1
|
Fu Q, Yang Y, Tian Q, Zhu Y, Xu H, Wang J, Huang Q. Exploring the mechanism of Paotianxiong polysaccharide in the treatment of chronic kidney disease combining metabolomics and microbiomics technologies. Int J Biol Macromol 2025; 289:138629. [PMID: 39667450 DOI: 10.1016/j.ijbiomac.2024.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A close relationship between the pathogenesis of chronic kidney disease (CKD) and abnormalities in the gut-kidney axis. Paotianxiong polysaccharides (PTXP) that have demonstrated therapeutic effects on CKD. However, the specific mechanism by which PTXP ameliorates CKD through the gut-kidney axis remains to be explored. In this study, the microbiomes and metabolomics were combined to investigate the impact of PTXP on intestinal flora structure and metabolism, further unveiling the relationship through correlation analysis. The results showed that PTXP intervention significantly modulated renal function abnormalities in CKD rats and significantly modulates gut microbial disorders, evidenced by an increased abundance of Lactobacillus murinus, Bacteroides fragilis, and a decreased abundance of Bifidobacterium pseudolongum. Furthermore, PTXP reversed the changes in intestinal metabolites, such as linoleic acid and docosahexaenoic acid, induced by CKD and identified unsaturated fatty acid metabolism as a key metabolic pathway. Correlation analyses also revealed associations among gut microorganisms, metabolites, and renal function indexes, confirming that PTXP alleviated CKD through the gut-kidney axis. Moreover, the above conclusions were verified by fecal bacteria transplantation experiments. These findings provide insights into the mechanism of PTXP for the treatment of CKD and provide new targets for the treatment of CKD.
Collapse
Affiliation(s)
- Qinwen Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Yu Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Qingqing Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Ying Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Huiyuan Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Jin Wang
- College of Ethnic Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Sun Y, Lu Y, Liu L, Saaoud F, Shao Y, Xu K, Drummer C, Cueto R, Shan H, Jiang X, Zhao H, Wang H, Yang X. Caspase-4/11 promotes hyperlipidemia and chronic kidney disease-accelerated vascular inflammation by enhancing trained immunity. JCI Insight 2024; 9:e177229. [PMID: 39024553 PMCID: PMC11343595 DOI: 10.1172/jci.insight.177229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
To determine whether hyperlipidemia and chronic kidney disease (CKD) have a synergy in accelerating vascular inflammation via trained immunity (TI), we performed aortic pathological analysis and RNA-Seq of high-fat diet-fed (HFD-fed) 5/6 nephrectomy CKD (HFD+CKD) mice. We made the following findings: (a) HFD+CKD increased aortic cytosolic LPS levels, caspase-11 (CASP11) activation, and 998 gene expressions of TI pathways in the aorta (first-tier TI mechanism); (b) CASP11-/- decreased aortic neointima hyperplasia, aortic recruitment of macrophages, and casp11-gasdermin D-mediated cytokine secretion; (c) CASP11-/- decreased N-terminal gasdermin D (N-GSDMD) membrane expression on aortic endothelial cells and aortic IL-1B levels; (d) LPS transfection into human aortic endothelial cells resulted in CASP4 (human)/CASP11 (mouse) activation and increased N-GSDMD membrane expression; and (e) IL-1B served as the second-tier mechanism underlying HFD+CKD-promoted TI. Taken together, hyperlipidemia and CKD accelerated vascular inflammation by promoting 2-tier trained immunity.
Collapse
Affiliation(s)
- Yu Sun
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Lu Liu
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Charles Drummer
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ramon Cueto
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Huimin Shan
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| |
Collapse
|
3
|
Gurung RL, M Y, Tham WK, Liu S, Zheng H, Lee J, Ang K, Wenk M, Subramaniam T, Sum CF, Torta F, Liu JJ, Lim SC. Association of plasma ceramide with decline in kidney function in patients with type 2 diabetes. J Lipid Res 2024; 65:100552. [PMID: 38704028 PMCID: PMC11176756 DOI: 10.1016/j.jlr.2024.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Circulating ceramide levels are dysregulated in kidney disease. However, their associations with rapid decline in kidney function (RDKF) and end-stage kidney disease (ESKD) in patients with type 2 diabetes (T2D) are unknown. In this prospective study of 1746 T2D participants, we examined the association of plasma ceramide Cer16:0, Cer18:0, Cer24:0, and Cer24:1 with RDKF, defined as an estimated glomerular filtration rate (eGFR) decline of 5 ml/min/1.73 m2 per year or greater, and ESKD defined as eGFR <15/min/1.73 m2 for at least 3 months, on dialysis or renal death at follow-up. During a median follow-up period of 7.7 years, 197 patients experienced RDKF. Ceramide Cer24:0 (odds ratio [OR] = 0.71, 95% CI 0.56-0.90) and ratios Cer16:0/Cer24:0 (OR = 3.54 [1.70-7.35]), Cer18:0/Cer24:0 (OR = 1.89 [1.10-3.25]), and Cer24:1/Cer24:0 (OR = 4.01 [1.93-8.31]) significantly associated with RDKF in multivariable analysis; 124 patients developed ESKD. The ratios Cer16:0/Cer24:0 (hazard ratio [HR] = 3.10 [1.44-6.64]) and Cer24:1/Cer24:0 (HR = 4.66 [1.93-11.24]) significantly associated with a higher risk of ESKD. The Cer24:1/Cer24:0 ratio improved risk discrimination for ESKD beyond traditional risk factors by small but statistically significant margin (Harrell C-index difference: 0.01; P = 0.022). A high ceramide risk score also associated with RDKF (OR = 2.28 [1.26-4.13]) compared to lower risk score. In conclusion, specific ceramide levels and their ratios are associated with RDKF and conferred an increased risk of ESKD, independently of traditional risk factors, including baseline renal functions in patients with T2D.
Collapse
Affiliation(s)
- Resham L Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Wai Kin Tham
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Janus Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Markus Wenk
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| | - Federico Torta
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; SLING, Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore; Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore; Saw Swee Hock School of Public Health, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
4
|
Méndez L, Muñoz S, Barros L, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Combined Intake of Fish Oil and D-Fagomine Prevents High-Fat High-Sucrose Diet-Induced Prediabetes by Modulating Lipotoxicity and Protein Carbonylation in the Kidney. Antioxidants (Basel) 2023; 12:antiox12030751. [PMID: 36978999 PMCID: PMC10045798 DOI: 10.3390/antiox12030751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity has been recognized as a major risk factor for chronic kidney disease, insulin resistance being an early common metabolic feature in patients suffering from this syndrome. This study aims to investigate the mechanism underlying the induction of kidney dysfunction and the concomitant onset of insulin resistance by long-term high-fat and sucrose diet feeding in Sprague Dawley rats. To achieve this goal, our study analyzed renal carbonylated protein patterns, ectopic lipid accumulation and fatty acid profiles and correlated them with biometrical and biochemical measurements and other body redox status parameters. Rats fed the obesogenic diet developed a prediabetic state and incipient kidney dysfunction manifested in increased plasma urea concentration and superior levels of renal fat deposition and protein carbonylation. An obesogenic diet increased renal fat by preferentially promoting the accumulation of saturated fat, arachidonic, and docosahexaenoic fatty acids while decreasing oleic acid. Renal lipotoxicity was accompanied by selectively higher carbonylation of proteins involved in the blood pH regulation, i.e., bicarbonate reclamation and synthesis, amino acid, and glucose metabolisms, directly related to the onset of insulin resistance. This study also tested the combination of antioxidant properties of fish oil with the anti-diabetic properties of buckwheat D-Fagomine to counteract diet-induced renal alterations. Results demonstrated that bioactive compounds combined attenuated lipotoxicity, induced more favorable lipid profiles and counteracted the excessive carbonylation of proteins associated with pH regulation in the kidneys, resulting in an inhibition of the progression of the prediabetes state and kidney disease.
Collapse
Affiliation(s)
- Lucía Méndez
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| | - Silvia Muñoz
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| | - Lorena Barros
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Sara Ramos-Romero
- Instituto de Química Avanzada de Catalunya-Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biología, Universidad de Barcelona, E-08028 Barcelona, Spain
| | - Josep Lluís Torres
- Instituto de Química Avanzada de Catalunya-Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| |
Collapse
|
5
|
Kędzierska-Kapuza K, Szczuko U, Stolińska H, Bakaloudi DR, Wierzba W, Szczuko M. Demand for Water-Soluble Vitamins in a Group of Patients with CKD versus Interventions and Supplementation-A Systematic Review. Nutrients 2023; 15:860. [PMID: 36839219 PMCID: PMC9964313 DOI: 10.3390/nu15040860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Increasingly, chronic kidney disease (CKD) is becoming an inevitable consequence of obesity, metabolic syndrome, and diabetes. As the disease progresses, and through dialysis, the need for and loss of water-soluble vitamins both increase. This review article looks at the benefits and possible risks of supplementing these vitamins with the treatment of CKD. METHODS Data in the PubMed and Embase databases were analyzed. The keywords "chronic kidney disease", in various combinations, are associated with thiamin, riboflavin, pyridoxine, pantothenic acid, folates, niacin, cobalamin, and vitamin C. This review focuses on the possible use of water-soluble vitamin supplementation to improve pharmacological responses and the overall clinical condition of patients. RESULTS The mechanism of supportive supplementation is based on reducing oxidative stress, covering the increased demand and losses resulting from the treatment method. In the initial period of failure (G2-G3a), it does not require intervention, but later, especially in the case of inadequate nutrition, the inclusion of supplementation with folate and cobalamin may bring benefits. Such supplementation seems to be a necessity in patients with stage G4 or G5 (uremia). Conversely, the inclusion of additional B6 supplementation to reduce CV risk may be considered. At stage 3b and beyond (stages 4-5), the inclusion of niacin at a dose of 400-1000 mg, depending on the patient's tolerance, is required to lower the phosphate level. The inclusion of supplementation with thiamine and other water-soluble vitamins, especially in peritoneal dialysis and hemodialysis patients, is necessary for reducing dialysis losses. Allowing hemodialysis patients to take low doses of oral vitamin C effectively reduces erythropoietin dose requirements and improves anemia in functional iron-deficient patients. However, it should be considered that doses of B vitamins that are several times higher than the recommended dietary allowance of consumption may exacerbate left ventricular diastolic dysfunction in CKD patients. CONCLUSIONS Taking into account the research conducted so far, it seems that the use of vitamin supplementation in CKD patients may have a positive impact on the treatment process and maintaining a disease-free condition.
Collapse
Affiliation(s)
- Karolina Kędzierska-Kapuza
- State Medical Institute of the Ministry of Interior and Administration in Warsaw, 137 Wołoska St., 02-507 Warsaw, Poland
- Center of Postgraduate Medical Education in Warsaw, Department of Gastroenterological Surgery and Transplantology, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Urszula Szczuko
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Hanna Stolińska
- Love Yourself Hanna Stolińska, 112 Sobieskiego St., 00-764 Warsaw, Poland
| | - Dimitra Rafailia Bakaloudi
- Department of Medical Oncology, General Hospital of Thessaloniki “G. Papageorgiou”, Aristotle University of Thessaloniki, 54623 Thessaloniki, Greece
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98109-1023, USA
| | - Waldemar Wierzba
- State Medical Institute of the Ministry of Interior and Administration in Warsaw, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| |
Collapse
|
6
|
Exploration of the Mechanism of Linoleic Acid Metabolism Dysregulation in Metabolic Syndrome. Genet Res (Camb) 2022; 2022:6793346. [PMID: 36518097 PMCID: PMC9722286 DOI: 10.1155/2022/6793346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
We aimed to explore the mechanism of the linoleic acid metabolism in metabolic syndrome (MetS). RNA-seq data for 16 samples with or without MetS from the GSE145412 dataset were collected. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and gene differential expression analysis were performed. Expression data of differentially expressed genes (DEGs) involved in the linoleic acid metabolism pathway were mapped to the pathway by using Pathview for visualization. There were 19 and 10 differentially expressed biological processes in the disease group and healthy group, respectively. 9 KEGG pathways were differentially expressed in the disease group. Linoleic acid metabolism was the only differentially expressed pathway in the healthy group. The GSVA enrichment score of the linoleic acid metabolism pathway in the disease group was markedly lower than that in the healthy group. The GSEA result showed that the linoleic acid metabolism pathway was significantly downregulated in the disease group. JMJD7-PLA2G4B, PLA2G1B, PLA2G2D, CYP2C8, and CYP2J2 involved in the pathway were significantly downregulated in the disease group. This study may provide novel insight into MetS from the point of linoleic acid metabolism dysregulation.
Collapse
|
7
|
KITLG Promotes Glomerular Endothelial Cell Injury in Diabetic Nephropathy by an Autocrine Effect. Int J Mol Sci 2022; 23:ijms231911723. [PMID: 36233032 PMCID: PMC9569900 DOI: 10.3390/ijms231911723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) is an increasing threat to human health. The impact of hyperglycemia or its metabolites, advanced glycation end-products (AGEs), on glomerular endothelial cells (GECs) and their pathophysiologic mechanisms are not well explored. Our results reveal that AGEs increased the expression and secretion of the KIT ligand (KITLG) in GECs. Both AGEs and KITLG promoted endothelial-to-mesenchymal transition (EndoMT) in GECs and further increased the permeability of GECs through the AKT/extracellular-signal-regulated kinase pathway. Inhibition of KITLG’s effects by imatinib prevented AGE-medicated EndoMT in GECs, supporting the belief that KITLG is a critical factor for GEC injury. We found higher KITLG levels in the GECs and urine of db/db mice compared with db/m mice, and urinary KITLG levels were positively correlated with the urinary albumin-to-creatinine ratio (ACR). Furthermore, type 2 diabetic patients had higher urinary KITLG levels than normal individuals, as well as urinary KITLG levels that were positively correlated with urinary ACR and negatively correlated with the estimated glomerular filtration rate. KITLG plays a pathogenic role in GEC injury in DN and might act as a biomarker of DN progression.
Collapse
|
8
|
There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC. J Clin Med 2022; 11:jcm11092365. [PMID: 35566490 PMCID: PMC9105551 DOI: 10.3390/jcm11092365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Crohn’s disease (CD) and Ulcerative Colitis (UC) are classified as inflammatory bowel diseases (IBD). Currently, an increasing number of studies indicate that the metabolic consequences of IBD may include abnormalities in the fatty acid profile. The aim of this study was to compare fatty acid concentrations in IBD in order to identify differences between CD and UC and differences between the phases of both diseases. Methods: Sixty-three adolescent patients with CD (n = 33) and UC (n = 30) aged 13.66 ± 2.67 and 14.15 ± 3.31, respectively, were enrolled in the study. Analysis was performed by gas chromatography. Results: A statistically significant higher concentration of vaccenic acid was observed in the total UC group relative to total CD. In remission CD relative to active CD, a significantly higher concentration of palmitic acid was shown. Whereas in active CD, significantly higher levels of linoleic acid were observed relative to remission. The UC group had significantly higher lauric acid and gamma-linoleic acid levels in active disease relative to remission. Conclusions: The identified differences between FA levels in UC and CD could potentially be involved in the course of both diseases.
Collapse
|
9
|
Liu Y, Li Y, Shen H, Li Y, Xu Y, Zhou M, Xia X, Shi B. Association between the metabolic profile of serum fatty acids and diabetic nephropathy: a study conducted in northeastern China. Ther Adv Endocrinol Metab 2022; 13:20420188221118750. [PMID: 36157308 PMCID: PMC9490461 DOI: 10.1177/20420188221118750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND PURPOSE With the progressive increase in the prevalence of type 2 diabetes mellitus (T2DM), diabetic nephropathy (DN) - one of the most common chronic microvascular complications - has evolved into a significant cause of death worldwide among end-stage renal disease patients. Academic researchers have for decades focused on the development of DN and recently found that free fatty acids (FFAs) constituted an independent risk factor for vascular complications in T2DM patients. It is therefore critical to determine whether the metabolic profile of FFAs is related to DN. METHODS This study comprised 611 research subjects in Dalian, a city in northeast China: 52 DN patients, 115 T2DM patients, and 444 healthy controls. We determined 15 forms of serum FFAs, including arachidonic acid (AA, C20:4), docosahexaenoic acid (DHA, C22:6), erucic acid (C22:1), nervonic acid (NA, C24:1), estimated total omega-3s, total omega-6s, the omega-3/omega-6 ratio, and total FFA content by liquid chromatography-mass spectrometry (LC-MS). RESULTS The levels of NA (mean = 45.27, range = 0.84-76.57) and DHA (mean = 324.58, range = 205.38-450.03) in DN patients were slightly lower than those in T2DM patients or healthy controls. The serum omega-3 polyunsaturated fatty acid (PUFA) DHA (C22:6) was significantly negatively correlated with microalbuminuria (MAU), the albumin/creatinine ratio (ACR), body mass index (BMI), fasting plasma glucose (FPG), and glycosylated hemoglobin (HbA1c). The serum monounsaturated fatty acid (MUFA) NA (C24:1) was significantly negatively correlated with BMI, FPG, and HbA1c. After adjustment of variables, multiple logistic regression analysis revealed significant odds ratios (ORs) [with confidence intervals (CIs)] for DHA (0.991, 0.985-0.997; p = 0.002) and NA (0.978, 0.958-0.999; p = 0.037). CONCLUSION In this study, we ascertained that the contents of NA and DHA in patients with DN were relatively low, and that DHA was negatively correlated with MAU and the ACR. However, large-scale, population-based studies focusing on the role of NA and DHA in the pathogenesis of DN are still required in the future.
Collapse
Affiliation(s)
- Yazhuo Liu
- Department of Endocrinology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yingying Li
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Hui Shen
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Yike Li
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Yanbing Xu
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Mi Zhou
- Department of Ophthalmology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Xinghai Xia
- Department of Ophthalmology, Penn State Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|
10
|
Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 2022; 18:38-55. [PMID: 34616096 PMCID: PMC9146017 DOI: 10.1038/s41581-021-00488-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Dyslipidaemia is a hallmark of chronic kidney disease (CKD). The severity of dyslipidaemia not only correlates with CKD stage but is also associated with CKD-associated cardiovascular disease and mortality. Understanding how lipids are dysregulated in CKD is, however, challenging owing to the incredible diversity of lipid structures. CKD-associated dyslipidaemia occurs as a consequence of complex interactions between genetic, environmental and kidney-specific factors, which to understand, requires an appreciation of perturbations in the underlying network of genes, proteins and lipids. Modern lipidomic technologies attempt to systematically identify and quantify lipid species from biological systems. The rapid development of a variety of analytical platforms based on mass spectrometry has enabled the identification of complex lipids at great precision and depth. Insights from lipidomics studies to date suggest that the overall architecture of free fatty acid partitioning between fatty acid oxidation and complex lipid fatty acid composition is an important driver of CKD progression. Available evidence suggests that CKD progression is associated with metabolic inflexibility, reflecting a diminished capacity to utilize free fatty acids through β-oxidation, and resulting in the diversion of accumulating fatty acids to complex lipids such as triglycerides. This effect is reversed with interventions that improve kidney health, suggesting that targeting of lipid abnormalities could be beneficial in preventing CKD progression.
Collapse
Affiliation(s)
- Judy Baek
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen He
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Subramaniam Pennathur
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Li X, Lyu C, Luo Z, Zhao J, Wang Z, Yang C, Dai Q, Li H, Zhou Y, Li Z, Chen F, Gao Y. The roles of IGF2 and DNMT methylation and elongase6 related fatty acids in metabolic syndrome. Food Funct 2021; 12:10253-10262. [PMID: 34549217 DOI: 10.1039/d1fo00502b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The prevalence of metabolic syndrome (MetS) has increased along with rapid socio-economic development in China in recent decades, aggravating the burden of the health care system. Both plasma levels of fatty acids (FAs) and aberrant DNA methylation profiles are associated with MetS risk. However, studies exploring the role of DNA methylation and FAs simultaneously in MetS etiology are sparse. Objective: We aimed to explore the association between the gene methylation levels of insulin-like growth factor II (IGF2), H19, DNA methyltransferases 1 (DNMT1), DNA methyltransferases 3a (DNMT3a), and DNA methyltransferases 3b (DNMT3b) and MetS risk, and the etiological role of elongation of very-long-chain fatty acid elongase 6 (ELOVL6) related fatty acids. Method: Plasma levels of FAs were measured using a Gas Chromatography-Flame Ionization Detector (GC-FID) after organic extraction, and gene methylation was quantified using a real-time Quantitative Polymerase Chain Reaction (Q-PCR) detecting system after bisulfite treatment. The C18/C16 ratio was used as the indicator of ELOVL6 activity. Odds Ratio (OR) and 95% Confidence Interval (CI) were estimated with logistic regression. Results: Methylation levels in IGF2 and DNMT3a were not significantly associated with MetS risk. However, when stratified by C18/C16 ratio (high vs. low), positive associations were observed between the risk of MetS and methylation levels (>median) of IGF2a3 (OR = 3.1, 95% CI = 1.3-7.5) and DNMT3a (OR = 2.5, 95% CI = 1.1-5.8) genes, in individuals with lower C18/C16 ratios, while no significant associations were observed in subjects with high C18/C16 ratios. Conclusion: Methylation levels in IGF2 and DNMT3a genes may affect the risk of MetS in an ELOVL6 activity-dependent way among Chinese adults. Further studies in other populations are needed to validate this finding.
Collapse
Affiliation(s)
- Xiang Li
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chen Lyu
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, USA
| | - ZhongCheng Luo
- Lunenfeld-Tanenbaum Research Institute, Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Jing Zhao
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zhongli Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing, Jiaxing, China
| | - Chun Yang
- School of Public Health, Capital Medical University, Beijing, China
| | - Qi Dai
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yunhua Zhou
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zi Li
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Vogelpohl FA, Gomes-Neto AW, Martini IA, Sotomayor CG, Groothof D, Osté MCJ, Heiner-Fokkema MR, Muskiet FAJ, Berger SP, Navis G, Kema IP, Bakker SJL. Low Circulating Concentrations of Very Long Chain Saturated Fatty Acids Are Associated with High Risk of Mortality in Kidney Transplant Recipients. Nutrients 2021; 13:3383. [PMID: 34684385 PMCID: PMC8540190 DOI: 10.3390/nu13103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022] Open
Abstract
Kidney transplant recipients (KTR) are at increased risk of mortality, particularly from infectious diseases, due to lifelong immunosuppression. Although very long chain saturated fatty acids (VLSFA) have been identified as crucial for phagocytosis and clearance of infections, their association with mortality in immunocompromised patient groups has not been studied. In this prospective cohort study we included 680 outpatient KTR with a functional graft ≥1 year and 193 healthy controls. Plasma VLSFA (arachidonic acid (C20:0), behenic acid (C22:0) and lignoceric acid (C24:0)) were measured by gas chromatography coupled with a flame ionization detector. Cox regression analyses was used to prospectively study the associations of VLSFA with all-cause and cause-specific mortality. All studied VLSFA were significantly lower in KTR compared to healthy controls (all p < 0.001). During a median (interquartile range) follow-up of 5.6 (5.2-6.3) years, 146 (21%) KTR died, of which 41 (28%) died due to infectious diseases. In KTR, C22:0 was inversely associated with risk of all-cause mortality, with a HR (95% CI) per 1-SD-increment of 0.79 (0.64-0.99), independent of adjustment for potential confounders. All studied VLSFA were particularly strongly associated with mortality from infectious causes, with respective HRs for C20:0, C22:0 and C24:0 of 0.53 (0.35-0.82), 0.48 (0.30-0.75), and 0.51 (0.33-0.80), independent of potential confounders. VLSFA are inversely associated with infectious disease mortality in KTR after adjustment, including HDL-cholesterol. Further studies are needed to assess the effect of VLSFA-containing foods on the risk of infectious diseases in immunocompromised patient groups.
Collapse
Affiliation(s)
- Fabian A. Vogelpohl
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.W.G.-N.); (C.G.S.); (D.G.); (M.C.J.O.); (S.P.B.); (G.N.); (S.J.L.B.)
| | - António W. Gomes-Neto
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.W.G.-N.); (C.G.S.); (D.G.); (M.C.J.O.); (S.P.B.); (G.N.); (S.J.L.B.)
| | - Ingrid A. Martini
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (I.A.M.); (M.R.H.-F.); (F.A.J.M.); (I.P.K.)
| | - Camilo G. Sotomayor
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.W.G.-N.); (C.G.S.); (D.G.); (M.C.J.O.); (S.P.B.); (G.N.); (S.J.L.B.)
| | - Dion Groothof
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.W.G.-N.); (C.G.S.); (D.G.); (M.C.J.O.); (S.P.B.); (G.N.); (S.J.L.B.)
| | - Maryse C. J. Osté
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.W.G.-N.); (C.G.S.); (D.G.); (M.C.J.O.); (S.P.B.); (G.N.); (S.J.L.B.)
| | - Margaretha Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (I.A.M.); (M.R.H.-F.); (F.A.J.M.); (I.P.K.)
| | - Frits A. J. Muskiet
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (I.A.M.); (M.R.H.-F.); (F.A.J.M.); (I.P.K.)
| | - Stefan P. Berger
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.W.G.-N.); (C.G.S.); (D.G.); (M.C.J.O.); (S.P.B.); (G.N.); (S.J.L.B.)
| | - Gerjan Navis
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.W.G.-N.); (C.G.S.); (D.G.); (M.C.J.O.); (S.P.B.); (G.N.); (S.J.L.B.)
| | - Ido P. Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (I.A.M.); (M.R.H.-F.); (F.A.J.M.); (I.P.K.)
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (A.W.G.-N.); (C.G.S.); (D.G.); (M.C.J.O.); (S.P.B.); (G.N.); (S.J.L.B.)
| |
Collapse
|
13
|
Multi-Solvent Extraction Procedure for the Pioneer Fecal Metabolomic Analysis-Identification of Potential Biomarkers in Stable Kidney Transplant Patients. Diagnostics (Basel) 2021; 11:diagnostics11060962. [PMID: 34073647 PMCID: PMC8229050 DOI: 10.3390/diagnostics11060962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022] Open
Abstract
Metabolic alteration plays a functional role in kidney allograft complications. Metabolomics is a promising high-throughput approach in nephrology but is still limited by the lack of overlap in metabolite coverage. We performed an untargeted fecal metabolomic analysis of forty stable kidney allograft recipients and twenty non-transplant controls. First, we applied the ultra-high performance liquid chromatography (UHPLC) analysis coupled with the Diod Array detector. The potential biomarkers were then collected and identified by gas chromatography-mass spectrometry (GCMS). In order to allow for complete coverage of the fecal polar and non-polar metabolites, the performance of five organic solvents with increasing polarity was investigated successively. UHPLC analysis revealed that the fecal metabolite profiles following the five extractions were significantly different between controls and kidney allografts. GC-MS analysis showed that the best predictors’ metabolites belonged mainly to long-chain fatty acids, phenolic compounds, and amino acids. Collectively, our results showed the efficiency of our pioneer method to successfully discriminate stable kidney-transplant recipients from controls. These findings suggest that distinct metabolic profiles mainly affect fatty acid biosynthesis and amino acid metabolism. In such a context, the novel insights into metabolomic investigation may be a valuable tool that could provide useful new relevant biomarkers for preventing kidney transplant complications.
Collapse
|
14
|
Sánchez-Solís CN, Hernández-Fragoso H, Aburto-Luna V, Olivier CB, Diaz A, Brambila E, Treviño S. Kidney Adaptations Prevent Loss of Trace Elements in Wistar Rats with Early Metabolic Syndrome. Biol Trace Elem Res 2021; 199:1941-1953. [PMID: 32789645 DOI: 10.1007/s12011-020-02317-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome (MetS) represents a cluster of related metabolic abnormalities, including central obesity, hypertension, dyslipidemia, hyperglycemia, and insulin resistance. These metabolic derangements present significant risk factors for chronic kidney disease that carries to loss of essential micronutrients, which accelerates comorbidity apparition. The work aimed was to evaluate the trace element homeostasis regarding morphological adaptations and renal function in MetS early-onset. Fifty male Wistar rats were divided into two groups: (a) control group and (b) hypercaloric diet group that developed MetS early-onset after 3 months. Classical zoometric parameters do not show changes; however, biochemical modifications were observed such as hyperglycemia, protein glycation, insulin resistance, dyslipidemia, hyperinsulinemia, and hypoadiponectinemia. MetS early-onset group observed renal structural modifications, but no functional changes. The structural modifications observed were minimal glomerular injury, glomerular basement membrane thickening, as well as mesangial and tubular cells that showed growth and proliferation. In serum and kidney (cortex and medulla), the concentrations of Zn, Fe, Cr, Mg, Mn, Cu, Co, and Ni were no differences between the experimental groups, but excretory fractions of these were lower in the hypercaloric diet group. In conclusion, MetS early-onset coexist renal structural modification and a hyperreabsorptive activity of essential trace elements that avoid its loss; thus, the excretory fraction of oligo-elements could be used a biomarker of early renal injury caused by metabolic diseases in the clinical practice.
Collapse
Affiliation(s)
- Cristhian Neftaly Sánchez-Solís
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Hugo Hernández-Fragoso
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Violeta Aburto-Luna
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Christophe Barbier Olivier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, Mexico
| | - Alfonso Diaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eduardo Brambila
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
- Laboratorio de Investigaciones Químico Clínicas, Departamento de Química Clínica, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, 14 Sur. FCQ1, Ciudad Universitaria, C.P.72560, Puebla, Mexico.
| |
Collapse
|
15
|
Fecal Metabolomics Reveals Distinct Profiles of Kidney Transplant Recipients and Healthy Controls. Diagnostics (Basel) 2021; 11:diagnostics11050807. [PMID: 33946812 PMCID: PMC8145417 DOI: 10.3390/diagnostics11050807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Monitoring graft recipients remains dependent on traditional biomarkers and old technologies lacking specificity, sensitivity, or accuracy. Recently, metabolomics is becoming a promising approach that may offer to kidney transplants a more effective and specific monitoring. Furthermore, emerging evidence suggested a fundamental role of gut microbiota as an important determinant of patients’ metabolomes. In the current study, we enrolled forty stable renal allografts recipients compared to twenty healthy individuals. Samples were taken at different time points from patient to patient following transplantation surgery, which varied from 3 months to 22 years post-graft. All patients started the immunosuppression therapy immediately following kidney graft (Day 0). Gas chromatography–mass spectrometry (GC–MS) was employed to perform untargeted analysis of fecal metabolites. Globally, the fecal metabolic signature was significantly different between kidney transplants and the control group. Fecal metabolome was dominated by lipids (sterols and fatty acids) in the stable transplant group compared to the controls (p < 0.05). Overall, 18 metabolites were significantly altered within kidney transplant recipients. Furthermore, the most notable altered metabolic pathways in kidney transplants include ubiquinone and other terpenoid-quinone biosynthesis, tyrosine metabolism, tryptophan biosynthesis, and primary bile acid biosynthesis. Fecal metabolites could effectively distinguish stable transplant recipients from controls, supporting the potential utility of metabolomics in rapid and non-invasive diagnosis to produce relevant biomarkers and to help clinicians in monitoring kidney transplants. Further investigations are needed to clarify the physiological relevance of fecal metabolome and to assess the impact of microbiota modulation.
Collapse
|
16
|
The Causes and Potential Injurious Effects of Elevated Serum Leptin Levels in Chronic Kidney Disease Patients. Int J Mol Sci 2021; 22:ijms22094685. [PMID: 33925217 PMCID: PMC8125133 DOI: 10.3390/ijms22094685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Leptin is an adipokine that regulates appetite and body mass and has many other pleiotropic functions, including regulating kidney function. Increased evidence shows that chronic kidney disease (CKD) is associated with hyperleptinemia, but the reasons for this phenomenon are not fully understood. In this review, we focused on potential causes of hyperleptinemia in patients with CKD and the effects of elevated serum leptin levels on patient kidney function and cardiovascular risk. The available data indicate that the increased concentration of leptin in the blood of CKD patients may result from both decreased leptin elimination from the circulation by the kidneys (due to renal dysfunction) and increased leptin production by the adipose tissue. The overproduction of leptin by the adipose tissue could result from: (a) hyperinsulinemia; (b) chronic inflammation; and (c) significant lipid disturbances in CKD patients. Elevated leptin in CKD patients may further deteriorate kidney function and lead to increased cardiovascular risk.
Collapse
|
17
|
Marczak L, Idkowiak J, Tracz J, Stobiecki M, Perek B, Kostka-Jeziorny K, Tykarski A, Wanic-Kossowska M, Borowski M, Osuch M, Formanowicz D, Luczak M. Mass Spectrometry-Based Lipidomics Reveals Differential Changes in the Accumulated Lipid Classes in Chronic Kidney Disease. Metabolites 2021; 11:275. [PMID: 33925471 PMCID: PMC8146808 DOI: 10.3390/metabo11050275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by the progressive loss of functional nephrons. Although cardiovascular disease (CVD) complications and atherosclerosis are the leading causes of morbidity and mortality in CKD, the mechanism by which the progression of CVD accelerates remains unclear. To reveal the molecular mechanisms associated with atherosclerosis linked to CKD, we applied a shotgun lipidomics approach fortified with standard laboratory analytical methods and gas chromatography-mass spectrometry technique on selected lipid components and precursors to analyze the plasma lipidome in CKD and classical CVD patients. The MS-based lipidome profiling revealed the upregulation of triacylglycerols in CKD and downregulation of cholesterol/cholesteryl esters, sphingomyelins, phosphatidylcholines, phosphatidylethanolamines and ceramides as compared to CVD group and controls. We have further observed a decreased abundance of seven fatty acids in CKD with strong inter-correlation. In contrast, the level of glycerol was elevated in CKD in comparison to all analyzed groups. Our results revealed the putative existence of a functional causative link-the low cholesterol level correlated with lower estimated glomerular filtration rate and kidney dysfunction that supports the postulated "reverse epidemiology" theory and suggest that the lipidomic background of atherosclerosis-related to CKD is unique and might be associated with other cellular factors, i.e., inflammation.
Collapse
Affiliation(s)
- Lukasz Marczak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
| | - Jakub Idkowiak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Joanna Tracz
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Maciej Stobiecki
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-001 Poznan, Poland;
| | - Katarzyna Kostka-Jeziorny
- Department of Hypertension, Angiology and Internal Disease, Poznan University of Medical Sciences, 61-001 Poznan, Poland; (K.K.-J.); (A.T.)
| | - Andrzej Tykarski
- Department of Hypertension, Angiology and Internal Disease, Poznan University of Medical Sciences, 61-001 Poznan, Poland; (K.K.-J.); (A.T.)
| | - Maria Wanic-Kossowska
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Marcin Borowski
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marcin Osuch
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Magdalena Luczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| |
Collapse
|
18
|
Tomášová P, Čermáková M, Pelantová H, Vecka M, Kratochvílová H, Lipš M, Lindner J, Ivák P, Netuka I, Šedivá B, Haluzík M, Kuzma M. Lipid Profiling in Epicardial and Subcutaneous Adipose Tissue of Patients with Coronary Artery Disease. J Proteome Res 2020; 19:3993-4003. [DOI: 10.1021/acs.jproteome.0c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Petra Tomášová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- 4th Medical Department, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U Nemocnice 2, 128 08 Praha 2, Czech Republic
| | - Martina Čermáková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Marek Vecka
- 4th Medical Department, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, U Nemocnice 2, 128 08 Praha 2, Czech Republic
| | - Helena Kratochvílová
- Institute of Medical Biochemistry and Laboratory Diagnostics; First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Michal Lipš
- Department of Anaesthesiology, Resuscitation and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Jaroslav Lindner
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | | | | | - Blanka Šedivá
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics; First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
19
|
Lipoxins, RevD1 and 9, 13 HODE as the most important derivatives after an early incident of ischemic stroke. Sci Rep 2020; 10:12849. [PMID: 32732956 PMCID: PMC7393087 DOI: 10.1038/s41598-020-69831-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022] Open
Abstract
There is limited information available regarding the association of plasma free fatty acids (FFA) and inflammation mediators with ischemic stroke. At the same time, new treatment strategies are being pursued. The aim of this study was to carry out a thorough analysis of inflammation with multiple FFA-derivative mediators after and ischemic stroke and standard treatment. HPLC separations of 17 eicosanoids were performed using an Agilent Technologies 1,260 liquid chromatograph. The profiles of the esters of fatty acids were labelled by means of gas chromatography. FFA, and eicosanoid profiles in the group of patients after ischemic stroke significantly differed from the profile of the control group. Studies confirmed the involvement of derivative synthesis pathways responsible for the inflammation, especially palmitic acid (9 and 13 HODE), arachidonic acid, EPA and DHA. Arachidonic acid derivatives were synthesised on 5LOX, 15 LOX and COX pathways with the participation of prostaglandins while omega 3 derivatives strengthened the synthesis of resolvins, RevD1 in particular. The ability to accelerate the quenching of inflammation after ischemic stroke seems to be a promising strategy of stroke treatment in its early stage. In this context, our study points to lipoxins, RevD1, and 9, 13 HODE as the most important derivatives.
Collapse
|
20
|
Szczuko M, Kaczkan M, Małgorzewicz S, Rutkowski P, Dębska-Ślizień A, Stachowska E. The C18:3n6/C22:4n6 ratio is a good lipid marker of chronic kidney disease (CKD) progression. Lipids Health Dis 2020; 19:77. [PMID: 32303226 PMCID: PMC7164198 DOI: 10.1186/s12944-020-01258-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
Background Chronic kidney disease (CKD) is a major challenge for public health due to increased risk of cardiovascular diseases (CVD) and premature death. The aim of this study was to determine the clinical picture of FA and the course of the pathophysiological mechanisms of CKD. Methods The study involved 149 patients with CKD and a control group including 43 people. Fatty acid profiles were investigated using gas chromatography. A total of 30 fatty acids and their derivatives were identified and quantified. The omega3, omega6, SFA, MUFA, and PUFA fatty acid contents were calculated. The correlation matrix was obtained for parameters relating to patients with CKD vs. FA, taking patients’ sex into consideration. The index C18:3n6/C22:4n6 was calculated according to the length of the treatment. Statistica 12.0 software (Tulsa, Oklahoma, USA) was used for the statistical analyses. Results The results showed decreased levels of total PUFA and increased concentrations of MUFA, including the activation of the palmitic and oleic acid pathway. An increase in the levels of n-6 9C22: 4n6 family fatty acids in all the patients and a reduction in the n-3 family (EPA, DHA) were observed. C18:3n6 was negatively correlated and C22:4n6 was positively correlated with the duration of the treatment. The index C18:3n6/C22:4n6 was defined as a new marker in the progression of the disease. Moreover, the index C18:3n6/ C22:4n6 was drastically decreased in later period. Nervonic acid was higher in the CKD group. In the group of men with CKD, there was a negative correlation between the excretion of K+, anthropometric measurements, and the levels of EPA and DHA. Conclusions The course of inflammation in CKD occurs through the decrease in PUFA and the synthesis of MUFA. The dominating cascade of changes is the elongation of GLA-C18:3n6 into DGLA-C20:3n6 and AA-C20:4n6. As CKD progresses, along with worsening anthropometrical parameters and increased secretion of potassium, the activity of Ʌ6-desaturase decreases, reducing the synthesis of EPA and DHA. The synthesis of AdA-C22:4n6 increases and the ratio C18:3n6/C22:4n6 drastically decreases after 5 years. This parameter can be used to diagnose disease progression.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Małgorzata Kaczkan
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Przemysław Rutkowski
- Department of General Nursery, Medical University of Gdańsk and Diaverum Hemodialysis Unit, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
21
|
Korczyńska J, Czumaj A, Chmielewski M, Śledziński M, Mika A, Śledziński T. Increased Expression of the Leptin Gene in Adipose Tissue of Patients with Chronic Kidney Disease-The Possible Role of an Abnormal Serum Fatty Acid Profile. Metabolites 2020; 10:metabo10030098. [PMID: 32182671 PMCID: PMC7143199 DOI: 10.3390/metabo10030098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with an increased level of leptin and an abnormal fatty acid (FA) profile in the serum. However, there are no data on the associations between them, and the reason for increased serum levels in patients with CKD is not well elucidated. Recently, we found that a CKD-related abnormal FA profile caused significant changes in the expression of genes involved in lipid metabolism in hepatocytes. The aim of this study was to examine whether leptin gene expression in subcutaneous adipose tissue (SAT) of patients with CKD may contribute to increased serum levels of this adipokine and whether the abnormal serum FA profile observed in CKD patients has an impact on leptin gene expression in adipocytes. The FA profile was measured in serum samples from patients with CKD and controls by GC–MS. The relative mRNA levels of leptin were measured in SAT by Real-Time PCR. Moreover, the effect of the CKD-related abnormal FA profile on leptin gene expression was studied in in vitro cultured 3T3-L1 adipocytes. Patients with CKD had higher concentrations of serum leptin than controls and higher expression level of the leptin gene in SAT. They also had increased serum monounsaturated FAs and decreased polyunsaturated FAs. The incubation of adipocytes with FAs isolated from CKD patients resulted in an increase of the levels of leptin mRNA. Increased leptin gene expression in SAT may contribute to elevated concentrations of these adipokine in patients with CKD. CKD-related alterations of the FA profile may contribute to elevated serum leptin concentrations in patients with CKD by increasing the gene expression of this adipokine in SAT.
Collapse
Affiliation(s)
- Justyna Korczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.K.); (A.C.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.K.); (A.C.)
| | - Michał Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Maciej Śledziński
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Adriana Mika
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland;
| | - Tomasz Śledziński
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.K.); (A.C.)
- Correspondence:
| |
Collapse
|