1
|
Qin C, Xu F, Yue B, Zhong J, Chai Z, Wang H. SRSF3 and hnRNP A1-mediated m6A-modified circCDK14 regulates intramuscular fat deposition by acting as miR-4492-z sponge. Cell Mol Biol Lett 2025; 30:26. [PMID: 40038607 DOI: 10.1186/s11658-025-00699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
The intramuscular fat (IMF) content of yak beef is critical for determining its quality. Circular RNAs (circRNAs) are a group of endogenous non-coding RNAs that have emerged as important factors in the regulation of IMF deposition. However, the molecular mechanisms through which circRNAs regulate IMF deposition, particularly in yaks, remain unclear. In the present study, a novel circRNA, circCDK14 (originating from the yak's CDK14 gene), was identified by sequencing and RNase R treatment. In our previous study, we successfully established a ceRNA network map and identified miR-4492-z, which interacts with circCDK14. Furthermore, using methylation prediction software, we predicted two genes, SRSF3 and hnRNP A1, that have a strong binding relationship with circCDK14; existing research has confirmed their close association with m6A methylation modifications. On the basis of these findings, we comprehensively evaluated the effects of circCDK14, miR-4492-z, SRSF3 and hnRNP A1 on the proliferation and differentiation of yak intramuscular pre-adipocytes using EdU, CCK-8, BODIPY, Oil Red O and qRT-PCR analyses. Mechanistically, the interaction between circCDK14 and miR-4492-z was validated using a dual-luciferase reporter gene assay and rescue experiments. RIP assays revealed the binding interaction of circCDK14 with SRSF3 and hnRNP A1. The MeRIP experiments showed modification of circCDK14 methylation, with SRSF3 and hnRNP A1 promoting the methylation and translocation of circCDK14 from the nucleus to the cytoplasm. In summary, our results suggest that m6A-modified circCDK14 plays a crucial role as an miR-4492-z sponge in regulating IMF deposition in yaks and that the nuclear export of circCDK14 correlates with the expression levels of SRSF3 and hnRNP A1. This study provides a theoretical basis for the improvement of yak meat quality and promotes the development of molecular yak breeding.
Collapse
Affiliation(s)
- Chunyu Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Fang Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
2
|
Zhang L, Zhang H, Tang Y, Dai C, Zheng J. SRSF3 suppresses RCC tumorigenesis and progression via regulating SP4 alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119841. [PMID: 39222664 DOI: 10.1016/j.bbamcr.2024.119841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/10/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Abnormal alternative splicing (AS) caused by dysregulated expression of splicing factors plays a crucial role in tumorigenesis and progression. The serine/arginine-rich (SR) RNA-binding protein family is a major class of splicing factors regulating AS. However, their roles and mechanisms in renal cell carcinoma (RCC) development and progression are not fully understood. Here, we found that SR splicing factor 3 (SRSF3) was an important splicing factor affecting RCC progression. SRSF3 was downregulated in RCC tissues and its low level was associated with decreased overall survival time of RCC patients. SRSF3 overexpression suppressed RCC cell malignancy. Mechanistically, the binding of SRSF3 to SP4 exon 3 led to the inclusion of SP4 exon 3 and the increase of long SP4 isoform (L-SP4) level in RCC cells. L-SP4, but not S-SP4 overexpression suppressed RCC cell malignancy. Meanwhile, L-SP4 participated in SRSF3-mediated anti-proliferation by transcriptionally promoting SMAD4 expression. Taken together, our findings provide new insights into the anticancer mechanism of SRSF3, suggesting that SRSF3 may serve as a novel potential therapeutic target for RCC.
Collapse
Affiliation(s)
- Liuxu Zhang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Hongning Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuangui Tang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Chenyun Dai
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Junfang Zheng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Mostafa SM, Wang L, Tian B, Graber J, Moore C. Transcriptomic analysis reveals regulation of adipogenesis via long non-coding RNA, alternative splicing, and alternative polyadenylation. Sci Rep 2024; 14:16964. [PMID: 39043790 PMCID: PMC11266407 DOI: 10.1038/s41598-024-67648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Obesity is characterized by dysregulated adipogenesis that leads to increased number and/or size of adipocytes. Understanding the molecular mechanisms governing adipogenesis is therefore key to designing therapeutic interventions against obesity. In our study, we analyzed 3'-end sequencing data that we generated from human preadipocytes and adipocytes, as well as previously published RNA-seq datasets, to elucidate mechanisms of regulation via long non-coding RNA (lncRNA), alternative splicing (AS) and alternative polyadenylation (APA). We discovered lncRNAs that have not been previously characterized but may be key regulators of white adipogenesis. We also detected 100 AS events and, using motif enrichment analysis, identified RNA binding proteins (RBPs) that could mediate exon skipping-the most prevalent AS event. In addition, we show that usage of alternative poly(A) sites in introns or 3'-UTRs of key adipogenesis genes leads to isoform diversity, which can have significant biological consequences on differentiation efficiency. We also identified RBPs that may modulate APA and defined how 3'-UTR APA can regulate gene expression through gain or loss of specific microRNA binding sites. Taken together, our bioinformatics-based analysis reveals potential therapeutic avenues for obesity through manipulation of lncRNA levels and the profile of mRNA isoforms via alternative splicing and polyadenylation.
Collapse
Affiliation(s)
- Salwa Mohd Mostafa
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Luyang Wang
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joel Graber
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04609, USA
| | - Claire Moore
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
4
|
Yazaki J, Yamanashi T, Nemoto S, Kobayashi A, Han YW, Hasegawa T, Iwase A, Ishikawa M, Konno R, Imami K, Kawashima Y, Seita J. Mapping adipocyte interactome networks by HaloTag-enrichment-mass spectrometry. Biol Methods Protoc 2024; 9:bpae039. [PMID: 38884001 PMCID: PMC11180226 DOI: 10.1093/biomethods/bpae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Mapping protein interaction complexes in their natural state in vivo is arguably the Holy Grail of protein network analysis. Detection of protein interaction stoichiometry has been an important technical challenge, as few studies have focused on this. This may, however, be solved by artificial intelligence (AI) and proteomics. Here, we describe the development of HaloTag-based affinity purification mass spectrometry (HaloMS), a high-throughput HaloMS assay for protein interaction discovery. The approach enables the rapid capture of newly expressed proteins, eliminating tedious conventional one-by-one assays. As a proof-of-principle, we used HaloMS to evaluate the protein complex interactions of 17 regulatory proteins in human adipocytes. The adipocyte interactome network was validated using an in vitro pull-down assay and AI-based prediction tools. Applying HaloMS to probe adipocyte differentiation facilitated the identification of previously unknown transcription factor (TF)-protein complexes, revealing proteome-wide human adipocyte TF networks and shedding light on how different pathways are integrated.
Collapse
Affiliation(s)
- Junshi Yazaki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Faculty of Agriculture, Laboratory for Genome Biology, Setsunan University, Osaka, 573-0101, Japan
| | - Takashi Yamanashi
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Medical Data Deep Learning Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, 103-0027, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Shino Nemoto
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Atsuo Kobayashi
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yong-Woon Han
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tomoko Hasegawa
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Akira Iwase
- Cell Function Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Technology Development Team, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Ryo Konno
- Department of Applied Genomics, Technology Development Team, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Technology Development Team, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Jun Seita
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Medical Data Deep Learning Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Tokyo, 103-0027, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
5
|
Hou Z, Li X, Xu M, Meng S, Xu H, Li M, Cai H. Comparative Genome-Wide Alternative Splicing Analysis between Preadipocytes and Adipocytes. Genes (Basel) 2024; 15:640. [PMID: 38790269 PMCID: PMC11121090 DOI: 10.3390/genes15050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Alternative splicing is a ubiquitous regulatory mechanism in gene expression that allows a single gene to generate multiple messenger RNAs (mRNAs). Adipocyte development is regulated by many processes, and recent studies have found that splicing factors also play an important role in adipogenic development. In the present study, we further investigated the differences in selective shearing during different periods of adipocyte differentiation. We identified five alternative splicing types including skipped exon, mutually exclusive exon, Alternative 5' splice site, Alternative 3' splice site, and Retained intron, with skipped exons being the most abundant type of selective shearing. In total, 641 differentially expressed selective shearing genes were obtained, enriched in 279 pathways, from which we selected and verified the accuracy of the sequencing results. Overall, RNA-seq revealed changes in the splicing and expression levels of these new candidate genes between precursor adipocytes and adipocytes, suggesting that they may be involved in adipocyte generation and differentiation.
Collapse
Affiliation(s)
- Zhongyi Hou
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou 450046, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou 450046, China
| | - Maosheng Xu
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou 450046, China
| | - Shengbo Meng
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou 450046, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou 450046, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou 450046, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou 450046, China
| |
Collapse
|
6
|
Naing YT, Sun L. The Role of Splicing Factors in Adipogenesis and Thermogenesis. Mol Cells 2023; 46:268-277. [PMID: 37170770 PMCID: PMC10183792 DOI: 10.14348/molcells.2023.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023] Open
Abstract
Obesity is a significant global health risk that can cause a range of serious metabolic problems, such as type 2 diabetes and cardiovascular diseases. Adipose tissue plays a pivotal role in regulating energy and lipid storage. New research has underlined the crucial role of splicing factors in the physiological and functional regulation of adipose tissue. By generating multiple transcripts from a single gene, alternative splicing allows for a greater diversity of the proteome and transcriptome, which subsequently influence adipocyte development and metabolism. In this review, we provide an outlook on the part of splicing factors in adipogenesis and thermogenesis, and investigate how the different spliced isoforms can affect the development and function of adipose tissue.
Collapse
Affiliation(s)
- Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
7
|
MAP4K4/JNK Signaling Pathway Stimulates Proliferation and Suppresses Apoptosis of Human Spermatogonial Stem Cells and Lower Level of MAP4K4 Is Associated with Male Infertility. Cells 2022; 11:cells11233807. [PMID: 36497065 PMCID: PMC9739186 DOI: 10.3390/cells11233807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Spermatogonial stem cells (SSCs) serve as a foundation for spermatogenesis and they are essential for male fertility. The fate of SSC is determined by genetic and epigenetic regulatory networks. Many molecules that regulate SSC fate determinations have been identified in mice. However, the molecules and signaling pathways underlying human SSCs remain largely unclear. In this study, we have demonstrated that MAP4K4 was predominantly expressed in human UCHL1-positive spermatogonia by double immunocytochemical staining. MAP4K4 knockdown inhibited proliferation of human SSCs and induced their apoptosis. Moreover, MAP4K4 silencing led to inhibition of JNK phosphorylation and MAP4K4 phosphorylation at Ser801. RNA sequencing indicated that MAP4K4 affected the transcription of SPARC, ADAM19, GPX7, GNG2, and COLA1. Interestingly, the phenotype of inhibiting JNK phosphorylation by SP600125 was similar to MAP4K4 knockdown. Notably, MAP4K4 protein was lower in the testes of patients with non-obstructive azoospermia than those with normal spermatogenesis as shown by Western blots and immunohistochemistry. Considered together, our data implicate that MAP4K4/JNK signaling pathway mediates proliferation and apoptosis of human SSCs, which provides a novel insight into molecular mechanisms governing human spermatogenesis and might offer new targets for gene therapy of male infertility.
Collapse
|
8
|
Han L, Lai H, Yang Y, Hu J, Li Z, Ma B, Xu W, Liu W, Wei W, Li D, Wang Y, Zhai Q, Ji Q, Liao T. A 5'-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:222. [PMID: 34225773 PMCID: PMC8256553 DOI: 10.1186/s13046-021-02024-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/18/2021] [Indexed: 11/10/2022]
Abstract
Background tRNA-derived small noncoding RNAs (sncRNAs) are mainly categorized into tRNA halves (tiRNAs) and fragments (tRFs). Biological functions of tiRNAs in human solid tumor are attracting more and more attention, but researches concerning the mechanisms in tiRNAs-mediated tumorigenesis are rarely. The direct regulatory relationship between tiRNAs and splicing-related proteins remain elusive. Methods Papillary thyroid carcinoma (PTC) associated tRNA fragments were screened by tRNA fragments deep sequencing and validated by qRT-PCR and Northern Blot in PTC tissues. The biological function of tRNA fragments were assessed by cell counting kit, transwells and subcutaneous transplantation tumor of nude mice. For mechanistic study, tRNA fragments pull-down, RNA immunoprecipitation, Western Blot, Immunofluorescence, Immunohistochemical staining were performed. Results Herein, we have identified a 33 nt tiRNA-Gly significantly increases in papillary thyroid cancer (PTC) based on tRFs & tiRNAs sequencing. The ectopic expression of tiRNA-Gly promotes cell proliferation and migration, whereas down-regulation of tiRNA-Gly exhibits reverse effects. Mechanistic investigations reveal tiRNA-Gly directly bind the UHM domain of a splicing-related RNA-binding protein RBM17. The interaction with tiRNA-Gly could translocate RBM17 from cytoplasm into nucleus. In addition, tiRNA-Gly increases RBM17 protein expression via inhibiting its degradation in a ubiquitin/proteasome-dependent way. Moreover, RBM17 level in tiRNA-Gly high-expressing human PTC tissues is upregulated. In vivo mouse model shows that suppression of tiRNA-Gly decreases RBM17 expression. Importantly, tiRNA-Gly can induce exon 16 splicing of MAP4K4 mRNA leading to phosphorylation of downstream signaling pathway, which is RBM17 dependent. Conclusions Our study firstly illustrates tiRNA-Gly can directly bind to RBM17 and display oncogenic effect via RBM17-mediated alternative splicing. This fully novel model broadens our understanding of molecular mechanism in which tRNA fragment in tumor cells directly bind RNA binding protein and play a role in alternative splicing. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02024-3.
Collapse
Affiliation(s)
- Litao Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hejing Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 200093, China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiaqian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhe Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wanlin Liu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Duanshu Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 200093, China.
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Bast-Habersbrunner A, Kiefer C, Weber P, Fromme T, Schießl A, Schwalie PC, Deplancke B, Li Y, Klingenspor M. LncRNA Ctcflos orchestrates transcription and alternative splicing in thermogenic adipogenesis. EMBO Rep 2021; 22:e51289. [PMID: 34056831 PMCID: PMC8256291 DOI: 10.15252/embr.202051289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The recruitment of thermogenic brite adipocytes within white adipose tissue attenuates obesity and metabolic comorbidities, arousing interest in understanding the underlying regulatory mechanisms. The molecular network of brite adipogenesis, however, remains largely unresolved. In this light, long noncoding RNAs (lncRNAs) emerged as a versatile class of modulators that control many steps within the differentiation machinery. Leveraging the naturally varying propensities of different inbred mouse strains for white adipose tissue browning, we identify the nuclear lncRNA Ctcflos as a pivotal orchestrator of thermogenic gene expression during brite adipocyte differentiation. Mechanistically, Ctcflos acts as a pleiotropic regulator, being essential for the transcriptional recruitment of the early core thermogenic regulatory program and the modulation of alternative splicing to drive brite adipogenesis. This is showcased by Ctcflos‐regulated gene transcription and splicing of the key browning factor Prdm16 toward the isoform that is specific for the thermogenic gene program. Conclusively, our findings emphasize the mechanistic versatility of lncRNAs acting at several independent levels of gene expression for effective regulation of key differentiation factors to direct cell fate and function.
Collapse
Affiliation(s)
- Andrea Bast-Habersbrunner
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Christoph Kiefer
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Anna Schießl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Petra C Schwalie
- School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bart Deplancke
- School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| |
Collapse
|
10
|
Wang H, Jiang Y. SRp20: A potential therapeutic target for human tumors. Pathol Res Pract 2021; 224:153444. [PMID: 34126370 DOI: 10.1016/j.prp.2021.153444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
As an important member of SR protein family, SRp20 plays a crucial role in alternative splicing. It not only participates in cell cycle regulation, export of mRNA, cleaving of primary microRNAs, homologous recombination-mediated DNA repair, cellular senescence and apoptosis, but also gets involved in the integrity and pluripotency of genome. Alternative splicing maintains a strict balance in the body to ensure the normal physiological function of cells. Once the balance is broken, diseases, even tumors, will follow. Through the analysis of SRp20-related articles, we found that Alzheimer's disease, glaucoma, bipolar disorder and other diseases have a certain relationship with SRp20. More importantly, SRp20 is closely related to the occurrence, proliferation, invasion and metastasis of various tumors, as well as chemotherapy resistance. Some SRp20 inhibitors have shown significant anticancer efficacy, suggesting a potential therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yanxia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Chao Y, Jiang Y, Zhong M, Wei K, Hu C, Qin Y, Zuo Y, Yang L, Shen Z, Zou C. Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci 2021; 11:66. [PMID: 33795017 PMCID: PMC8017860 DOI: 10.1186/s13578-021-00581-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) regulates gene expression patterns at the post-transcriptional level and generates a striking expansion of coding capacities of genomes and cellular protein diversity. RNA splicing could undergo modulation and close interaction with genetic and epigenetic machinery. Notably, during the adipogenesis processes of white, brown and beige adipocytes, AS tightly interplays with the differentiation gene program networks. Here, we integrate the available findings on specific splicing events and distinct functions of different splicing regulators as examples to highlight the directive biological contribution of AS mechanism in adipogenesis and adipocyte biology. Furthermore, accumulating evidence has suggested that mutations and/or altered expression in splicing regulators and aberrant splicing alterations in the obesity-associated genes are often linked to humans’ diet-induced obesity and metabolic dysregulation phenotypes. Therefore, significant attempts have been finally made to overview novel detailed discussion on the prospects of splicing machinery with obesity and metabolic disorders to supply featured potential management mechanisms in clinical applicability for obesity treatment strategies.
Collapse
Affiliation(s)
- Yunqi Chao
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yonghui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mianling Zhong
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Kaiyan Wei
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Chenxi Hu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yiming Zuo
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Lili Yang
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Zheng Shen
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
12
|
Lambrou GI, Adamaki M, Hatziagapiou K, Vlahopoulos S. Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update. Curr Drug Res Rev 2021; 12:131-149. [PMID: 32077838 DOI: 10.2174/2589977512666200220122650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Resistance to glucocorticoid (GC)-induced apoptosis in Acute Lymphoblastic Leukemia (ALL), is considered one of the major prognostic factors for the disease. Prednisolone is a corticosteroid and one of the most important agents in the treatment of acute lymphoblastic leukemia. The mechanics of GC resistance are largely unknown and intense ongoing research focuses on this topic. AIM The aim of the present study is to review some aspects of GC resistance in ALL, and in particular of Prednisolone, with emphasis on previous and present knowledge on gene expression and signaling pathways playing a role in the phenomenon. METHODS An electronic literature search was conducted by the authors from 1994 to June 2019. Original articles and systematic reviews selected, and the titles and abstracts of papers screened to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Identification of gene targets responsible for glucocorticoid resistance may allow discovery of drugs, which in combination with glucocorticoids may increase the effectiveness of anti-leukemia therapies. The inherent plasticity of clinically evolving cancer justifies approaches to characterize and prevent undesirable activation of early oncogenic pathways. CONCLUSION Study of the pattern of intracellular signal pathway activation by anticancer drugs can lead to development of efficient treatment strategies by reducing detrimental secondary effects.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| |
Collapse
|
13
|
Lin YC, Lu YH, Lee YC, Hung CS, Lin JC. Altered expressions and splicing profiles of Acin1 transcripts differentially modulate brown adipogenesis through an alternative splicing mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194601. [PMID: 32629174 DOI: 10.1016/j.bbagrm.2020.194601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
Apoptotic chromatin condensation inducer in the nucleus (also referred as Acin1) was first characterized as an RNA-binding protein involved in apoptosis. In later reports, Acin1 was identified as an auxiliary component of the exon junction complex (EJC) which is assembled throughout pre-messenger RNA splicing. In this study, results of whole-transcriptome analyses revealed reduced expressions and reprogrammed splicing profiles of Acin1 transcripts throughout development of brown adipose tissues (BATs) that execute non-shivering thermogenesis in small rodents and infants by consuming lipids. Depletion of endogenous Acin1 isoforms led to activation of brown adipogenic signatures in mouse C3H10T1/2 fibroblasts. Nevertheless, overexpressions of the Acin1-L or Acin1-S isoform exerted discriminative influences on brown adipogenesis and reprogramming of the expression of serine/arginine-rich splicing factor 3 (SRSF3) through an alternative splicing-coupled nonsense-mediated decay mechanism in a sequence-specific manner. Moreover, the Acin1-SRSF3 axis constitutes a regulatory pathway that participates in the brown adipocyte-related splicing network. Taken together, the interplay between accessory EJC components and splicing regulators constitutes an emerging mechanism for differentially manipulating the activity of brown adipogenesis via alternative splicing network.
Collapse
Affiliation(s)
- Ying-Chin Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Han Lu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Chii Lee
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Ching-Sheng Hung
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Wang WY, Quan W, Yang F, Wei YX, Chen JJ, Yu H, Xie J, Zhang Y, Li ZF. RBM4 modulates the proliferation and expression of inflammatory factors via the alternative splicing of regulatory factors in HeLa cells. Mol Genet Genomics 2019; 295:95-106. [DOI: 10.1007/s00438-019-01606-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022]
|
15
|
Song X, Wan X, Huang T, Zeng C, Sastry N, Wu B, James CD, Horbinski C, Nakano I, Zhang W, Hu B, Cheng SY. SRSF3-Regulated RNA Alternative Splicing Promotes Glioblastoma Tumorigenicity by Affecting Multiple Cellular Processes. Cancer Res 2019; 79:5288-5301. [PMID: 31462429 DOI: 10.1158/0008-5472.can-19-1504] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/29/2023]
Abstract
Misregulated alternative RNA splicing (AS) contributes to the tumorigenesis and progression of human cancers, including glioblastoma (GBM). Here, we showed that a major splicing factor, serine and arginine rich splicing factor 3 (SRSF3), was frequently upregulated in clinical glioma specimens and that elevated SRSF3 was associated with tumor progression and a poor prognosis for patients with glioma. In patient-derived glioma stem-like cells (GSC), SRSF3 expression promoted cell proliferation, self-renewal, and tumorigenesis. Transcriptomic profiling identified more than 1,000 SRSF3-affected AS events, with a preference for exon skipping in genes involved with cell mitosis. Motif analysis identified the sequence of CA(G/C/A)CC(C/A) as a potential exonic splicing enhancer for these SRSF3-regulated exons. To evaluate the biological impact of SRSF3-affected AS events, four candidates were selected whose AS correlated with SRSF3 expression in glioma tissues, and their splicing pattern was modified using a CRISPR/Cas9 approach. Two functionally validated AS candidates were further investigated for the mechanisms underlying their isoform-specific functions. Specifically, following knockout of SRSF3, transcription factor ETS variant 1 (ETV1) gene showed exon skipping at exon 7, while nudE neurodevelopment protein 1 (NDE1) gene showed replacement of terminal exon 9 with a mutually exclusive exon 9'. SRSF3-regulated AS of these two genes markedly increased their oncogenic activity in GSCs. Taken together, our data demonstrate that SRSF3 is a key regulator of AS in GBM and that understanding mechanisms of misregulated AS could provide critical insights for developing effective therapeutic strategies against GBMs. SIGNIFICANCE: SRSF3 is a significant regulator of glioma-associated alternative splicing, implicating SRSF3 as an oncogenic factor that contributes to the tumor biology of GBM.
Collapse
Affiliation(s)
- Xiao Song
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xuechao Wan
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tianzhi Huang
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Namratha Sastry
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bingli Wu
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Pathology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
16
|
Yi X, Yang Y, Wu P, Xu X, Li W. Alternative splicing events during adipogenesis from hMSCs. J Cell Physiol 2019; 235:304-316. [PMID: 31206189 DOI: 10.1002/jcp.28970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Adipogenesis, the developmental process of progenitor-cell differentiating into adipocytes, leads to fat metabolic disorders. Alternative splicing (AS), a ubiquitous regulatory mechanism of gene expression, allows the generation of more than one unique messenger RNA (mRNA) species from a single gene. Till now, alternative splicing events during adipogenesis from human mesenchymal stem cells (hMSCs) are not yet fully elucidated. We performed RNA-Seq coupled with bioinformatics analysis to identify the differentially expressed AS genes and events during adipogenesis from hMSCs. A global survey separately identified 1262, 1181, 1167, and 1227 ASE involved in the most common types of AS including cassette exon, alt3, and alt5, especially with cassette exon the most prevalent, at 7, 14, 21, and 28 days during adipogenesis. Interestingly, 122 differentially expressed ASE referred to 118 genes, and the three genes including ACTN1 (alt3 and cassette), LRP1 (alt3 and alt5), and LTBP4 (cassette, cassette_multi, and unknown), appeared in multiple AS types of ASE during adipogenesis. Except for all the identified ASE of LRP1 occurred in the extracellular topological domain, alt3 (84) in transmembrane domain significantly differentially expressed was the potential key event during adipogenesis. Overall, we have, for the first time, conducted the global transcriptional profiling during adipogenesis of hMSCs to identify differentially expressed ASE and ASE-related genes. This finding would provide extensive ASE as the regulator of adipogenesis and the potential targets for future molecular research into adipogenesis-related metabolic disorders.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Yunzhong Yang
- Beijing Yuanchuangzhilian Techonlogy Development Co., Ltd, Beijing, China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| |
Collapse
|