/wjg.v26.i38.5812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressed stage of non-alcoholic fatty liver disease, and available therapeutic strategies for NASH are limited. Vitamin D receptor (VDR) is proposed as a druggable target for NASH due to the discovery of vitamin D deficiency in NASH patients. To date, vitamin D supplementation has not consistently conferred expected therapeutic benefits, raising the question of whether VDR can serve as a proper drug target for NASH. It is known that VDR can interact with other ligands such as bile acids in addition to vitamin D, and its expression can be induced by fatty acids, and insulin. It has also been shown that while activation of VDR in hepatic macrophages and hepatic stellate cells resulted in attenuation of hepatic inflammation and fibrosis, activation of VDR in hepatocytes could accelerate lipid accumulation. Thus, the multiplicity of VDR ligands, together with the cell type-specificity of VDR activation, must be taken into consideration in assessing the validity of VDR being a potential druggable target for NASH treatment. To this end, we have evaluated the relationship between VDR activation and various contributing factors, such as gut microbiota, bile acid, fatty acids, and insulin, in addition to vitamin D, with an expectation that a potential drug might be identified that can elicit VDR activation in a tissue- and/or cell type-specific manner and therefore achieving therapeutic benefits in NASH.
Collapse
Affiliation(s)
- Ying Cao
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiang-Bing Shu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Geratology, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H8M5, Ontario, Canada
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
35
|
Keskin M, Öztürk D, Or Koca A, Ertuğrul DT, Bulus H. Does Bariatric Surgery Increase the Formation of Parathyroid Adenoma. Bariatr Surg Pract Patient Care 2020. [DOI: 10.1089/bari.2019.0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Müge Keskin
- Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Doğan Öztürk
- General Surgery, Kecioren Training and Research Hospital, Ankara, Turkey
| | - Arzu Or Koca
- Ankara Keçiören Eğitim ve Araştırma Hastanesi, Ankara, Turkey
| | | | - Hakan Bulus
- General Surgery, Kecioren Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Studies have identified several effects of bile acids (BAs) in glucose homeostasis, energy expenditure, and body weight control, through receptor-dependent and independent mechanisms. BAs are produced from cholesterol and characterized by their structures, which result from enzymes in the liver and the gut microbiota. The aim of this review is to characterize the effects of BA structure and composition on diabetes. RECENT FINDINGS The hydroxyl groups of BAs interact with binding pockets of receptors and enzymes that affect glucose homeostasis. Human and animal studies show that BA composition is associated with insulin resistance and food intake regulation. The hydroxylation of BAs and BA composition contributes to glucose regulation. Modulation of BA composition has the potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Sei Higuchi
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Russ Berrie Pavilion, Room 315, 1150 St. Nicholas Ave., New York, NY, 10032, USA.
| |
Collapse
|
37
|
Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr 2020; 61:3211-3232. [PMID: 32715724 DOI: 10.1080/10408398.2020.1793728] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota is a complex ecosystem seen as an extension of human genome. It represents a major metabolic interface of interaction with food components and xenobiotics in the gastrointestinal (GI) environment. In this context, the advent of modern bacterial genome sequencing technology has enabled the identification of dietary nutrients as key determinants of gut microbial ecosystem able to modulate the host-microbiome symbiotic relationship and its effects on human health. This article provides a literature review on functional and molecular interactions between a specific group of lipids and essential nutrients, e.g., fat-soluble vitamins (FSVs), and the gut microbiota. A two-way relationship appears to emerge from the available literature with important effects on human metabolism, nutrition, GI physiology and immune function. First, FSV directly or indirectly modify the microbial composition involving for example immune system-mediated and/or metabolic mechanisms of bacterial growth or inhibition. Second, the gut microbiota influences at different levels the synthesis, metabolism and transport of FSV including their bioactive metabolites that are either introduced with the diet or released in the gut via entero-hepatic circulation. A better understanding of these interactions, and of their impact on intestinal and metabolic homeostasis, will be pivotal to design new and more efficient strategies of disease prevention and therapy, and personalized nutrition.
Collapse
Affiliation(s)
- Valentina Stacchiotti
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Serge Rezzi
- Swiss Vitamin Institute, Epalinges, Switzerland
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Francesco Galli
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
38
|
Ahmad TR, Higuchi S, Bertaggia E, Hung A, Shanmugarajah N, Guilz NC, Gamarra JR, Haeusler RA. Bile acid composition regulates the manganese transporter Slc30a10 in intestine. J Biol Chem 2020; 295:12545-12558. [PMID: 32690612 DOI: 10.1074/jbc.ra120.012792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BAs) comprise heterogenous amphipathic cholesterol-derived molecules that carry out physicochemical and signaling functions. A major site of BA action is the terminal ileum, where enterocytes actively reuptake BAs and express high levels of BA-sensitive nuclear receptors. BA pool size and composition are affected by changes in metabolic health, and vice versa. One of several factors that differentiate BAs is the presence of a hydroxyl group on C12 of the steroid ring. 12α-Hydroxylated BAs (12HBAs) are altered in multiple disease settings, but the consequences of 12HBA abundance are incompletely understood. We employed mouse primary ileum organoids to investigate the transcriptional effects of varying 12HBA abundance in BA pools. We identified Slc30a10 as one of the top genes differentially induced by BA pools with varying 12HBA abundance. SLC30A10 is a manganese efflux transporter critical for whole-body manganese excretion. We found that BA pools, especially those low in 12HBAs, induce cellular manganese efflux and that Slc30a10 induction by BA pools is driven primarily by lithocholic acid signaling via the vitamin D receptor. Administration of lithocholic acid or a vitamin D receptor agonist resulted in increased Slc30a10 expression in mouse ileum epithelia. These data demonstrate a previously unknown role for BAs in intestinal control of manganese homeostasis.
Collapse
Affiliation(s)
- Tiara R Ahmad
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Sei Higuchi
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Enrico Bertaggia
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Allison Hung
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Niroshan Shanmugarajah
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Nicole C Guilz
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Jennifer R Gamarra
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Rebecca A Haeusler
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA .,Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| |
Collapse
|
39
|
The absorbing life of bile acids. Kidney Int 2020; 97:1099-1102. [DOI: 10.1016/j.kint.2020.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/18/2022]
|
40
|
González A, Casado J, Chueca E, Salillas S, Velázquez-Campoy A, Sancho J, Lanas Á. Small Molecule Inhibitors of the Response Regulator ArsR Exhibit Bactericidal Activity against Helicobacter pylori. Microorganisms 2020; 8:E503. [PMID: 32244717 PMCID: PMC7232201 DOI: 10.3390/microorganisms8040503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is considered the most prevalent bacterial pathogen in humans. The increasing antibiotic resistance evolved by this microorganism has raised alarm bells worldwide due to the significant reduction in the eradication rates of traditional standard therapies. A major challenge in this antibiotic resistance crisis is the identification of novel microbial targets whose inhibitors can overcome the currently circulating resistome. In the present study, we have validated the use of the essential response regulator ArsR as a novel and promising therapeutic target against H. pylori infections. A high-throughput screening of a repurposing chemical library using a fluorescence-based thermal shift assay identified several ArsR binders. At least four of these low-molecular weight compounds noticeably inhibited the DNA binding activity of ArsR and showed bactericidal effects against antibiotic-resistant strains of H. pylori. Among the ArsR inhibitors, a human secondary bile acid, lithocholic acid, quickly destroyed H. pylori cells and exhibited partial synergistic action in combination with clarithromycin or levofloxacin, while the antimicrobial effect of this compound against representative members of the normal human microbiota such as Escherichia coli and Staphylococcus epidermidis appeared irrelevant. Our results enhance the battery of novel therapeutic tools against refractory infections caused by multidrug-resistant H. pylori strains.
Collapse
Affiliation(s)
- Andrés González
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
| | - Javier Casado
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Eduardo Chueca
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Sandra Salillas
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Government of Aragon, Ranillas 1-D, 50018 Zaragoza, Spain
| | - Javier Sancho
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, San Juan Bosco 15, 50009 Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
41
|
Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 2019; 69:683-696. [PMID: 31222614 PMCID: PMC10717634 DOI: 10.1007/s12576-019-00688-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
Besides the two canonical calciotropic hormones, namely parathyroid hormone and 1,25-dihydroxyvitamin D [1,25(OH)2D3], there are several other endocrine and paracrine factors, such as prolactin, estrogen, and insulin-like growth factor that have been known to directly stimulate intestinal calcium absorption. Generally, to maintain an optimal plasma calcium level, these positive regulators enhance calcium absorption, which is indirectly counterbalanced by a long-loop negative feedback mechanism, i.e., through calcium-sensing receptor in the parathyroid chief cells. However, several lines of recent evidence have revealed the presence of calcium absorption inhibitors present in the intestinal lumen and extracellular fluid in close vicinity to enterocytes, which could also directly compromise calcium absorption. For example, luminal iron, circulating fibroblast growth factor (FGF)-23, and stanniocalcin can decrease calcium absorption, thereby preventing excessive calcium uptake under certain conditions. Interestingly, the intestinal epithelial cells themselves could lower their rate of calcium uptake after exposure to high luminal calcium concentration, suggesting a presence of an ultra-short negative feedback loop independent of systemic hormones. The existence of neural regulation is also plausible but this requires more supporting evidence. In the present review, we elaborate on the physiological significance of these negative feedback regulators of calcium absorption, and provide evidence to show how our body can efficiently restrict a flood of calcium influx in order to maintain calcium homeostasis.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mayuree Rodrat
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand.
| |
Collapse
|
42
|
Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules 2018; 8:E159. [PMID: 30486474 PMCID: PMC6316857 DOI: 10.3390/biom8040159] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) are classically known as an important agent in lipid absorption and cholesterol metabolism. Nowadays, their role in glucose regulation and energy homeostasis are widely reported. BAs are involved in various cellular signaling pathways, such as protein kinase cascades, cyclic AMP (cAMP) synthesis, and calcium mobilization. They are ligands for several nuclear hormone receptors, including farnesoid X-receptor (FXR). Recently, BAs have been shown to bind to muscarinic receptor and Takeda G-protein-coupled receptor 5 (TGR5), both G-protein-coupled receptor (GPCR), independent of the nuclear hormone receptors. Moreover, BA signals have also been elucidated in other nonclassical BA pathways, such as sphingosine-1-posphate and BK (large conductance calcium- and voltage activated potassium) channels. Hydrophobic BAs have been proven to affect heart rate and its contraction. Elevated BAs are associated with arrhythmias in adults and fetal heart, and altered ratios of primary and secondary bile acid are reported in chronic heart failure patients. Meanwhile, in patients with liver cirrhosis, cardiac dysfunction has been strongly linked to the increase in serum bile acid concentrations. In contrast, the most hydrophilic BA, known as ursodeoxycholic acid (UDCA), has been found to be beneficial in improving peripheral blood flow in chronic heart failure patients and in protecting the heart against reperfusion injury. This review provides an overview of BA signaling, with the main emphasis on past and present perspectives on UDCA signals in the heart.
Collapse
Affiliation(s)
- Noorul Izzati Hanafi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Anis Syamimi Mohamed
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia.
| |
Collapse
|
43
|
Bakke D, Chatterjee I, Agrawal A, Dai Y, Sun J. Regulation of Microbiota by Vitamin D Receptor: A Nuclear Weapon in Metabolic Diseases. NUCLEAR RECEPTOR RESEARCH 2018; 5:101377. [PMID: 30828578 PMCID: PMC6392192 DOI: 10.11131/2018/101377] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a multi-faceted disease. The microbiota, as a newly discovered organ, contributes to the pathogenesis and progression of metabolic syndrome. Recent studies have demonstrated that nuclear receptors play critical roles in metabolic diseases. In the current review, we discuss the general role of the microbiome in health and metabolic syndrome. We summarize the functions of the nuclear receptor vitamin D receptor (VDR) in metabolism. The focus of this review is the novel roles of vitamin D/VDR signaling in regulating inflammation and the microbiome, especially in obesity. Furthermore, we extend our discussion of potential gut-liver axis mediated by VDR signaling and microbiota in obesity. Finally, we discuss the potential clinical application of probiotics and fecal microbiota transplantation in prevention and treatment of metabolic syndrome. Insights into nuclear receptors in metabolism and metabolic diseases will allow us to develop new strategies for fighting metabolic diseases.
Collapse
Affiliation(s)
- Danika Bakke
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Annika Agrawal
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering/College of Medicine, University of Illinois at Chicago, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| |
Collapse
|