1
|
Giles JT, Solomon DH, Liao KP, Rist PM, Fayad ZA, Tawakol A, Bathon JM. Association of the multi-biomarker disease activity score with arterial 18-fluorodeoxyglucose uptake in rheumatoid arthritis. Rheumatology (Oxford) 2025; 64:1077-1083. [PMID: 38652572 PMCID: PMC11879324 DOI: 10.1093/rheumatology/keae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/12/2024] [Accepted: 03/02/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) and atherosclerosis share many common inflammatory pathways. We studied whether a multi-biomarker panel for RA disease activity (MBDA) would associate with changes in arterial inflammation in an interventional trial. METHODS In the TARGET Trial, RA patients with active disease despite methotrexate were randomly assigned to the addition of either a TNF inhibitor or sulfasalazine+hydroxychloroquine (triple therapy). Baseline and 24-week follow-up [18F]fluorodeoxyglucose-PET/CT scans were assessed for change in arterial inflammation measured as the maximal arterial target-to-blood background ratio of FDG uptake in the most diseased segment of the carotid arteries or aorta (MDS-TBRmax). The MBDA test, measured at baseline and weeks 6, 18 and 24, was assessed for its association with the change in MDS-TBRmax. RESULTS Interpretable scans were available at baseline and week 24 for 112 patients. The MBDA score at week 24 was significantly correlated with the change in MDS-TBRmax (Spearman's rho = 0.239; P = 0.011) and remained significantly associated after adjustment for relevant confounders. Those with low MBDA at week 24 had a statistically significant adjusted reduction in arterial inflammation of 0.35 units vs no significant reduction in those who did not achieve low MBDA. Neither DAS28-CRP nor CRP predicted change in arterial inflammation. The MBDA component with the strongest association with change in arterial inflammation was serum amyloid A. CONCLUSION Among treated RA patients, achieved MBDA predicts changes in arterial inflammation. Achieving low MBDA at 24 weeks was associated with clinically meaningful reductions in arterial inflammation, regardless of treatment.
Collapse
Affiliation(s)
- Jon T Giles
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel H Solomon
- Division of Rheumatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Katherine P Liao
- Division of Rheumatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pamela M Rist
- Division of Preventive Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joan M Bathon
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Liu JH, Liu M, Mo DG. Serum Amyloid A: A Potential Predictive Indicator of Infarct-Related Artery Patency in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2024; 75:595-596. [PMID: 37837602 DOI: 10.1177/00033197231206431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Jia-Hui Liu
- Department of Cardiology, Liaocheng People's Hospital Affiliated, Shandong First Medical University, Liaocheng, Shandong, China
| | - Min Liu
- Department of Cardiology, Liaocheng People's Hospital Affiliated, Shandong First Medical University, Liaocheng, Shandong, China
| | - De-Gang Mo
- Department of Cardiology, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Wei X, Zou Y, Dong S, Chen Y, Li G, Wang B. Recombinant hirudin attenuates pulmonary hypertension and thrombosis in acute pulmonary embolism rat model. PeerJ 2024; 12:e17039. [PMID: 38590700 PMCID: PMC11000639 DOI: 10.7717/peerj.17039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
Background Acute pulmonary embolism (APE) is classified as a subset of diseases that are characterized by lung obstruction due to various types of emboli. Current clinical APE treatment using anticoagulants is frequently accompanied by high risk of bleeding complications. Recombinant hirudin (R-hirudin) has been found to have antithrombotic properties. However, the specific impact of R-hirudin on APE remains unknown. Methods Sprague-Dawley (SD) rats were randomly assigned to five groups, with thrombi injections to establish APE models. Control and APE group rats were subcutaneously injected with equal amounts of dimethyl sulfoxide (DMSO). The APE+R-hirudin low-dose, middle-dose, and high-dose groups received subcutaneous injections of hirudin at doses of 0.25 mg/kg, 0.5 mg/kg, and 1.0 mg/kg, respectively. Each group was subdivided into time points of 2 h, 6 h, 1 d, and 4 d, with five animals per point. Subsequently, all rats were euthanized, and serum and lung tissues were collected. Following the assessment of right ventricular pressure (RVP) and mean pulmonary artery pressure (mPAP), blood gas analysis, enzyme-linked immunosorbnent assay (ELISA), pulmonary artery vascular testing, hematoxylin-eosin (HE) staining, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, immunohistochemistry, and Western blot experiments were conducted. Results R-hirudin treatment caused a significant reduction of mPAP, RVP, and Malondialdehyde (MDA) content, as well as H2O2 and myeloperoxidase (MPO) activity, while increasing pressure of oxygen (PaO2) and Superoxide Dismutase (SOD) activity. R-hirudin also decreased wall area ratio and wall thickness to diameter ratio in APE rat pulmonary arteries. Serum levels of endothelin-1 (ET-1) and thromboxaneB2 (TXB2) decreased, while prostaglandin (6-K-PGF1α) and NO levels increased. Moreover, R-hirudin ameliorated histopathological injuries and reduced apoptotic cells and Matrix metalloproteinase-9 (MMP9), vascular cell adhesion molecule-1 (VCAM-1), p-Extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P65/P65 expression in lung tissues. Conclusion R-hirudin attenuated pulmonary hypertension and thrombosis in APE rats, suggesting its potential as a novel treatment strategy for APE.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| | - Yanfen Zou
- Departments of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shangdong Province, China
| | - Shunli Dong
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| | - Yi Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| | - Guoping Li
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang Province, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Solomon DH, Demler O, Rist PM, Santacroce L, Tawakol A, Giles JT, Liao KP, Bathon JM. Biomarkers of Cardiovascular Risk in Patients With Rheumatoid Arthritis: Results From the TARGET Trial. J Am Heart Assoc 2024; 13:e032095. [PMID: 38416140 PMCID: PMC10944054 DOI: 10.1161/jaha.123.032095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Cardiovascular disease remains an important comorbidity in patients with rheumatoid arthritis (RA), but traditional models do not accurately predict cardiovascular risk in patients with RA. The addition of biomarkers could improve prediction. METHODS AND RESULTS The TARGET (Treatments Against RA and Effect on FDG PET/CT) trial assessed whether different treatment strategies in RA differentially impact cardiovascular risk as measured by the change in arterial inflammation on arterial target to background ratio on fluorodeoxyglucose positron emission tomography/computed tomography scans conducted 24 weeks apart. A group of 24 candidate biomarkers supported by prior literature was assessed at baseline and 24 weeks later. Longitudinal analyses examined the association between baseline biomarker values, measured in plasma EDTA, and the change in arterial inflammation target to background ratio. Model fit was assessed for the candidate biomarkers only, clinical variables only, and models combining both. One hundred nine patients with median (interquartile range) age 58 years (53-65 years), RA duration 1.4 years (0.5-6.6 years), and 82% women had biomarkers assessed at baseline and follow-up. Because the main trial analyses demonstrated significant target to background ratio decreases with both treatment strategies but no difference across treatment groups, we analyzed all patients together. Baseline values of serum amyloid A, C-reactive protein, soluble tumor necrosis factor receptor 1, adiponectin, YKL-40, and osteoprotegerin were associated with significant change in target to background ratio. When selected candidate biomarkers were added to the clinical variables, the adjusted R2 improved from 0.20 to 0.33 (likelihood ratio P=0.0005). CONCLUSIONS A candidate biomarker approach identified several promising biomarkers that associate with baseline and treatment-associated changes in arterial inflammation in patients with RA. These will now be tested in an external validation cohort.
Collapse
Affiliation(s)
- Daniel H. Solomon
- Division of RheumatologyBrigham and Women’s HospitalBostonMA
- Harvard Medical SchoolBrigham and Women’s HospitalBostonMA
| | - Olga Demler
- Harvard Medical SchoolBrigham and Women’s HospitalBostonMA
- Division of Preventive MedicineBrigham and Women’s HospitalBostonMA
- ETHZurichSwitzerland
| | - Pamela M. Rist
- Harvard Medical SchoolBrigham and Women’s HospitalBostonMA
- Division of Preventive MedicineBrigham and Women’s HospitalBostonMA
| | - Leah Santacroce
- Division of RheumatologyBrigham and Women’s HospitalBostonMA
| | - Ahmed Tawakol
- Department of Medicine (Cardiac Unit)Massachusetts General Hospital, Harvard Medical SchoolBostonMA
| | | | - Katherine P. Liao
- Division of RheumatologyBrigham and Women’s HospitalBostonMA
- Harvard Medical SchoolBrigham and Women’s HospitalBostonMA
| | | |
Collapse
|
5
|
Bi Y, Liang H, Han X, Li K, Zhang W, Lai Y, Wang Q, Jiang X, Zhao X, Fan H. β-Sitosterol Suppresses LPS-Induced Cytokine Production in Human Umbilical Vein Endothelial Cells via MAPKs and NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9241090. [PMID: 36636603 PMCID: PMC9831711 DOI: 10.1155/2023/9241090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023]
Abstract
Atherosclerosis (AS) is an inflammatory disease, whose occurrence and development mechanism is related to a great number of inflammatory cytokines. β-sitosterol (BS), a natural compound extracted from numerous vegetables and plant medicines, has been suggested to improve AS, but the underlying mechanism remains vague. This work focused on investigating how BS affected the lipopolysaccharide (LPS)-treated human umbilical vein endothelial cells (HUVECs) and further exploring the potential targets and mechanisms through network pharmacology (NP) and molecular docking (MD). According to in vitro experiments, LPS resulted in an increase in the expression of inflammatory cytokines like tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox-2), and interleukin-6 (IL-6). Besides, secretion of IL-6, interleukin-1β (IL-1β), and TNF-α also increased in HUVECs, whereas BS decreased the expression and secretion of these cytokines. NP analysis revealed that the improvement effect of BS on AS was the result of its comprehensive actions targeting 99 targets and 42 pathways. In this network, MAPKs signaling pathway was the core pathway, whereas MAPK1, MAPK8, MAPK14, and NFKB1 were the hub targets. MD analysis also successfully validated the interactions between BS and these targets. Moreover, verification test results indicated that BS downregulated the abnormal expression and activation of MAPKs and NF-κB signaling pathways in LPS-treated cells, including p38, JNK, ERK, NF-κB, and IκB-α phosphorylation expressions. Furthermore, p65 nuclear translocation was also regulated by BS treatment. In conclusion, the BS-related mechanisms in treating AS are possibly associated with inflammatory response inhibition by regulating MAPKs and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yiming Bi
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongfeng Liang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Kongzheng Li
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Wei Zhang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Yigui Lai
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Xuefeng Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Liu C, Liu J, Wu D, Luo S, Li W, Chen L, Liu Z, Yu B. Construction of Immune-Related ceRNA Network in Dilated Cardiomyopathy: Based on Sex Differences. Front Genet 2022; 13:882324. [PMID: 35754849 PMCID: PMC9214033 DOI: 10.3389/fgene.2022.882324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune targeted therapy has become an attractive therapeutic approach for patients with dilated cardiomyopathy (DCM) recently. Genetic predisposition and gender play a critical role in immune-related responses of DCM. This study aimed to perform a bioinformatics analysis of molecular differences between male and female samples and identify immune-related ceRNA network in DCM. Methods: The gene expression microarray and clinical features dataset of GSE19303 was downloaded from the GEO. The raw data were preprocessed, followed by identification of differentially expressed genes (DEGs) between male and female DCM samples. Crucial functions and pathway enrichment analysis of DEGs were investigated through GO analysis and KEGG pathway analysis, respectively. A lncRNA–miRNA–mRNA network was constructed and a central module was extracted from the ceRNA network. Results: Compared with the female group, the male group benefits more from IA/IgG immunotherapy. Male patients of DCM had a significant positive correlation with the abundance of inflammatory cells (B cells, memory B cells, CD8+ Tem cells, and NK cells). Sex difference DEGs had a widespread impact on the signaling transduction, transcriptional regulation, and metabolism in DCM. Subsequently, we constructed an immune-related ceRNA network based on sex differences in DCM, including five lncRNAs, six miRNAs, and 29 mRNAs. Furthermore, we extracted a central module from the ceRNA network, including two lncRNAs (XIST and LINC00632), three miRNAs (miR-1-3p, miR-17-5p, and miR-22-3p), and six mRNAs (CBL, CXCL12, ESR1, IGF1R, IL6ST, and STC1). Among these DEGs, CBL, CXCL12, and IL6ST expression was considered to be associated with inflammatory cell infiltration in DCM. Conclusions: The identified ceRNA network and their enriched pathways may provide genetic insights into the phenotypic diversity of female and male patients with DCM and may provide a basis for development of sex-related individualization of immunotherapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian Liu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daihong Wu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaoling Luo
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weijie Li
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lushan Chen
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhen Liu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingbo Yu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zheng X, Zhou L, Jin Y, Zhao X, Ahmad H, OuYang Y, Chen S, Du J, Chen X, Chen L, Gao D, Yang Z, Tian Z. β-Aminoisobutyric acid supplementation attenuated salt-sensitive hypertension in Dahl salt-sensitive rats through prevention of insufficient fumarase. Amino Acids 2021; 54:169-180. [PMID: 34837556 DOI: 10.1007/s00726-021-03092-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
The human Dietary Approaches to Stop Hypertension-Sodium Trial has shown that β-aminoisobutyric acid (BAIBA) may prevent the development of salt-sensitive hypertension (SSHT). However, the specific antihypertensive mechanism remains unclear in the renal tissues of salt-sensitive (SS) rats. In this study, BAIBA (100 mg/kg/day) significantly attenuated SSHT via increased nitric oxide (NO) content in the renal medulla, and it induced a significant increase in NO synthesis substrates (L-arginine and malic acid) in the renal medulla. BAIBA enhanced the activity levels of total NO synthase (NOS), inducible NOS, and constitutive NOS. BAIBA resulted in increased fumarase activity and decreased fumaric acid content in the renal medulla. The high-salt diet (HSD) decreased fumarase expression in the renal cortex, and BAIBA increased fumarase expression in the renal medulla and renal cortex. Furthermore, in the renal medulla, BAIBA increased the levels of ATP, ADP, AMP, and ADP/ATP ratio, thus further activating AMPK phosphorylation. BAIBA prevented the decrease in renal medullary antioxidative defenses induced by the HSD. In conclusion, BAIBA's antihypertensive effect was underlined by the phosphorylation of AMPK, the prevention of fumarase's activity reduction caused by the HSD, and the enhancement of NO content, which in concert attenuated SSHT in SS rats.
Collapse
Affiliation(s)
- Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Luxin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuexin Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinrui Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hussain Ahmad
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanan OuYang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sa Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiangbo Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lan Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
8
|
Pro-Inflammatory Serum Amyloid a Stimulates Renal Dysfunction and Enhances Atherosclerosis in Apo E-Deficient Mice. Int J Mol Sci 2021; 22:ijms222212582. [PMID: 34830462 PMCID: PMC8623330 DOI: 10.3390/ijms222212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Acute serum amyloid A (SAA) is an apolipoprotein that mediates pro-inflammatory and pro-atherogenic pathways. SAA-mediated signalling is diverse and includes canonical and acute immunoregulatory pathways in a range of cell types and organs. This study aimed to further elucidate the roles for SAA in the pathogenesis of vascular and renal dysfunction. Two groups of male ApoE-deficient mice were administered SAA (100 µL, 120 µg/mL) or vehicle control (100 µL PBS) and monitored for 4 or 16 weeks after SAA treatment; tissue was harvested for biochemical and histological analyses at each time point. Under these conditions, SAA administration induced crosstalk between NF-κB and Nrf2 transcriptional factors, leading to downstream induction of pro-inflammatory mediators and antioxidant response elements 4 weeks after SAA administration, respectively. SAA treatment stimulated an upregulation of renal IFN-γ with a concomitant increase in renal levels of p38 MAPK and matrix metalloproteinase (MMP) activities, which is linked to tissue fibrosis. In the kidney of SAA-treated mice, the immunolocalisation of inducible nitric oxide synthase (iNOS) was markedly increased, and this was localised to the parietal epithelial cells lining Bowman’s space within glomeruli, which led to progressive renal fibrosis. Assessment of aortic root lesion at the study endpoint revealed accelerated atherosclerosis formation; animals treated with SAA also showed evidence of a thinned fibrous cap as judged by diffuse collagen staining. Together, this suggests that SAA elicits early renal dysfunction through promoting the IFN-γ-iNOS-p38 MAPK axis that manifests as the fibrosis of renal tissue and enhanced cardiovascular disease.
Collapse
|
9
|
Downregulation of Cathepsin B Reduces Proliferation and Inflammatory Response and Facilitates Differentiation in Human HaCaT Keratinocytes, Ameliorating IL-17A and SAA-Induced Psoriasis-Like Lesion. Inflammation 2021; 44:2006-2017. [PMID: 34037897 DOI: 10.1007/s10753-021-01477-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Psoriasis is a common inflammatory dermatology disease. Strongly expressed serum amyloid A (SAA) promotes psoriasis exacerbation through inducing IL-17 secretion. What's more, SAA can stimulate the release of cathepsin B. The current work was performed to demonstrate the specific effects of cathepsin B silencing on inflammatory response, proliferation, and differentiation of IL-17A and SAA-induced keratinocytes and to report the precise role of cathepsin B in psoriasis-like lesion. HaCaT keratinocytes received treatment with IL-17A (0, 10, 50, 100 ng/ml) or SAA (0, 1, 5, 10, 20 μg/ml) for 24 h to establish psoriasis-like keratinocytes model. HaCaT keratinocytes were transfected with small interfering RNA (siRNA)-cathepsin B for the functional experiments. Cathepsin B mRNA and protein levels were separately assessed by performing RT-qPCR and Western blot analysis. Then, CCK-8 for detection of cell proliferative capacity and Western blot assay for detection of Ki67 and PCNA expression were adopted to evaluate the influence of silenced cathepsin B on proliferation of IL-17A/SAA-induced HaCaT keratinocytes. Furthermore, IL-6, IL-1β, TNF-α, and p-NF-κB p65 were detected to assess the effects of cathepsin B knockdown on inflammatory response in IL-17A/SAA-induced HaCaT keratinocytes. In addition, assessment of KRT10, FLG, and LOR levels were applied to analyze the function of cathepsin B silencing on differentiation of IL-17A/SAA-induced HaCaT keratinocytes. Cathepsin B expression is distinctly elevated in IL-17A/SAA-induced HaCaT keratinocytes. IL-17A or SAA treatment enhanced proliferation, promoted the release of inflammatory factors, and arrested differentiation in HaCaT keratinocytes. Furthermore, downregulation of cathepsin B reduced proliferation, suppressed inflammatory response, and boosted differentiation in IL-17A/SAA-induced HaCaT keratinocytes. To sum up, cathepsin B silencing rescued excessive proliferation and inflammatory response and scarce differentiation in HaCaT keratinocytes induced by IL-17A and SAA. These findings prompted that cathepsin B might be a promising therapeutic target for psoriasis-like lesion, which helps to develop an anti-psoriatic agent.
Collapse
|
10
|
Martin NJ, Chami B, Vallejo A, Mojadadi AA, Witting PK, Ahmad G. Efficacy of the Piperidine Nitroxide 4-MethoxyTEMPO in Ameliorating Serum Amyloid A-Mediated Vascular Inflammation. Int J Mol Sci 2021; 22:ijms22094549. [PMID: 33925294 PMCID: PMC8123591 DOI: 10.3390/ijms22094549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/24/2023] Open
Abstract
Intracellular redox imbalance in endothelial cells (EC) can lead to endothelial dysfunction, which underpins cardiovascular diseases (CVD). The acute phase serum amyloid A (SAA) elicits inflammation through stimulating production of reactive oxygen species (ROS). The cyclic nitroxide 4-MethoxyTEMPO (4-MetT) is a superoxide dismutase mimetic that suppresses oxidant formation and inflammation. The aim of this study was to investigate whether 4-MetT inhibits SAA-mediated activation of cultured primary human aortic EC (HAEC). Co-incubating cells with 4-MetT inhibited SAA-mediated increases in adhesion molecules (VCAM-1, ICAM-1, E-selectin, and JAM-C). Pre-treatment of cells with 4-MetT mitigated SAA-mediated increases in transcriptionally activated NF-κB-p65 and P120 Catenin (a stabilizer of Cadherin expression). Mitochondrial respiration and ROS generation (mtROS) were adversely affected by SAA with decreased respiratory reserve capacity, elevated maximal respiration and proton leakage all characteristic of SAA-treated HAEC. This altered respiration manifested as a loss of mitochondrial membrane potential (confirmed by a decrease in TMRM fluorescence), and increased mtROS production as assessed with MitoSox Red. These SAA-linked impacts on mitochondria were mitigated by 4-MetT resulting in restoration of HAEC nitric oxide bioavailability as confirmed by assessing cyclic guanosine monophosphate (cGMP) levels. Thus, 4-MetT ameliorates SAA-mediated endothelial dysfunction through normalising EC redox homeostasis. Subject to further validation in in vivo settings; these outcomes suggest its potential as a therapeutic in the setting of cardiovascular pathologies where elevated SAA and endothelial dysfunction is linked to enhanced CVD.
Collapse
|
11
|
Thomson AC, Schuhmann T, de Graaf TA, Sack AT, Rutten BPF, Kenis G. The Effects of Serum Removal on Gene Expression and Morphological Plasticity Markers in Differentiated SH-SY5Y Cells. Cell Mol Neurobiol 2021; 42:1829-1839. [PMID: 33656634 PMCID: PMC9239930 DOI: 10.1007/s10571-021-01062-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/12/2021] [Indexed: 11/06/2022]
Abstract
Despite the widespread use of the SH-SY5Y human neuroblastoma cell line in modeling human neurons in vitro, protocols for growth, differentiation and experimentation differ considerably across the literature. Many studies fully differentiate SH-SY5Y cells before experimentation, to investigate plasticity measures in a mature, human neuronal-like cell model. Prior to experimentation, serum is often removed from cell culture media, to arrest the cell growth cycle and synchronize cells. However, the exact effect of this serum removal before experimentation on mature, differentiated SH-SY5Y cells has not yet been described. In studies using differentiated SH-SY5Y cells, any effect of serum removal on plasticity markers may influence results. The aim of the current study was to systematically characterize, in differentiated, neuronal-like SH-SY5Y cells, the potentially confounding effects of complete serum removal in terms of morphological and gene expression markers of plasticity. We measured changes in commonly used morphological markers and in genes related to neuroplasticity and synaptogenesis, particularly in the BDNF-TrkB signaling pathway. We found that complete serum removal from already differentiated SH-SY5Y cells increases neurite length, neurite branching, and the proportion of cells with a primary neurite, as well as proportion of βIII-Tubulin and MAP2 expressing cells. Gene expression results also indicate increased expression of PSD95 and NTRK2 expression 24 h after serum removal. We conclude that serum deprivation in differentiated SH-SY5Y cells affects morphology and gene expression and can potentially confound plasticity-related outcome measures, having significant implications for experimental design in studies using differentiated SH-SY5Y cells as a model of human neurons.
Collapse
Affiliation(s)
- Alix C Thomson
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, Maastricht, The Netherlands. .,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands. .,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands. .,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, Maastricht, The Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, Maastricht, The Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, Maastricht, The Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Yang S, Qin Y, Ding L, Wang J, Zhao H. Serum Amyloid A Aggravates Lipopolysaccharide-Induced Injury of BEAS-2B Cells by Activating Toll-Like Receptor 2/Activator Protein-1 Signaling. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The serum amyloid A (sAA) is a common sensitive indicator for the diagnosis of infectious diseases, and sAA levels are increased in pneumonia. However, the detailed molecular mechanism is unknown. Previous studies have demonstrated the participation of Toll-like receptor (TLR) 2 and
its downstream protein activator protein-1 (AP-1) in inflammatory lung injury. This study aimed to investigate the effect of sAA on LPS-induced BEAS-2B cells injury and uncover the possible mechanism. The human bronchial epithelial cell line BEAS-2B was exposed to sAA with or without lipopolysaccharide
(LPS) treatment, then cell viability, inflammation and apoptosis were evaluated. The effects of TLR2 knockout on sAA + LPS-treated BEAS-2B cells were also determined. Results revealed that sAA treatment reduced cell viability in a concentration-dependent manner and the effect of 500 nM sAA
on cell viability was approximately equivalent to LPS. The levels of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, monocyte chemotactic protein (MCP)-1 and IL-6 as well as cell apoptosis and expression of proteins related
to apoptosis were significantly increased upon sAA or LPS stimulation. The expression of TLR2 and AP-1 was also elevated in cells challenged with sAA or LPS. Besides, sAA and LPS co-treatment further enhanced the actions of LPS. However, the knockdown of TLR2 obviously blunted the effects
of LPS and sAA co-treatment on cell viability, inflammation and apoptosis. Taken together, our results revealed that sAA could exert an enhanced effect on LPS-induced BEAS-2B cells injury via promoting TLR2/AP-1 expression.
Collapse
Affiliation(s)
- Shiming Yang
- Department of Pediatrics, People’s Hospital of Jianshui County, Honghe Prefecture, Yunnan Province 654399, China
| | - Yumei Qin
- Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region (The Second People’s Hospital of Guangxi Zhuang Autonomous Region), Guilin, Guangxi Province 541000, China
| | - Li Ding
- Department of Internal Medicine, People’s Hospital of Jianshui County, Honghe Prefecture, Yunnan Province 654399, China
| | - Jiangbo Wang
- Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region (The Second People’s Hospital of Guangxi Zhuang Autonomous Region), Guilin, Guangxi Province 541000, China
| | - Haiqing Zhao
- Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region (The Second People’s Hospital of Guangxi Zhuang Autonomous Region), Guilin, Guangxi Province 541000, China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Acute phase serum amyloid A (SAA) is persistently elevated in chronic inflammatory conditions, and elevated levels predict cardiovascular risk in humans. More recently, murine studies have demonstrated that over-expression of SAA increases and deficiency/suppression of SAA attenuates atherosclerosis. Thus, beyond being a biomarker, SAA appears to play a causal role in atherogenesis. The purpose of this review is to summarize the data supporting SAA as a key player in atherosclerosis development. RECENT FINDINGS A number of pro-inflammatory and pro-atherogenic activities have been ascribed to SAA. However, the literature is conflicted, as recombinant SAA, and/or lipid-free SAA, used in many of the earlier studies, do not reflect the activity of native human or murine SAA, which exists largely lipid-associated. Recent literatures demonstrate that SAA activates the NLRP3 inflammasome, alters vascular function, affects HDL function, and increases thrombosis. Importantly, SAA activity appears to be regulated by its lipid association, and HDL may serve to sequester and limit SAA activity. SUMMARY SAA has many pro-inflammatory and pro-atherogenic activities, is clearly demonstrated to affect atherosclerosis development, and may be a candidate target for clinical trials in cardiovascular diseases.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine
- Saha Cardiovascular Research Center
- Barnstable Brown Diabetes Center and University of Kentucky
| | - Lisa R Tannock
- Department of Internal Medicine
- Saha Cardiovascular Research Center
- Barnstable Brown Diabetes Center and University of Kentucky
- Veterans Affairs Lexington, Lexington, Kentucky, USA
| |
Collapse
|