1
|
Briney CA, Henriksen JC, Lin C, Jones LA, Benner L, Rains AB, Gutierrez R, Gafken PR, Rissland OS. Muskelin is a substrate adaptor of the highly regulated Drosophila embryonic CTLH E3 ligase. EMBO Rep 2025; 26:1647-1669. [PMID: 39979464 PMCID: PMC11933467 DOI: 10.1038/s44319-025-00397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The maternal-to-zygotic transition (MZT) is a conserved developmental process where the maternally-derived protein and mRNA cache is replaced with newly made zygotic gene products. We have previously shown that in Drosophila the deposited RNA-binding proteins ME31B, Cup, and Trailer Hitch are ubiquitylated by the CTLH E3 ligase and cleared. However, the organization and regulation of the CTLH complex remain poorly understood in flies because Drosophila lacks an identifiable substrate adaptor, and the mechanisms restricting the degradation of ME31B and its cofactors to the MZT are unknown. Here, we show that the developmental regulation of the CTLH complex is multi-pronged, including transcriptional control by OVO and autoinhibition of the E3 ligase. One major regulatory target is the subunit Muskelin, which we demonstrate is a substrate adaptor for the Drosophila CTLH complex. Finally, we find that Muskelin has few targets beyond the three known RNA-binding proteins, showing exquisite target specificity. Thus, multiple levels of integrated regulation restrict the activity of the embryonic CTLH complex to early embryogenesis, during which time it regulates three important RNA-binding proteins.
Collapse
Affiliation(s)
- Chloe A Briney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jesslyn C Henriksen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chenwei Lin
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lisa A Jones
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Addison B Rains
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Roxana Gutierrez
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Philip R Gafken
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Fu Y, Yang X, Ling Q, Huang Y, You X, Nie D, Sheng J, Chen Y, Wen Q, Zhou X, Zhou C, Hu S, Ma L. USP25 Promotes the Antimycobacterial Response of Macrophages Through Stabilizing B-Raf and C-Raf. J Infect Dis 2025; 231:366-377. [PMID: 39110031 DOI: 10.1093/infdis/jiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 02/21/2025] Open
Abstract
Ubiquitin-specific peptidase 25 (USP25) is one of the best-characterized deubiquitinating enzymes and plays a vital regulatory role in various biological processes, especially in cancer development and immune regulation. However, the exact role of USP25 and its underlying mechanisms in macrophage activation and immunogenicity during Mycobacterium tuberculosis infection remain unclear. In this study, we found that M tuberculosis infection induced USP25 expression in human and mouse macrophages. In particular, USP25 expression is elevated in multiple cell types, especially monocytes, in patients with tuberculosis. Additionally, USP25 deficiency in macrophages and mice resulted in compromised immunity against M tuberculosis infection, accompanied by reduced expressions of various proinflammatory cytokines and chemokines. Mechanistically, USP25 in macrophages promoted the activation of the ERK signaling pathway through deubiquitination and stabilization of B-Raf and C-Raf. These findings collectively suggest the critical roles of USP25 in M tuberculosis infection and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xiaodan Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Qiao Ling
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xiaolong You
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Dingnai Nie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University
| |
Collapse
|
3
|
Maitland MER, Onea G, Owens DDG, Gonga-Cavé BC, Wang X, Arrowsmith CH, Barsyte-Lovejoy D, Lajoie GA, Schild-Poulter C. Interplay between β-propeller subunits WDR26 and muskelin regulates the CTLH E3 ligase supramolecular complex. Commun Biol 2024; 7:1668. [PMID: 39702571 DOI: 10.1038/s42003-024-07371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The Pro/N-degron recognizing C-terminal to LisH (CTLH) complex is an E3 ligase of emerging interest in the developmental biology field and for targeted protein degradation (TPD) modalities. The human CTLH complex forms distinct supramolecular ring-shaped structures dependent on the multimerization of WDR26 or muskelin β-propeller proteins. Here, we find that, in HeLa cells, CTLH complex E3 ligase activity is dictated by an interplay between WDR26 and muskelin in tandem with muskelin autoregulation. Proteomic experiments revealed that complex-associated muskelin protein turnover is a major ubiquitin-mediated degradation event dependent on the CTLH complex in unstimulated HeLa cells. We observed that muskelin and WDR26 binding to the scaffold of the complex is interchangeable, indicative of the formation of separate WDR26 and muskelin complexes, which correlated with distinct proteomes in WDR26 and muskelin knockout cells. We found that mTOR inhibition-induced degradation of Pro/N-degron containing protein HMGCS1 is distinctly regulated by a muskelin-specific CTLH complex. Finally, we found that mTOR inhibition also activated muskelin degradation, likely as an autoregulatory feedback mechanism to regulate CTLH complex activity. Thus, rather than swapping substrate receptors, the CTLH E3 ligase complex controls substrate selectivity through the differential association of its β-propeller oligomeric subunits WDR26 and muskelin.
Collapse
Affiliation(s)
- Matthew E R Maitland
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
- Don Rix Protein Identification Facility, University of Western Ontario, London, ON, N6G 2V4, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Gabriel Onea
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Amphista Therapeutics, The Cori Building, Granta Park, Cambridge, UK
| | - Brianna C Gonga-Cavé
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Xu Wang
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
- Don Rix Protein Identification Facility, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada.
- Department of Oncology, University of Western Ontario, London, ON, N6G 2V4, Canada.
| |
Collapse
|
4
|
Zhou W, Deng X, Wang B, Yuan Y, Ma J, Meng X. HTF4 modulates the transcription of GID2 to promote the malignant biological behavior of pancreatic cancer. Pancreatology 2024; 24:1073-1083. [PMID: 39216997 DOI: 10.1016/j.pan.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Helix-loop-helix transcription factor 4 (HTF4) as an anti-cancer target has been reported in many human cancers, but limited data exists regarding the effect of HTF4 in pancreatic cancer. In this study, we aimed to investigate the role of HTF4 in pancreatic cancer. METHODS The expression levels of HTF4 in clinical pancreatic cancer samples were measured. HTF4 was knocked down or overexpressed in pancreatic cancer cells and was subsequently tested for bio-function using in vitro assays and in vivo. The regulation of HTF4 on GID2 was assessed via bioinformatic tools and dual-luciferase reporter assay. RESULTS We found that HTF4 was highly expressed in pancreatic cancer tissues and correlated with poor patient prognosis. In addition, knocking down HTF4 expression inhibited cell proliferation, migration, and invasion, whereas HTF4 overexpression exerted the opposite effect. Moreover, HTF4 promoted tumor growth and metastasis in pancreatic cancer. Further, HTF4 bound to the GID2 promoter region and promoted transcriptional activation of GID2 in pancreatic cancer cells. GID2 knockdown suppressed HTF4-induced malignant behaviors of pancreatic cancer cells. CONCLUSIONS Our findings suggest that the HTF4/GID2 axis accelerates the progression of pancreatic cancer, providing a potential therapeutic target and prognostic indicator for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Wenyang Zhou
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Baosheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifeng Yuan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Yang Q, Zhou X, Yi S, Li X, Zhang Q, Zhang S, Lin L, Yi S, Chen B, Qin Z, Luo J. Novel loss-of-function variants in WDR26 cause Skraban-Deardorff syndrome in two Chinese patients. Front Pediatr 2024; 12:1429586. [PMID: 39363971 PMCID: PMC11447519 DOI: 10.3389/fped.2024.1429586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Mutations in the protein WD repeat structural domain 26 (WDR26, MIM 617424) have been identified as the cause of autosomal dominant Skraban-Deardorff syndrome, a rare genetic disorder characterized by intellectual disability (ID), developmental delay (DD), hypotonia, epilepsy, infant feeding difficulties, gait abnormalities and distinctive facial features. The objective of this study is to investigate the genetic factors that may contribute to the development of Skraban-Deardorff syndrome in affected individuals. Methods In this study, we used whole-exome sequencing (WES) to analyze pathogenic and likely pathogenic variants in two unrelated Chinese patients with DD and ID. We confirmed the origin of the variants by conducting Sanger sequencing and classified them according to ACMG/AMP guidelines. Results Here, two novel de novo variants (c.1797delC(p.His599fs*11) and c.1414C>T(p.Gln472*)) in the WDR26 gene have been identified in two Chinese patients with Skraban-Deardorff syndrome. These patients exhibit a range of symptoms, including varying degrees of ID, DD, speech delay, an abnormal wide-foot and/or stiff-legged gait, facial dysmorphism, behavioural abnormalities, with or without seizures. Conclusions In this study, We report two unrelated Chinese patients with Skraban-Deardorff syndrome caused by novel de novo pathogenic variants of the WDR26 gene. These patients showed a clinical phenotype similar to that of patients with the WDR26 variant. Compared to reported cases with WDR26 pathogenic variants, patient 2 presented a novel complication of severe behavioural problems, including hyperactivity, social anxiety, self-mutilation, impulsivity and violent behaviour. This research broadens the range of genetic and clinical features of Skraban-Deardorff syndrome. In addition, the symptoms may become more pronounced as the patient ages. Furthermore, our report highlights the clinical diversity of Skraban-Deardorff syndrome. The findings may assist healthcare professionals in providing more accurate genetic testing and counselling to affected families and improving the overall management of the condition.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - XiaoLing Li
- Department of Child Health Care, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Lin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Biyan Chen
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
6
|
Moseley-Alldredge M, Aragón C, Vargus M, Alley D, Somia N, Chen L. The L1CAM SAX-7 is an antagonistic modulator of Erk Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613091. [PMID: 39345534 PMCID: PMC11429911 DOI: 10.1101/2024.09.14.613091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
L1CAMs are immunoglobulin superfamily cell adhesion molecules that ensure proper nervous system development and function. In addition to being associated with the autism and schizophrenia spectrum disorders, mutations in the L1CAM family of genes also underlie distinct developmental syndromes with neurological conditions, such as intellectual disability, spastic paraplegia, hypotonia and congenital hydrocephalus. Studies in both vertebrate and invertebrate model organisms have established conserved neurodevelopmental roles for L1CAMs; these include axon guidance, dendrite morphogenesis, synaptogenesis, and maintenance of neural architecture, among others. In Caenorhabditis elegans , L1CAMs, encoded by the sax-7 gene, are required for coordinated locomotion. We previously uncovered a genetic interaction between sax-7 and components of synaptic vesicle cycle, revealing a non-developmental role for sax-7 in regulating synaptic activity. More recently, we determined that sax-7 also genetically interacts with extracellular signal-related kinase (ERK) signaling in controlling coordinated locomotion. C. elegans ERK, encoded by the mpk-1 gene, is a serine/threonine protein kinase belonging to the mitogen-activated protein kinase (MAPK) family that governs multiple aspects of animal development and cellular homeostasis. Here, we show this genetic interaction between sax-7 and mpk-1 occurs not only in cholinergic neurons for coordinated locomotion, but also extends outside the nervous system, revealing novel roles for SAX-7/L1CAM in non-neuronal processes, including vulval development. Our genetic findings in both the nervous system and developing vulva are consistent with SAX-7/L1CAM acting as an antagonistic modulator of ERK signaling.
Collapse
|
7
|
Owens DDG, Maitland MER, Khalili Yazdi A, Song X, Reber V, Schwalm MP, Machado RAC, Bauer N, Wang X, Szewczyk MM, Dong C, Dong A, Loppnau P, Calabrese MF, Dowling MS, Lee J, Montgomery JI, O'Connell TN, Subramanyam C, Wang F, Adamson EC, Schapira M, Gstaiger M, Knapp S, Vedadi M, Min J, Lajoie GA, Barsyte-Lovejoy D, Owen DR, Schild-Poulter C, Arrowsmith CH. A chemical probe to modulate human GID4 Pro/N-degron interactions. Nat Chem Biol 2024; 20:1164-1175. [PMID: 38773330 DOI: 10.1038/s41589-024-01618-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.
Collapse
Affiliation(s)
- Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E R Maitland
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Don Rix Protein Identification Facility, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | - Xiaosheng Song
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Viviane Reber
- Institute of Molecular Systems Biology at ETH Zurich, Zurich, Switzerland
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Raquel A C Machado
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Nicolas Bauer
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Xu Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | - Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Jisun Lee
- Development and Medical, Pfizer Worldwide Research, Groton, CT, USA
| | | | | | | | - Feng Wang
- Development and Medical, Pfizer Worldwide Research, Groton, CT, USA
| | - Ella C Adamson
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology at ETH Zurich, Zurich, Switzerland
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Frankfurt am Main, Germany
- Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Don Rix Protein Identification Facility, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Dafydd R Owen
- Development and Medical, Pfizer Worldwide Research, Groton, CT, USA
| | - Caroline Schild-Poulter
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Briney CA, Henriksen JC, Lin C, Jones LA, Benner L, Rains AB, Gutierrez R, Gafken PR, Rissland OS. Muskelin acts as a substrate receptor of the highly regulated Drosophila CTLH E3 ligase during the maternal-to-zygotic transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601265. [PMID: 39005399 PMCID: PMC11244905 DOI: 10.1101/2024.06.28.601265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The maternal-to-zygotic transition (MZT) is a conserved developmental process where the maternally-derived protein and mRNA cache is replaced with newly made zygotic gene products. We have previously shown that in Drosophila the deposited RNA-binding proteins ME31B, Cup, and Trailer Hitch (TRAL) are ubiquitylated by the CTLH E3 ligase and cleared. However, the organization and regulation of the CTLH complex remain poorly understood in flies. In particular, Drosophila lacks an identifiable substrate adaptor, and the mechanisms restricting degradation of ME31B and its cofactors to the MZT are unknown. Here, we show that the developmental specificity of the CTLH complex is mediated by multipronged regulation, including transcriptional control by the transcription factor OVO and autoinhibition of the E3 ligase. One major regulatory target is the subunit Muskelin, which we demonstrate acts as a substrate adaptor for the Drosophila CTLH complex. Although conserved, Muskelin has structural roles in other species, suggesting a surprising functional plasticity. Finally, we find that Muskelin has few targets beyond the three known RNA binding proteins, showing exquisite target specificity. Thus, multiple levels of integrated regulation restrict the activity of the embryonic CTLH complex to early embryogenesis, seemingly with the goal of regulating three important RNA binding proteins.
Collapse
Affiliation(s)
- Chloe A Briney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jesslyn C Henriksen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Chenwei Lin
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Lisa A Jones
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health
| | - Addison B Rains
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Roxana Gutierrez
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Philip R Gafken
- Proteomics & Metabolomics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
9
|
Sun YQ, Wang B, Zheng LW, Zhao JH, Ren JG. Oral cancer cell to endothelial cell communication via exosomal miR-21/RMND5A pathway. BMC Oral Health 2024; 24:82. [PMID: 38229133 DOI: 10.1186/s12903-024-03852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Required for meiotic nuclear division 5 homolog A (RMND5A), a novel ubiquitin E3 Ligase, has been reported to correlate with poor prognosis of several cancers. However, its role in endothelial cells has not been reported. In this study, overexpression of RMND5A in human umbilical vein endothelial cells (HUVECs) was performed via lentiviral infection, followed by MTT, would healing and tube formation assay as well as signaling analysis. Moreover, crosstalk between HUVECs and oral squamous cell carcinoma (OSCC) cells was investigated by indirect co-culture with condition medium or tumor cell derived exosomes. Our results showed that overexpression of RMND5A reduced the proliferation, migration and tube formation ability of HUVECs by inhibiting the activation of ERK and NF-κB pathway. Interestingly, OSCC cells can inhibit RMND5A expression of endothelial cells via exosomal miR-21. In summary, our present study unveils that OSCC cells can activate endothelial cells via exosomal miR-21/RMND5A pathway to promote angiogenesis, which may provide novel therapeutic targets for the treatment of OSCC.
Collapse
Affiliation(s)
- Yu-Qi Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China
| | - Bing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China
| | - Lin-Wei Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China
| | - Ji-Hong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China.
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, No. 237 Luoyu Road, Wuhan, 430079, China.
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
10
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
11
|
Deng X, Ma J, Zhou W, Yuan Y, Wang B, Meng X. GID2 Interacts With CDKN3 and Regulates Pancreatic Cancer Growth and Apoptosis. J Transl Med 2023; 103:100122. [PMID: 36828188 DOI: 10.1016/j.labinv.2023.100122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Dysregulation of deubiquitinase or ubiquitinase-mediated protein expression contributes to various diseases, including cancer. In the present study, we identified GID2, a subunit of the glucose-induced degradation-deficient (GID) complex that functions as an E3 ubiquitin ligase, as a potential key candidate gene in pancreatic cancer (PC) progression. The functional role and potential mechanism of GID2 in PC progression were investigated. Integrated bioinformatics analysis was performed to identify differentially expressed genes in PC based on the Gene Expression Profiling Interactive Analysis data sets. We found that GID2 was upregulated in PC tissues and that a high level of GID2 expression in clinical PC samples was positively associated with tumor stage and poor survival. Functional assays elucidated that GID2 expression promoted cell growth in vitro and accelerated tumor growth in vivo. GID2 knockdown effectively attenuated the malignant behaviors of PC cells and tumor formation. Furthermore, the protein network that interacted with the GID2 protein was constructed based on the GeneMANIA website. Cyclin-dependent kinase inhibitor 3 (CDKN3), a cell cycle regulator, was identified as a potential target of the GID2 protein. We revealed that GID2 positively regulated CDKN3 expression and inhibited CDKN3 ubiquitination. Furthermore, CDKN3 downregulation reversed the promoting effects of GID2 on PC progression. Therefore, the present study demonstrated that GID2 might regulate PC progression by maintaining the stability of the CDKN3 protein. These findings highlight the potential roles of the GID2/CDKN3 axis as a potential therapeutic target in PC.
Collapse
Affiliation(s)
- Xin Deng
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenyang Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yifeng Yuan
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Baosheng Wang
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiangpeng Meng
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
12
|
van Gen Hassend PM, Pottikkadavath A, Delto C, Kuhn M, Endres M, Schönemann L, Schindelin H. RanBP9 controls the oligomeric state of CTLH complex assemblies. J Biol Chem 2023; 299:102869. [PMID: 36621627 PMCID: PMC9932110 DOI: 10.1016/j.jbc.2023.102869] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The CTLH (C-terminal to lissencephaly-1 homology motif) complex is a multisubunit RING E3 ligase with poorly defined substrate specificity and flexible subunit composition. Two key subunits, muskelin and Wdr26, specify two alternative CTLH complexes that differ in quaternary structure, thereby allowing the E3 ligase to presumably target different substrates. With the aid of different biophysical and biochemical techniques, we characterized CTLH complex assembly pathways, focusing not only on Wdr26 and muskelin but also on RanBP9, Twa1, and Armc8β subunits, which are critical to establish the scaffold of this E3 ligase. We demonstrate that the ability of muskelin to tetramerize and the assembly of Wdr26 into dimers define mutually exclusive oligomerization modules that compete with nanomolar affinity for RanBP9 binding. The remaining scaffolding subunits, Armc8β and Twa1, strongly interact with each other and with RanBP9, again with nanomolar affinity. Our data demonstrate that RanBP9 organizes subunit assembly and prevents higher order oligomerization of dimeric Wdr26 and the Armc8β-Twa1 heterodimer through its tight binding. Combined, our studies define alternative assembly pathways of the CTLH complex and elucidate the role of RanBP9 in governing differential oligomeric assemblies, thereby advancing our mechanistic understanding of CTLH complex architectures.
Collapse
Affiliation(s)
- Pia Maria van Gen Hassend
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Aparna Pottikkadavath
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Carolyn Delto
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Monika Kuhn
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Michelle Endres
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Lars Schönemann
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany
| | - Hermann Schindelin
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute of Structural Biology, Würzburg, Germany.
| |
Collapse
|
13
|
USP7 regulates the ERK1/2 signaling pathway through deubiquitinating Raf-1 in lung adenocarcinoma. Cell Death Dis 2022; 13:698. [PMID: 35948545 PMCID: PMC9365811 DOI: 10.1038/s41419-022-05136-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023]
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) in the ubiquitin-specific protease (USP) family. It is a key regulator of numerous cellular functions including immune response, cell cycle, DNA damage and repair, epigenetics, and several signaling pathways. USP7 acts by removing ubiquitin from the substrate proteins. USP7 also binds to a specific binding motif of substrate proteins having the [P/A/E]-X-X-S or K-X-X-X-K protein sequences. To date, numerous substrate proteins of USP7 have been identified, but no studies have been conducted using the binding motif that USP7 binds. In the current study, we analyzed putative substrate proteins of USP7 through the [P/A/E]-X-X-S and K-X-X-X-K binding motifs using bioinformatics tools, and confirmed that Raf-1 is one of the substrates for USP7. USP7 binds to the Pro-Val-Asp-Ser (PVDS) motif of the conserved region 2 (CR2) which contains phosphorylation sites of Raf-1 and decreased M1-, K6-, K11-, K27-, K33-, and K48-linked polyubiquitination of Raf-1. We further identified that the DUB activity of USP7 decreases the threonine phosphorylation level of Raf-1 and inhibits signaling transduction through Raf activation. This regulatory mechanism inhibits the activation of the ERK1/2 signaling pathway, thereby inhibiting the G2/M transition and the cell proliferation of lung adenocarcinoma cells. In summary, our results indicate that USP7 deubiquitinates Raf-1 and is a new regulator of the ERK1/2 signaling pathway in lung adenocarcinoma.
Collapse
|
14
|
Onea G, Maitland MER, Wang X, Lajoie GA, Schild-Poulter C. Distinct assemblies and interactomes of the nuclear and cytoplasmic mammalian CTLH E3 ligase complex. J Cell Sci 2022; 135:276121. [PMID: 35833506 DOI: 10.1242/jcs.259638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The C-terminal to LisH (CTLH) complex is a newly discovered multi-subunit E3 ubiquitin ligase whose cellular functions are poorly characterized. While some CTLH subunits have been found to localize in both the nucleus and cytoplasm of mammalian cells, differences between the compartment-specific complexes have not been explored. Here, we show that the CTLH complex forms different molecular weight complexes in nuclear and cytoplasmic fractions. Loss of WDR26 severely decreases nuclear CTLH complex subunit levels and impairs higher-order CTLH complex formation, revealing WDR26 as a critical determinant of CTLH complex nuclear stability. Through affinity purification coupled to mass spectrometry (AP-MS) of endogenous CTLH complex member RanBPM from nuclear and cytoplasmic fractions, we identified over 170 compartment-specific interactors involved in various conserved biological processes such as ribonucleoprotein biogenesis and chromatin assembly. We validated the nuclear-specific RanBPM interaction with macroH2A1 and the cytoplasmic-specific interaction with Tankyrase-1/2. Overall, this study provides critical insights into CTLH complex function and composition in both the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Gabriel Onea
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| | - Matthew E R Maitland
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada.,Don Rix Protein Identification Facility, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Xu Wang
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada.,Don Rix Protein Identification Facility, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| |
Collapse
|
15
|
Maitland MER, Lajoie GA, Shaw GS, Schild-Poulter C. Structural and Functional Insights into GID/CTLH E3 Ligase Complexes. Int J Mol Sci 2022; 23:5863. [PMID: 35682545 PMCID: PMC9180843 DOI: 10.3390/ijms23115863] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Multi-subunit E3 ligases facilitate ubiquitin transfer by coordinating various substrate receptor subunits with a single catalytic center. Small molecules inducing targeted protein degradation have exploited such complexes, proving successful as therapeutics against previously undruggable targets. The C-terminal to LisH (CTLH) complex, also called the glucose-induced degradation deficient (GID) complex, is a multi-subunit E3 ligase complex highly conserved from Saccharomyces cerevisiae to humans, with roles in fundamental pathways controlling homeostasis and development in several species. However, we are only beginning to understand its mechanistic basis. Here, we review the literature of the CTLH complex from all organisms and place previous findings on individual subunits into context with recent breakthroughs on its structure and function.
Collapse
Affiliation(s)
- Matthew E. R. Maitland
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada;
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Gilles A. Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Gary S. Shaw
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Caroline Schild-Poulter
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada;
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| |
Collapse
|
16
|
Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188736. [DOI: 10.1016/j.bbcan.2022.188736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
|
17
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Maitland MER, Kuljanin M, Wang X, Lajoie GA, Schild-Poulter C. Proteomic analysis of ubiquitination substrates reveals a CTLH E3 ligase complex-dependent regulation of glycolysis. FASEB J 2021; 35:e21825. [PMID: 34383978 PMCID: PMC9292413 DOI: 10.1096/fj.202100664r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Ubiquitination is an essential post‐translational modification that regulates protein stability or function. Its substrate specificity is dictated by various E3 ligases. The human C‐terminal to LisH (CTLH) complex is a newly discovered multi‐subunit really interesting new gene (RING) E3 ligase with only a few known ubiquitination targets. Here, we used mass spectrometry‐based proteomic techniques to gain insight into CTLH complex function and ubiquitination substrates in HeLa cells. First, global proteomics determined proteins that were significantly increased, and thus may be substrates targeted for degradation, in cells depleted of CTLH complex member RanBPM. RanBPM‐dependent ubiquitination determined using diGLY‐enriched proteomics and the endogenous RanBPM interactome further revealed candidate ubiquitination targets. Three glycolysis enzymes alpha‐enolase, L‐lactate dehydrogenase A chain (LDHA), and pyruvate kinase M1/2 (PKM) had decreased ubiquitin sites in shRanBPM cells and were found associated with RanBPM in the interactome. Reduced polyubiquitination was validated for PKM2 and LDHA in cells depleted of RanBPM and CTLH complex RING domain subunit RMND5A. PKM2 and LDHA protein levels were unchanged, yet their activity was increased in extracts of cells with downregulated RanBPM. Finally, RanBPM deficient cells displayed enhanced glycolysis and deregulated central carbon metabolism. Overall, this study identifies potential CTLH complex ubiquitination substrates and uncovers that the CTLH complex inhibits glycolysis via non‐degradative ubiquitination of PKM2 and LDHA.
Collapse
Affiliation(s)
- Matthew E R Maitland
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Don Rix Protein Identification Facility, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Miljan Kuljanin
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Don Rix Protein Identification Facility, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Xu Wang
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Don Rix Protein Identification Facility, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
19
|
Chen S, Chen Y, Wen Y, Cai W, Zhu P, Yuan W, Li Y, Fan X, Wan Y, Li F, Zhuang J, Jiang Z, Wu X, Wang Y. miR-590-5p targets RMND5A and promotes migration in pancreatic adenocarcinoma cell lines. Oncol Lett 2021; 22:532. [PMID: 34079591 PMCID: PMC8156640 DOI: 10.3892/ol.2021.12793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Required for meiotic nuclear division 5 homolog A (RMND5A) functions as an E3 ubiquitin ligase. To date, few studies have investigated the role of RMND5A in cancer. In the present study, the expression levels of RMND5A in multiple types of cancer were analyzed using the Gene Expression Profiling Interactive Analysis platform. The results revealed that RMND5A was highly expressed and associated with overall survival in patients with pancreatic adenocarcinoma (PAAD). A wound-healing assay revealed that RMND5A overexpression significantly increased cell migration in the PAAD cell lines AsPC-1 and PANC-1. In silico analysis predicted that RMND5A was a potential target of microRNA(miR)-590-5p. Further in vitro experiments demonstrated that overexpression of miR-590-5p downregulated the expression levels of RMND5A and decreased the migratory ability of the AsPC-1 and PANC-1 cell lines. In addition, overexpression of miR-590-5p attenuated the promoting effects of RMND5A on the migration of AsPC-1 and PANC-1 cells. The results of the present study may further elucidate the mechanisms underlying PAAD progression and provide novel targets for the treatment of PAAD.
Collapse
Affiliation(s)
- Sixing Chen
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yu Chen
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yao Wen
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yongqing Li
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiongwei Fan
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yongqi Wan
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Fang Li
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Zhigang Jiang
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yuequn Wang
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
20
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
21
|
Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. Proc Natl Acad Sci U S A 2020; 117:14158-14167. [PMID: 32513738 PMCID: PMC7322002 DOI: 10.1073/pnas.2007085117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic N-degron pathways are proteolytic systems whose unifying feature is their ability to recognize proteins containing N-terminal (Nt) degradation signals called N-degrons, and to target these proteins for degradation by the 26S proteasome or autophagy. GID4, a subunit of the GID ubiquitin ligase, is the main recognition component of the proline (Pro)/N-degron pathway. GID4 targets proteins through their Nt-Pro residue or a Pro at position 2, in the presence of specific downstream sequence motifs. Here we show that human GID4 can also recognize hydrophobic Nt-residues other than Pro. One example is the sequence Nt-IGLW, bearing Nt-Ile. Nt-IGLW binds to wild-type human GID4 with a Kd of 16 μM, whereas the otherwise identical Nt-Pro-bearing sequence PGLW binds to GID4 more tightly, with a Kd of 1.9 μM. Despite this difference in affinities of GID4 for Nt-IGLW vs. Nt-PGLW, we found that the GID4-mediated Pro/N-degron pathway of the yeast Saccharomyces cerevisiae can target an Nt-IGLW-bearing protein for rapid degradation. We solved crystal structures of human GID4 bound to a peptide bearing Nt-Ile or Nt-Val. We also altered specific residues of human GID4 and measured the affinities of resulting mutant GID4s for Nt-IGLW and Nt-PGLW, thereby determining relative contributions of specific GID4 residues to the GID4-mediated recognition of Nt-Pro vs. Nt-residues other than Pro. These and related results advance the understanding of targeting by the Pro/N-degron pathway and greatly expand the substrate recognition range of the GID ubiquitin ligase in both human and yeast cells.
Collapse
Affiliation(s)
- Cheng Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, People's Republic of China
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Kelly Sun
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125;
| | - Jinrong Min
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, People's Republic of China
| |
Collapse
|
22
|
Chen SJ, Melnykov A, Varshavsky A. Evolution of Substrates and Components of the Pro/N-Degron Pathway. Biochemistry 2020; 59:582-593. [PMID: 31895557 DOI: 10.1021/acs.biochem.9b00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gid4, a subunit of the ubiquitin ligase GID, is the recognition component of the Pro/N-degron pathway. Gid4 targets proteins in particular through their N-terminal (Nt) proline (Pro) residue. In Saccharomyces cerevisiae and other Saccharomyces yeasts, the gluconeogenic enzymes Fbp1, Icl1, and Mdh2 bear Nt-Pro and are conditionally destroyed by the Pro/N-degron pathway. However, in mammals and in many non-Saccharomyces yeasts, for example, in Kluyveromyces lactis, these enzymes lack Nt-Pro. We used K. lactis to explore evolution of the Pro/N-degron pathway. One question to be addressed was whether the presence of non-Pro Nt residues in K. lactis Fbp1, Icl1, and Mdh2 was accompanied, on evolutionary time scales (S. cerevisiae and K. lactis diverged ∼150 million years ago), by a changed specificity of the Gid4 N-recognin. We used yeast-based two-hybrid binding assays and protein-degradation assays to show that the non-Pro (Ala) Nt residue of K. lactis Fbp1 makes this enzyme long-lived in K. lactis. We also found that the replacement, through mutagenesis, of Nt-Ala and the next three residues of K. lactis Fbp1 with the four-residue Nt-PTLV sequence of S. cerevisiae Fbp1 sufficed to make the resulting "hybrid" Fbp1 a short-lived substrate of Gid4 in K. lactis. We consider a blend of quasi-neutral genetic drift and natural selection that can account for these and related results. To the best of our knowledge, this work is the first study of the ubiquitin system in K. lactis, including development of the first protein-degradation assay (based on the antibiotic blasticidin) suitable for use with this organism.
Collapse
Affiliation(s)
- Shun-Jia Chen
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Artem Melnykov
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Alexander Varshavsky
- Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
23
|
The CTLH Complex in Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:4216750. [PMID: 31885576 PMCID: PMC6907057 DOI: 10.1155/2019/4216750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Cancer cell plasticity is the ability of cancer cells to intermittently morph into different fittest phenotypic states. Due to the intrinsic capacity to change their composition and interactions, protein macromolecular complexes are the ideal instruments for transient transformation. This review focuses on a poorly studied mammalian macromolecular complex called the CTLH (carboxy-terminal to LisH) complex. Currently, this macrostructure includes 11 known members (ARMC8, GID4, GID8, MAEA, MKLN1, RMND5A, RMND5B, RANBP9, RANBP10, WDR26, and YPEL5) and it has been shown to have E3-ligase enzymatic activity. CTLH proteins have been linked to all fundamental biological processes including proliferation, survival, programmed cell death, cell adhesion, and migration. At molecular level, the complex seems to interact and intertwine with key signaling pathways such as the PI3-kinase, WNT, TGFβ, and NFκB, which are key to cancer cell plasticity. As a whole, the CTLH complex is overexpressed in the most prevalent types of cancer and may hold the key to unlock many of the biological secrets that allow cancer cells to thrive in harsh conditions and resist antineoplastic therapy.
Collapse
|