1
|
Xue W, Guo N, Shan L, Zhang Z, Sun Y, Wang Y, Fang X, Liu X, Liu J, Hu C. Caveolin-1 protects against liver injury and lipid accumulation in alcoholic fatty liver via ferroptosis resistance. Mol Immunol 2025; 181:53-65. [PMID: 40073697 DOI: 10.1016/j.molimm.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Alcoholic fatty liver (AFL) is one of the most common chronic liver diseases globally with complex and controversial pathogenesis. Recent evidence suggests that iron overload and lipid peroxidation are risk factors for AFL. Caveolin-1 (CAV1) is an important signal platform that can maintain lipid homeostasis during the development of non-alcoholic fatty liver. Here, we studied the effect of CAV1 on ferroptosis in AFL. The AFL mouse model was established by chronic-plus-binge alcohol feeding. In vitro, AML-12 cells were incubated with ethanol and oleic acid for 48 h. We found alcohol-induced AFL triggered ferroptosis and decreased CAV1 expression. Overexpression of CAV1 by CAV1 scaffolding domain peptides (CSD) attenuated liver injury and hepatic steatosis, as well as inhibited ferroptosis in AFL mice. Additionally, the effects of CAV1 on ferroptosis-related protein levels (such as SLC7A11, GPX4, and ACSL4) and lipid accumulation were reversed by its small interfering RNA administration. Ferroptosis agonist (Erastin) treatment abrogated CAV1 plasmid-mediated ferroptosis resistance and steatosis alleviation. Collectively, the results revealed a crucial role of CAV1 in preventing hepatic steatosis and ferroptosis in alcohol-induced liver injury, which may identify potential targets for the treatment of AFL.
Collapse
Affiliation(s)
- Weiju Xue
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ning Guo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Zhang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yuquan Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yong Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xing Fang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiuzhen Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Muszka Z, Jenei V, Mácsik R, Mezhonova E, Diyab S, Csősz R, Bácsi A, Mázló A, Koncz G. Life-threatening risk factors contribute to the development of diseases with the highest mortality through the induction of regulated necrotic cell death. Cell Death Dis 2025; 16:273. [PMID: 40216765 PMCID: PMC11992264 DOI: 10.1038/s41419-025-07563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Chronic diseases affecting the cardiovascular system, diabetes mellitus, neurodegenerative diseases, and various other organ-specific conditions, involve different underlying pathological processes. However, they share common risk factors that contribute to the development and progression of these diseases, including air pollution, hypertension, obesity, high cholesterol levels, smoking and alcoholism. In this review, we aim to explore the connection between four types of diseases with different etiologies and various risk factors. We highlight that the presence of risk factors induces regulated necrotic cell death, leading to the release of damage-associated molecular patterns (DAMPs), ultimately resulting in sterile inflammation. Therefore, DAMP-mediated inflammation may be the link explaining how risk factors can lead to the development and maintenance of chronic diseases. To explore these processes, we summarize the main cell death pathways activated by the most common life-threatening risk factors, the types of released DAMPs and how these events are associated with the pathophysiology of diseases with the highest mortality. Various risk factors, such as smoking, air pollution, alcoholism, hypertension, obesity, and high cholesterol levels induce regulated necrosis. Subsequently, the release of DAMPs leads to chronic inflammation, which increases the risk of many diseases, including those with the highest mortality rates.
Collapse
Affiliation(s)
- Zsuzsa Muszka
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Rebeka Mácsik
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Evgeniya Mezhonova
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Silina Diyab
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Réka Csősz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| |
Collapse
|
3
|
Gao Y, Chen X, Duan JA, Xiao P. A review of pharmacological mechanisms, challenges and prospects of macromolecular glycopeptides. Int J Biol Macromol 2025; 300:140294. [PMID: 39863220 DOI: 10.1016/j.ijbiomac.2025.140294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Macromolecular glycopeptides are natural products derived from various sources, distinguished by their structural diversity, multifaceted biological activities, and low toxicity. These compounds exhibit a wide range of biological functions, such as immunomodulation, antitumor effects, anti-inflammatory properties, antioxidant activity, and more. However, limited understanding of natural glycopeptides has hindered their development and practical application. To promote their advancement and utilization, it is crucial to thoroughly investigate the pharmacological mechanisms of glycopeptides and address the challenges in natural glycopeptide research. This review uniquely focuses on the primary biological activities and potential molecular mechanisms of glycopeptides as reported in recent literature. Moreover, we emphasize the current challenges in glycopeptide research, including extraction and isolation difficulties, purification challenges, structural analysis complexities, elucidation of structure-activity relationships, characterization of biosynthetic pathways, and ensuring bioavailability and stability. The future prospects for glycopeptide research are also explored. We argue that ongoing research into glycopeptides will significantly contribute to drug development and provide more effective therapeutic options and disease treatment alternatives for human health.
Collapse
Affiliation(s)
- Ye Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoyi Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Galicia-Moreno M, Monroy-Ramirez HC, Caloca-Camarena F, Arceo-Orozco S, Muriel P, Sandoval-Rodriguez A, García-Bañuelos J, García-González A, Navarro-Partida J, Armendariz-Borunda J. A new opportunity for N-acetylcysteine. An outline of its classic antioxidant effects and its pharmacological potential as an epigenetic modulator in liver diseases treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2365-2386. [PMID: 39436429 DOI: 10.1007/s00210-024-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Liver diseases represent a worldwide health problem accountable for two million deaths per year. Oxidative stress is critical for the development of these diseases. N-acetyl cysteine (NAC) is effective in preventing liver damage, both in experimental and clinical studies, and evidence has shown that the pharmacodynamic mechanisms of NAC are related to its antioxidant nature and ability to modulate key signaling pathways. Here, we provide a comprehensive description of the beneficial effects of NAC in the treatment of liver diseases, addressing the first evidence of its role as a scavenger and precursor of reduced glutathione, along with studies showing its immunomodulatory action, as well as the ability of NAC to modulate epigenetic hallmarks. We searched the PubMed database using the following keywords: oxidative stress, liver disease, epigenetics, antioxidants, NAC, and antioxidant therapies. There was no time limit to gather all available information on the subject. NAC has shown efficacy in treating liver damage, exerting mechanisms of action different from those of free radical scavengers. Like different antioxidant therapies, its effectiveness and safety are related to the administered dose; therefore, designing new pharmacological formulations for this drug is imperative to achieve an adequate response. Finally, there is still much to explore regarding its effect on epigenetic marker characteristics of liver damage, turning it into a drug with broad therapeutic potential. According to the literature reviewed, NAC could be an appropriate option in clinical studies related to hepatic injury and, in the future, a repurposing alternative for treating liver diseases.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Fernando Caloca-Camarena
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Scarlet Arceo-Orozco
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Pablo Muriel
- Laboratorio de Hepatologia Experimental, Departamento de Farmacologia, Cinvestav-IPN, 07000, Mexico City, Mexico
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Jesús García-Bañuelos
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | | | | | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico.
- Tecnológico de Monterrey, EMCS, 45201, Zapopan, Jalisco, Mexico.
| |
Collapse
|
5
|
Lu J, Wang C. Ferulic acid from Angelica sinensis (Oliv.) Diels ameliorates lipid metabolism in alcoholic liver disease via AMPK/ACC and PI3K/AKT pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119118. [PMID: 39551284 DOI: 10.1016/j.jep.2024.119118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels is a well-known traditional medicinal plant. In China, it is a common blood tonic drug that has been inherited for thousands of years. There is a consensus that Angelica sinensis (Oliv.) Diels has a protective effect against various liver diseases. However, the effects and mechanisms of Angelica sinensis (Oliv.) Diels and its active components on alcoholic liver disease (ALD) have not been clearly defined yet. AIM OF THE STUDY The aim of this study is to evaluate the effect and explore the mechanism of ferulic acid (FA) from Angelica sinensis (Oliv.) Diels ameliorates lipid metabolism in ALD. METHODS C57BL/6 mice were fed ethanol-containing liquid feeds to establish ALD model in vivo. The lipid metabolism-related indexes were detected by kits, H&E staining and oil red O staining were used to analyze liver histopathological changes and fat deposition, to evaluate the protective effect of water extraction and ethanol precipitation of Angelica sinensis radix (WEEPAS) on ethanol-induced liver injury. The active components and potential targets of Angelica sinensis (Oliv.) Diels for ALD were screened by network pharmacology and molecular docking. Ethanol was co-incubated with HepG2 cells to construct the ALD model in vitro, then the same approaches were used to explore the effect of FA for ALD in vivo and in vitro. The levels of proteins and mRNA related to AMPK/ACC and PI3K/AKT pathways were detected by Western Blotting and RT-qPCR. RESULTS WEEPAS could protect mice from ethanol-induced liver tissues injury by ameliorating fat deposition and inhibiting oxidative stress response. Network pharmacology and molecular docking results suggested that FA might be the main bioactive component in Angelica sinensis (Oliv.) Diels for ALD, and its mechanism might be related to the regulation of AMPK and PI3K/AKT signaling pathways. In vitro and in vivo experiments further demonstrated that FA regulated lipid metabolism via AMPK/ACC and PI3K/AKT pathways, thereby ameliorating ethanol-induced liver tissues injury and lipid metabolism disorders in HepG2 cells and mice, which were consistent with the network pharmacology results. CONCLUSION In summary, the results indicated that FA from Angelica sinensis (Oliv.) Diels was able to ameliorate ethanol-induced ALD. The mechanism may be related to the regulation of lipid metabolism via AMPK/ACC and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Jun Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China; College of Pharmacy, Guilin Medical University, Guilin, 541104, China
| | - Chen Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| |
Collapse
|
6
|
Wang K, Zhang Z, Xu W, Yang S, Zhao J, Wu Z, Zhang W. The Preparation of Black Goji Berry Enzyme and Its Therapeutic Effect on Alcoholic Liver Injury in Mice. Foods 2025; 14:523. [PMID: 39942116 PMCID: PMC11816926 DOI: 10.3390/foods14030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to prepare a black goji berry enzyme (BGBE) using high acyl gellan gum as a substitute for aqueous slurry, followed by fermentation with Saccharomyces cerevisiae (SC) for 48 h, pasteurization, and subsequent fermentation with Lactobacillus plantarum (SC) for 48 h to obtain the optimal BGBE sample. The anthocyanin content and in vitro antioxidant activity were significantly enhanced. The primary objective of this study was to evaluate the potential therapeutic effect of BGBE on alcoholic liver injury (ALD) in mice. An animal model of alcoholic liver injury was established, and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC), malondialdehyde (MDA), superoxide dismutase (SOD), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH) in the serum and liver were analyzed. Furthermore, histopathological examination was performed using hematoxylin-eosin staining. The results indicated that BGBE significantly improved the liver histopathological condition in mice, markedly reducing the serum levels of ALT, AST, TG, TC, and the hepatic MDA levels (p < 0.05), while significantly increasing the levels of SOD, ADH, and ALDH (p < 0.05). The therapeutic effect of BGBE on alcoholic liver injury appears to be associated with its antioxidant properties.
Collapse
Affiliation(s)
- Keshan Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Zhishan Zhang
- Department of Architectural Environmental Art, Xi’an Academy of Fine Arts, No. 100 South Section of Hanguang Road, Xi’an 710065, China;
| | - Wenge Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Shuyuan Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Jing Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Zeyu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Wencheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 420 Feicui Road, Hefei 230001, China
| |
Collapse
|
7
|
Ozercan M, Tawheed A, El-Kassas M. Transitioning from NAFLD to MAFLD and MASLD: the toxic relationship with alcohol consumption. EXPLORATION OF MEDICINE 2025. [DOI: 10.37349/emed.2025.1001273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/28/2024] [Indexed: 03/04/2025] Open
Abstract
Alcohol is a well-known toxic etiologic factor for liver injury. Metabolic substrates of alcohol (especially acetaldehyde) have a major responsibility and genetic susceptibility, alterations in microbiota and immune system are important co-factors for this injury. Major injury in liver is hepatocellular lipid accumulation. Therefore the relationship between non-alcoholic and alcoholic fatty liver diseases should have been defined clearly. Recently two major liver committees adopted new terminologies such as metabolic-associated fatty liver disease (MAFLD), metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related liver disease (MetALD), and alcoholic liver disease (ALD) instead of non-alcoholic fatty liver disease (NAFLD). These terminologies were based on the effects of metabolic syndrome on liver. Alcohol consumption was defined differently according to these nomenclatures. MAFLD defined alcohol intake (regardless of amount) as “dual etiology fatty liver disease” and the Delphi consensus defined MASLD, MetALD, or ALD according to daily consumption of alcohol amount.
Collapse
Affiliation(s)
- Mubin Ozercan
- Department of Gastroenterology, Faculty of Medicine, Firat University, Elazig 23119, Turkey
| | - Ahmed Tawheed
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo 11795, Egypt; Liver Disease Research Center, College of Medicine, King Saud University, Riyadh 7805, Saudi Arabia
| |
Collapse
|
8
|
Zhao L, Tang H, Cheng Z. Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances. Pharmaceuticals (Basel) 2024; 17:1724. [PMID: 39770566 PMCID: PMC11677259 DOI: 10.3390/ph17121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a progressive scarring process primarily caused by chronic inflammation and injury, often closely associated with viral hepatitis, alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), drug-induced liver injury, and autoimmune liver disease (AILD). Currently, there are very few clinical antifibrotic drugs available, and effective targeted therapy is lacking. Recently, emerging antifibrotic drugs and immunomodulators have shown promising results in animal studies, and some have entered clinical research phases. This review aims to systematically review the molecular mechanisms underlying liver fibrosis, focusing on advancements in drug treatments for hepatic fibrosis. Furthermore, since liver fibrosis is a progression or endpoint of many diseases, it is crucial to address the etiological treatment and secondary prevention for liver fibrosis. We will also review the pharmacological treatments available for common hepatitis leading to liver fibrosis.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haolan Tang
- School of Medicine, Southeast University, Nanjing 210009, China;
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| |
Collapse
|
9
|
Lin HM, Zhang JR, Li MX, Hou H, Wang H, Huang Y. Cigarette smoking and alcohol-related liver disease. LIVER RESEARCH 2024; 8:237-245. [PMID: 39958918 PMCID: PMC11771264 DOI: 10.1016/j.livres.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
China is a major consumer of alcohol and tobacco. Tobacco and alcohol use are closely linked, with up to 90% of alcoholics having a history of tobacco use, and heavy smokers also tending to be alcoholics. Alcohol-related liver disease (ALD), one of the most common and serious complications of chronic alcohol intake, involving hepatic steatosis, hepatitis, hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC), has become one of the globally prevalent chronic diseases. An increasing number of studies have focused on the association between smoking and ALD and explored the mechanisms involved. Clinical evidence suggests that smoking has a negative impact on the incidence and severity of fatty liver disease, progression of liver fibrosis, development of HCC, prognosis of patients with advanced liver disease, and alcohol-related liver transplant recipients. The underlying mechanisms are complex and involve different pathophysiological pathways, including free radical exposure, endoplasmic reticulum stress, insulin resistance, and oncogenic signaling. This review discusses the deleterious effects of smoking on ALD patients and the possible underlying mechanisms at several levels. It emphasizes the importance of discouraging smoking among ALD patients. Finally, the pathogenic role of electronic cigarettes, which have emerged in recent years, is discussed, calling for an emphasis on social missions for young people.
Collapse
Affiliation(s)
- Hui-Min Lin
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing-Rong Zhang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Xue Li
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hui Hou
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Wan W, Wei R, Xu B, Cao H, Zhi Y, Guo F, Liu H, Li B, Wu J, Gao Y, Zhang K. Qiwei Jinggan Ling regulates oxidative stress and lipid metabolism in alcoholic liver disease by activating AMPK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156125. [PMID: 39388920 DOI: 10.1016/j.phymed.2024.156125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a severe public health concern worldwide and there is still a lack of effective treatments. Qiwei Jinggan Ling (QJL) has protective effects against various liver injuries, but its pharmacological action on ALD has received little attention. PURPOSE To investigate the effect and mechanism of QJL on ALD in vivo and in vitro. METHODS In vivo, an ALD mouse model was established by alcohol combined with a high-fat diet (HFD) and treated with QJL. Biochemical indicators, HE staining, and Oil Red O staining were employed to assess hepatic oxidative stress, steatosis, and alcohol metabolism. RNA sequencing analysis was performed, and the results were verified by qRT-PCR and Western blot to elucidate the hepatoprotective mechanism of QJL. In vitro, HepG2 cells were co-stimulated with NaOA (sodium oleate) and EtOH (ethanol), followed by intervention with Compound C (CC, AMPK inhibitor) and QJL-containing serum. Oil Red O, BODIPY (boron-dipyrromethene), and ROS (reactive oxygen species) staining were applied to validate the efficacy and mechanism of QJL-containing serum. The expression of AMP-activated protein kinase (AMPK) pathway-related factors was analyzed through qRT-PCR and Western blot for additional corroboration. Moreover, the key pharmacodynamic components of QJL were identified by UPLC-MS/MS and molecular docking. RESULTS In vivo, QJL ameliorated liver structural disorders, steatosis, oxidative stress, and impaired alcohol metabolism, as indicated by biochemical indicators and histopathological assays. RNA sequencing analysis revealed that QJL reversed the expression of genes related to alcohol metabolism, fatty acid metabolism, and cholesterol metabolism. The results of qRT-PCR and Western blot were in line with those of RNA sequencing. Furthermore, it was discovered that QJL significantly upregulated the expression of p-AMPK and downregulated the expression of sterol regulatory element binding transcription factor 1 (SREBP-1c). In vitro, biochemical indicators and staining assays demonstrated that QJL-containing serum inhibited lipid accumulation and oxidative stress. The qRT-PCR and Western blot analysis revealed that QJL-containing serum markedly enhanced the expression of p-AMPK and carnitine palmitoyltransferase 1a (Cpt1a), while suppressing the expression of SREBP-1c, fatty acid synthase (Fasn), and acetyl-coenzyme A carboxylase 1 (ACC-1). However, CC inhibited the above pharmacological activities of QJL-containing serum. Additionally, (2S)-Liquiritigenin, Glycyrrhetinate, Isovitexin, Taxifolin, and Yohimbine were proved to be the key active components of QJL. CONCLUSION QJL had the potential to be a therapeutic drug for ALD by activating the AMPK pathway, thereby regulating lipid metabolism and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Weimin Wan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Riming Wei
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Baoling Xu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China; Department of Emergency, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yueping Zhi
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Haiping Liu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
11
|
Hong X, Huang S, Jiang H, Ma Q, Qiu J, Luo Q, Cao C, Xu Y, Chen F, Chen Y, Sun C, Fu H, Liu Y, Li C, Chen F, Qiu P. Alcohol-related liver disease (ALD): current perspectives on pathogenesis, therapeutic strategies, and animal models. Front Pharmacol 2024; 15:1432480. [PMID: 39669199 PMCID: PMC11635172 DOI: 10.3389/fphar.2024.1432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Alcohol-related liver disease (ALD) is a major cause of morbidity and mortality worldwide. It encompasses conditions such as fatty liver, alcoholic hepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. Numerous recent studies have demonstrated the critical role of oxidative stress, abnormal lipid metabolism, endoplasmic reticulum stress, various forms of cell death (including apoptosis, necroptosis, and ferroptosis), intestinal microbiota dysbiosis, liver immune response, cell autophagy, and epigenetic abnormalities in the pathogenesis of ALD. Currently, abstinence, corticosteroids, and nutritional therapy are the traditional therapeutic interventions for ALD. Emerging therapies for ALD mainly include the blockade of inflammatory pathways, the promotion of liver regeneration, and the restoration of normal microbiota. Summarizing the advances in animal models of ALD will facilitate a more systematic investigation of the pathogenesis of ALD and the exploration of therapeutic targets. This review summarizes the latest insight into the pathogenesis and molecular mechanisms of ALD, as well as the pros and cons of ALD rodent models, providing a basis for further research on therapeutic strategies for ALD.
Collapse
Affiliation(s)
- Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunlu Cao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiyang Xu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuzhe Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufan Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunfeng Sun
- The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Haozhe Fu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Qiu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Colaianni F, Zelli V, Compagnoni C, Miscione MS, Rossi M, Vecchiotti D, Di Padova M, Alesse E, Zazzeroni F, Tessitore A. Role of Circulating microRNAs in Liver Disease and HCC: Focus on miR-122. Genes (Basel) 2024; 15:1313. [PMID: 39457437 PMCID: PMC11507253 DOI: 10.3390/genes15101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
miR-122 is the most abundant microRNA (miRNA) in the liver; it regulates several genes mainly involved in cell metabolism and inflammation. Host factors, diet, metabolic disorders and viral infection promote the development of liver diseases, including hepatocellular carcinoma (HCC). The downregulation of miR-122 in tissue is a common feature of the progression of liver injury. In addition, the release of miR-122 in the bloodstream seems to be very promising for the early diagnosis of both viral and non-viral liver disease. Although controversial data are available on the role of circulating miR-122 as a single biomarker, high diagnostic accuracy has been observed using miR-122 in combination with other circulating miRNAs and/or proteins. This review is focused on comprehensively summarizing the most recent literature on the potential role of circulating miR-122, and related molecules, as biomarker(s) of metabolic liver diseases, hepatitis and HCC.
Collapse
Affiliation(s)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (F.C.); (C.C.); (M.S.M.); (M.R.); (D.V.); (M.D.P.); (E.A.); (F.Z.); (A.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zikela L, Yu Z, Han J, Zhu H, Wang D, Wang X, Li S, Han Q. Protective effects of fermented Rosa roxburghii Tratt juice against ethanol‑induced hepatocyte injury by regulating the NRF2‑AMPK signaling pathway in AML‑12 cells. Mol Med Rep 2024; 30:174. [PMID: 39092554 PMCID: PMC11332318 DOI: 10.3892/mmr.2024.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Alcohol‑related liver disease (ALD) is a major health concern worldwide. In recent years, there has been growing interest in natural products and functional foods for preventing and treating ALD due to their potential antioxidant and hepatoprotective properties. Rosa roxburghii Tratt, known for its rich content of bioactive compounds, has demonstrated promising health benefits, including anti‑inflammatory and antioxidant effects. Fermentation has been utilized as a strategy to enhance the bioavailability and efficacy of natural products. In the present study, using a mixture of Rosa roxburghii Tratt juice, lotus leaf extract and grape seed proanthocyanidins fermented by Lactobacillus plantarum HH‑LP56, a novel fermented Rosa roxburghii Tratt (FRRT) juice was discovered that can prevent and regulate ethanol‑induced liver cell damage. Following fermentation, the pH was significantly decreased, and the content of VC and superoxide dismutase (SOD) were significantly increased, along with a noticeable enhancement in hydroxyl and 2,2‑diphenyl‑1‑picrylhydrazyl free radical scavenging abilities. Alpha Mouse liver 12 cells were exposed to ethanol for 24 h to establish an in vitro liver cell injury model. The present study evaluated the effects of FRRT on cell damage, lipid accumulation and oxidative stress markers. The results revealed that FRRT pretreatment (cells were pre‑treated with 2.5 and 5 mg/ml FRRT for 2 h) significantly reduced lipid accumulation and oxidative stress in liver cells. Mechanistically, FRRT regulated lipid metabolism by influencing key genes and proteins, such as AMP‑activated protein kinase, sterol regulatory element binding transcription factor 1 and Stearyl‑CoA desaturase‑1. Furthermore, FRRT enhanced antioxidant activity by increasing SOD activity, glutathione and catalase levels, while reducing reactive oxygen species and malondialdehyde levels. It also reversed the expression changes of ethanol‑induced oxidative stress‑related genes and proteins. In conclusion, a novel functional food ingredient may have been discovered with extensive potential applications. These findings indicated that FRRT has antioxidant properties and potential therapeutic benefits in addressing ethanol‑induced liver cell damage through its effects on liver lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Lalai Zikela
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhuoli Yu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jindan Han
- School of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Huilin Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Dingli Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xuezhu Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
14
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Kim SY, Oh KJ, Seo YR, Kim YW, Song PH, Song CH. Comparative Study on Hepatoprotective Effects of Traditional Herbs, Roots of Angelica gigas Nakai, Glycyrrhiza uralensis Fischer, Zizyphus jujuba Mill., and Fruits of Paeonia lactiflora Pall., on Ethanol-Induced Liver Injury in Mice. Antioxidants (Basel) 2024; 13:1137. [PMID: 39334796 PMCID: PMC11428478 DOI: 10.3390/antiox13091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease, with few effective treatments besides alcohol abstinence. Angelicae Gigantis Radix (AG), Glycyrrhizae Radix et Rhizoma (GR), Paeoniae Radix (PR), and Zizyphi Fructus (ZF) are traditional herbs used to treat various ailments, including liver diseases. While several studies have reported the beneficial effects of GR on ALD, the effects of AG, PR, and ZF remain underexplored. Therefore, their efficacy and mechanisms against ALD were investigated using an alcohol-related liver injury model. The model was induced by ethanol gavage in C57BL/6J mice for 14 days, followed by oral administration of AG, GR, PR, and ZF one hour post-induction. The administration of these herbs reduced liver weight, and improved serum biomarkers of liver injury (ALT, AST, albumin). The herbs enhanced hepatic antioxidant capacity (GSH, SOD, catalase) and suppressed the production of proinflammatory cytokines (TNF-α, IL-1β) and apoptotic changes (caspase-3). The mechanisms of action involved lipid-lowering gene modulation through regulation of the cytochrome P450 2E1/Sirtuin 1/Nrf2 pathways. Histopathological and immunohistochemical analyses revealed that these herbs attenuated hepatocyte damage and steatosis via antioxidant, anti-inflammatory, and antiapoptotic effects. These findings suggest that traditional herbs, particularly AG, could be promising alternative therapies for treating ALD.
Collapse
Affiliation(s)
- So-Yeon Kim
- Research Center for Herbal Convergence on Liver Disease, Gyeongsan 38610, Republic of Korea
| | - Kyung-Jin Oh
- Department of Urology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Yu-Ri Seo
- Research Center for Herbal Convergence on Liver Disease, Gyeongsan 38610, Republic of Korea
| | - Young-Woo Kim
- Department of Herbal Prescription, School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Chang-Hyun Song
- Research Center for Herbal Convergence on Liver Disease, Gyeongsan 38610, Republic of Korea
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
16
|
Tan X, Hong J, Jiang S, Zhang S, Chen Y, Feng G. Near-Infrared Fluorescent Probe Reveals Elevated Mitochondrial Viscosity during Acute Alcoholic Liver Injury. Anal Chem 2024; 96:14860-14866. [PMID: 39230945 DOI: 10.1021/acs.analchem.4c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Acute alcoholic liver injury (AALI) has become an important cause of liver disease worldwide, and there is an urgent need to develop noninvasive and sensitive methods to detect and evaluate AALI. We report herein three novel but readily available mitochondrial targeting fluorescence probes (ICR, ICJ, and ICQ) for AALI detection. These probes contain different electron-donating groups, among which ICQ exhibits NIR fluorescence (740 nm), a large Stokes shift (110 nm), and a sensitive response to viscosity (73-fold enhancement in fluorescence from water to glycerol), making it suitable for in vivo imaging. ICQ also exhibits an excellent ability to image mitochondrial viscosity changes in cells. More importantly, ICQ can target the liver selectively and image the viscosity changes in the liver noninvasively. Through establishing an AALI mouse model, ICQ was successfully applied to the in situ imaging changes in liver viscosity during the AALI process. The results showed a significant increase in liver viscosity in AALI mice, indicating that viscosity can serve as a marker for AALI, and ICQ is a promising noninvasive and sensitive tool for detecting and evaluating AALI.
Collapse
Affiliation(s)
- Xiaodong Tan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jiaxin Hong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Siyu Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Shiya Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Yao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
17
|
Cao Y, Yang Y, Liang Z, Guo W, Lv X, Ni L, Chen Y. Synthesis of Ganoderic Acids Loaded Zein-Chitosan Nanoparticles and Evaluation of Their Hepatoprotective Effect on Mice Given Excessive Alcohol. Foods 2024; 13:2760. [PMID: 39272525 PMCID: PMC11394847 DOI: 10.3390/foods13172760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Ganoderma lucidum, used in East Asia for its health benefits, contains ganoderic acids (GA) which have various pharmacological activities but are limited by poor water solubility and low oral bioaccessibility. This study synthesized and characterized ganoderic acids loaded zein-chitosan nanoparticles (GA-NPs), and investigated its advantages in alleviating alcoholic liver injury (ALI) in mice model. The GA-NPs demonstrated high encapsulation efficiency (92.68%), small particle size (177.20 nm), and a +29.53 mV zeta potential. The experimental results of alcohol-induced liver injury mouse model showed that GA-NPs significantly improved liver metabolic function, reduced alcohol-induced liver oxidative stress in liver by decreasing lactate dehydrogenase activity and malondialdehyde level, while increasing the activities of liver antioxidant enzymes and alcohol dehydrogenase. Moreover, GA-NPs were favorable to ameliorate intestinal microbiota dysbiosis in mice exposed to alcohol by increasing the proportion of probiotics such as Romboutsia, Faecalibaculum, Bifidobacterium and Turicibacter, etc., which were highly correlated with the improvement of liver function. Furthermore, GA-NPs modulated the mRNA expression related to ethanol metabolism, oxidative stress and lipid metabolism. Conclusively, this study revealed that GA-NPs have stronger hepatoprotective effects than non-encapsulated ganoderic acids on alleviating ALI by regulating intestinal microbiota and liver metabolism.
Collapse
Affiliation(s)
- Yingjia Cao
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Yuheng Yang
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou 350004, China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Youting Chen
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Hepatopancreatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| |
Collapse
|
18
|
Liu W, Xu H, Zhang H, Xie M, Liu Y, Wang L, Wu X, Feng Y, Chen K. Noninvasive assessment of liver fibrosis in mini pigs using an 18F-AlF-NOTA-RGD2 PET/CT molecular probe. Heliyon 2024; 10:e35502. [PMID: 39170113 PMCID: PMC11336738 DOI: 10.1016/j.heliyon.2024.e35502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
To evaluate the efficacy of the 18F-AlF-NOTA-RGD2 positron emission tomography (PET)/computed tomography (CT) molecular probe for the noninvasive staging of liver fibrosis in mini pigs, a potential alternative to invasive diagnostic methods was revealed. This study used 18F-AlF-NOTA-RGD2 PET/CT imaging of mini pigs to assess liver fibrosis. The methods included synthesis and quality control of the molecular probe, establishment of an animal model of liver fibrosis, blood serum enzymatic tests, histopathological examination, PET/CT imaging, collagen content and expression, and mitochondrial reserve function assessment. The 18F-AlF-NOTA-RGD2 PET/CT molecular probe effectively differentiated various stages of liver fibrosis in mini pigs. Blood serum enzymatic tests revealed distinct stages of liver fibrosis, revealing significant increases in AST, ALT, TBIL, and DBIL levels as fibrosis advanced. Notably, ALT levels increased markedly in severe fibrosis patients. A gradual increase in collagen deposition and increasing α-SMA RNA expression and protein levels effectively differentiated between mild and severe fibrosis stages. Pathological examinations and Sirius Red staining confirmed these findings, highlighting substantial increases in collagen accumulation. PET/CT imaging results aligned with histopathological findings, showing that increased radiotracer uptake correlated with fibrosis severity. Assessments of mitochondrial function revealed a decrease in total liver glutathione content and mitochondrial reserve capacity, especially in patients with severe fibrosis. The 18F-AlF-NOTA-RGD2 PET/CT molecular probe is a promising tool for the noninvasive assessment of liver fibrosis, offering potential benefits over traditional diagnostic methods in hepatology.
Collapse
Affiliation(s)
- Wenrui Liu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Hongwei Xu
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haili Zhang
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Maodi Xie
- Laboratory of Mitochondria and Metabolis, Wmest China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yundi Liu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Li Wang
- Jiangsu Xinrui Pharmaceutical Co., Ltd, Jiangsu, 226500, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinrui Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Kefei Chen
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
19
|
Shiraishi C, Kato H, Ogura T, Iwamoto T. An investigation of broad-spectrum antibiotic-induced liver injury based on the FDA Adverse Event Reporting System and retrospective observational study. Sci Rep 2024; 14:18221. [PMID: 39107511 PMCID: PMC11303562 DOI: 10.1038/s41598-024-69279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Tazobactam/piperacillin and meropenem are commonly used as an empiric treatment in patients with severe bacterial infections. However, few studies have investigated the cause of tazobactam/piperacillin- or meropenem-induced liver injury in them. Our objective was to evaluate the association between tazobactam/piperacillin or meropenem and liver injury in the intensive care unit patients. We evaluated the expression profiles of antibiotics-induced liver injury using the US Food and Drug Administration Adverse Event Reporting System (FAERS) database. Further, in the retrospective observational study, data of patients who initiated tazobactam/piperacillin or meropenem in the intensive care unit were extracted. In FAERS database, male, age, the fourth-generation cephalosporin, carbapenem, β-lactam and β-lactamase inhibitor combination, and complication of sepsis were associated with liver injury (p < 0.001). In the retrospective observational study, multivariate logistic regression analyses indicated that the risk factors for liver injury included male (p = 0.046), administration period ≥ 7 days (p < 0.001), and alanine aminotransferase (p = 0.031). Not only administration period but also sex and alanine aminotransferase should be considered when clinicians conduct the monitoring of liver function in the patients receiving tazobactam/piperacillin or meropenem.
Collapse
Affiliation(s)
- Chihiro Shiraishi
- Department of Pharmacy, Mie University Hospital, Tsu, 514-8507, Japan
- Division of Clinical Medical Science, Department of Clinical Pharmaceutics, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, Tsu, 514-8507, Japan.
- Division of Clinical Medical Science, Department of Clinical Pharmaceutics, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan.
| | - Toru Ogura
- Clinical Research Support Center, Mie University Hospital, Tsu, 514-8507, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Tsu, 514-8507, Japan
- Division of Clinical Medical Science, Department of Clinical Pharmaceutics, Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| |
Collapse
|
20
|
Feng X, Huang N, Wu Y, Gao F, Chen X, Zhang C, Zhang B, Sun T. Alcoholic Liver Disease in China: A Disease Influenced by Complex Social Factors That Should Not Be Neglected. J Clin Transl Hepatol 2024; 12:677-684. [PMID: 38993514 PMCID: PMC11233974 DOI: 10.14218/jcth.2024.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Alcoholic liver disease (ALD) encompasses liver damage caused by chronic, excessive alcohol consumption. It manifests initially as marked hepatocellular steatosis and can progress to steatohepatitis, liver fibrosis, and cirrhosis. With China's rapid economic growth, coupled with a complex social background and the influence of a deleterious wine culture, the number of patients with ALD in China has increased significantly; the disease has become a social and health problem that cannot be ignored. In this review, we briefly described the social factors affecting ALD in China and elaborated on differences between alcoholic and other liver diseases in terms of complications (e.g., cirrhosis, upper gastrointestinal bleeding, hepatic encephalopathy, hepatocellular carcinoma, addiction, and other extrahepatic diseases). We also emphasized that ALD was more dangerous and difficult to treat than other liver diseases due to its complications, and that precise and effective treatment measures were lacking. In addition, we considered new ideas and treatment methods that may be generated in the future.
Collapse
Affiliation(s)
- Xiaofeng Feng
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nafei Huang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuqin Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fei Gao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaomei Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chenyi Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bing Zhang
- Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Tao Sun
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Aghara H, Chadha P, Mandal P. Mitigative Effect of Graphene Oxide Nanoparticles in Maintaining Gut–Liver Homeostasis against Alcohol Injury. GASTROENTEROLOGY INSIGHTS 2024; 15:574-587. [DOI: 10.3390/gastroent15030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Alcoholic liver disease (ALD) develops when the immunotolerant environment of the liver is compromised due to excessive alcohol consumption. ALD progression involves variations in the expressions of multiple genes, resulting in liver inflammation and the development of a leaky gut. It is still unclear which molecular mechanism is involved in ALD progression, and due to that, there are currently no FDA-approved drugs available for its treatment. In this study, the protective effects of graphene oxide (GO) nanoparticles were investigated against ethanol-induced damage in the gut–liver axis in in vitro. GO was synthesized using a modified Hummer’s method, and characterization was performed. Given the general concerns regarding nanoparticle toxicity, assessments of cell viability, lipid accumulation, DNA damage, cell death, and the generation of reactive oxygen species (ROS) were conducted using various techniques. Furthermore, the gene expressions of pro- and anti-inflammatory cytokines were determined using RT-qPCR. The findings reveal that GO promoted cell viability even against ethanol treatment. Additionally, lipid accumulation significantly decreased when cells were treated with GO alongside ethanol compared to ethanol treatment alone, with similar trends observed for other assays. A gene expression analysis indicated that GO treatment reduced the expression of proinflammatory cytokines while enhancing the expression of antioxidant genes. Moreover, GO treatment led to improvements in gut integrity and a reduction in proinflammatory cytokines in colon cells damaged by ethanol. These findings suggest that GO holds promise as a drug carrier, exhibiting no observed toxic effects. By shedding light on the protective effects of GO against ethanol-induced damage, this study contributes to the burgeoning field of nanoparticle-mediated therapy for ALD.
Collapse
Affiliation(s)
- Hiral Aghara
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Prashsti Chadha
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand 388421, Gujarat, India
| |
Collapse
|
22
|
Zhang Y, Liu J, Xu S, Luo M, Yang S, Yu S. Structural characterization of Aspalatus linearis polysaccharide and its improving effect on acute alcoholic liver injury. J Food Sci 2024; 89:4535-4550. [PMID: 38809252 DOI: 10.1111/1750-3841.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 05/30/2024]
Abstract
Polysaccharides from natural sources can regulate the composition of intestinal flora through the "gut-liver axis" pathway, potentially ameliorating alcoholic liver injury. Aspalathus linearis, also known as rooibos, is one such natural product that has shown promise in this regard. This study looked at the structural properties of A. linearis polysaccharide (ALP) and how well it would work to treat acute alcoholic liver impairment. This study looks at the composition of monosaccharides, functional groups, and molecular weight (Mw) of a newly discovered water-soluble polysaccharide, named ALP. The polysaccharide is composed of pyranose rings, amide groups, and sulfate groups linked by β-glycosidic linkage. It has a relative Mw of 4.30 × 103 kDa and is composed of glucose, rhamnose, and some other monosaccharides. The study found that treating mice with the model of acute alcoholic liver disease with ALP could alleviate pathological symptoms, inhibit the release of inflammatory cytokines, and suppress indicators of oxidative stress. Experiments have shown that different doses of ALP can activate the P4502E1/Keap1-Nrf2-HO-1 signaling pathway. The regulation of inflammatory factors and downstream antioxidant enzymes occurs as a result. Based on these data, it is likely that ALP protects the liver via the "gut-liver axis" pathway by reducing oxidative stress-related damage, inflammation, and alcohol-related alterations to the gut microbiome. The results indicate that ALP mitigates injury caused by oxidative stress, inflammatory responses, and changes in the gut microbiota induced by alcohol through the "gut-liver axis" pathway, which provides protection to the liver. This provides preliminary evidence for the development of related drugs. PRACTICAL APPLICATION: Researchers extracted a polysaccharide from fresh leaves of Auricularia auricula. The polysaccharide was purified and determined to have a predominantly homogeneous molecular weight. An acute alcoholic liver damage mouse model was established, and it was concluded that the polysaccharide could ameliorate liver injury in mice through the "gut-liver axis" pathway. This novel polysaccharide can be used as an additive to develop functional foods with beneficial effects, which can positively impact the daily maintenance of consumers.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Jia Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Shan Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Manhong Luo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Shuhan Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Siyu Yu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
23
|
Wei X, Luo D, Li H, Li Y, Cen S, Huang M, Jiang X, Zhong G, Zeng W. The roles and potential mechanisms of plant polysaccharides in liver diseases: a review. Front Pharmacol 2024; 15:1400958. [PMID: 38966560 PMCID: PMC11222613 DOI: 10.3389/fphar.2024.1400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
Plant polysaccharides (PP) demonstrate a diverse array of biological and pharmacological properties. This comprehensive review aims to compile and present the multifaceted roles and underlying mechanisms of plant polysaccharides in various liver diseases. These diseases include non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), fibrosis, drug-induced liver injury (DILI), and hepatocellular carcinoma (HCC). This study aims to elucidate the intricate mechanisms and therapeutic potential of plant polysaccharides, shedding light on their significance and potential applications in the management and potential prevention of these liver conditions. An exhaustive literature search was conducted for this study, utilizing prominent databases such as PubMed, Web of Science, and CNKI. The search criteria focused on the formula "(plant polysaccharides liver disease) NOT (review)" was employed to ensure the inclusion of original research articles up to the year 2023. Relevant literature was extracted and analyzed from these databases. Plant polysaccharides exhibit promising pharmacological properties, particularly in the regulation of glucose and lipid metabolism and their anti-inflammatory and immunomodulatory effects. The ongoing progress of studies on the molecular mechanisms associated with polysaccharides will offer novel therapeutic strategies for the treatment of chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Xianzhi Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Daimin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haonan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yagang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Shizhuo Cen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoping Zhong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| |
Collapse
|
24
|
Zhuge H, Pan Y, Lai S, Chang K, Ding Q, Cao W, Song Q, Li S, Dou X, Ding B. Penthorum chinense Pursh extract ameliorates alcohol-related fatty liver disease in mice via the SIRT1/AMPK signaling axis. Heliyon 2024; 10:e31195. [PMID: 38832279 PMCID: PMC11145240 DOI: 10.1016/j.heliyon.2024.e31195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Penthorum chinense Pursh (P. chinense), a functional food, has been applied to protect the liver against alcohol-related fatty liver disease (ALD) for a long history in China. This study was designed to evaluate the ameliorative activity of the polyphenolic fraction in P. chinense (PGF) depending on the relief of ALD. The ALD mouse model was established by exposing the mice to a Lieber-DeCarli alcohol liquid diet. We found that PGF administration significantly ameliorated alcohol-induced liver injury, steatosis, oxidative stress, and inflammation in mice. Furthermore, alcohol-increased levels of the critical hepatic lipid synthesis proteins sterol regulatory element binding transcription factor (SREBP-1) and diacylglycerol o-acyltransferase 2 (DGAT2) were attenuated by PGF. Similarly, PGF inhibited the expression of the lipid transport protein very low-density lipoprotein receptor (VLDLR). Interestingly, PGF restored alcohol-inhibited expression of carnitine palmitoyltransferase 1 (CPT1) and peroxisome proliferator-activated receptor alpha (PPARα), essential fatty acid β-oxidation proteins. Mechanistic studies revealed that PGF protects against alcohol-induced hepatocyte injury and lipid deposition via the SIRT1/AMPK signaling pathway. In sum, this research clearly demonstrated the protective effects of PGF against ALD, which was mediated by activating SIRT1/AMPK pathways in hepatocytes. We provide a new theoretical basis for using P. chinense as a functional food in ALD.
Collapse
Affiliation(s)
- Hui Zhuge
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Pan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanglei Lai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kaixin Chang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qinchao Ding
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wenjing Cao
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qing Song
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songtao Li
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
25
|
Wu D, Cheng M, Yi X, Xia G, Liu Z, Shi H, Shen X. Effects of Mactra chinenesis Peptides on Alcohol-Induced Acute Liver Injury and Intestinal Flora in Mice. Foods 2024; 13:1431. [PMID: 38790731 PMCID: PMC11119424 DOI: 10.3390/foods13101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Food-borne bioactive peptides have shown promise in preventing and mitigating alcohol-induced liver injury. This study was the first to assess the novel properties of Mactra chinenesis peptides (MCPs) in mitigating acute alcoholic liver injury in mice, and further elucidated the underlying mechanisms associated with this effect. The results showed that MCPs can improve lipid metabolism by modulating the AMPK signaling pathway, decreasing fatty acid synthase activity, and increasing carnitine palmitoyltransferase 1a activity. Meanwhile, MCPs ameliorate inflammation by inhibiting the NF-κB activation, leading to reduced levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β). Additionally, a 16S rDNA sequencing analysis revealed that MCPs can restore the balance of gut microbiota and increase the relative abundance of beneficial bacteria. These findings suggest that supplementation of MCPs could attenuate alcohol intake-induced acute liver injury, and, thus, may be utilized as a functional dietary supplement for the successful treatment and prevention of acute liver injury.
Collapse
Affiliation(s)
- Dong Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ming Cheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guanghua Xia
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Haohao Shi
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (D.W.); (M.C.); (X.Y.); (G.X.); (Z.L.)
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
26
|
Blum K, Braverman ER, Gold MS, Dennen CA, Baron D, Thanos PK, Hanna C, Elman I, Gondre-Lewis MC, Ashford JW, Newberg A, Madigan MA, Jafari N, Zeine F, Sunder K, Giordano J, Barh D, Gupta A, Carney P, Bowirrat A, Badgaiyan RD. Addressing cortex dysregulation in youth through brain health check coaching and prophylactic brain development. INNOSC THERANOSTICS & PHARMACOLOGICAL SCIENCES 2024; 7:1472. [PMID: 38766548 PMCID: PMC11100020 DOI: 10.36922/itps.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The Carter Center has estimated that the addiction crisis in the United States (US), if continues to worsen at the same rate, may cost the country approximately 16 trillion dollars by 2030. In recent years, the well-being of youth has been compromised by not only the coronavirus disease 2019 pandemic but also the alarming global opioid crisis, particularly in the US. Each year, deadly opioid drugs claim hundreds of thousands of lives, contributing to an ever-rising death toll. In addition, maternal usage of opioids and other drugs during pregnancy could compromise the neurodevelopment of children. A high rate of DNA polymorphic antecedents compounds the occurrence of epigenetic insults involving methylation of specific essential genes related to normal brain function. These genetic antecedent insults affect healthy DNA and mRNA transcription, leading to a loss of proteins required for normal brain development and function in youth. Myelination in the frontal cortex, a process known to extend until the late 20s, delays the development of proficient executive function and decision-making abilities. Understanding this delay in brain development, along with the presence of potential high-risk antecedent polymorphic variants or alleles and generational epigenetics, provides a clear rationale for embracing the Brain Research Commission's suggestion to mimic fitness programs with an adaptable brain health check (BHC). Implementing the BHC within the educational systems in the US and other countries could serve as an effective initiative for proactive therapies aimed at reducing juvenile mental health problems and eventually criminal activities, addiction, and other behaviors associated with reward deficiency syndrome.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University of Health Sciences, Pomona, California, United States of America
- The Kenneth Blum Behavioral and Neurogenetic Institute LLC, Austin, Texas, United States of America
- Faculty of Education and Psychology, Institute of Psychology, Eötvös Loránd University Budapest, Budapest, Hungary
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, California, United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India
- Division of Personalized Recovery Science, Transplicegen Therapeutics, Llc., Austin, Tx., United of States
- Department of Psychiatry, University of Vermont, Burlington, Vermont, United States of America
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
- Division of Personalized Medicine, Ketamine Clinic of South Florida, Pompano Beach, Florida, United States of America
| | - Eric R. Braverman
- The Kenneth Blum Behavioral and Neurogenetic Institute LLC, Austin, Texas, United States of America
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, Pennsylvania, United States of America
| | - David Baron
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University of Health Sciences, Pomona, California, United States of America
| | - Panayotis K. Thanos
- Department of Psychology and Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University of Buffalo, Buffalo, New York, United States of America
| | - Colin Hanna
- Department of Psychology and Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University of Buffalo, Buffalo, New York, United States of America
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Marjorie C. Gondre-Lewis
- Department of Anatomy, Howard University School of Medicine, Washington, D.C., United States of America
| | - J. Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
| | - Andrew Newberg
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania, United States of America
| | - Margaret A. Madigan
- The Kenneth Blum Behavioral and Neurogenetic Institute LLC, Austin, Texas, United States of America
| | - Nicole Jafari
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, California, United States of America
- Department of Human Development, California State University at Long Beach, Long Beach, California, United States of America
| | - Foojan Zeine
- Department of Human Development, California State University at Long Beach, Long Beach, California, United States of America
- Awareness Integration Institute, San Clemente, California, United States of America
| | - Keerthy Sunder
- Department of Health Science, California State University at Long Beach, Long Beach, California, United States of America
- Department of Psychiatry, University California, UC Riverside School of Medicine, Riverside, California, United States of America
| | - John Giordano
- Division of Personalized Medicine, Ketamine Clinic of South Florida, Pompano Beach, Florida, United States of America
| | - Debmayla Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India
| | - Ashim Gupta
- Future Biologics, Lawrenceville, Georgia, United States of America
| | - Paul Carney
- Division of Pediatric Neurology, University of Missouri Health Care-Columbia, Columbia, Missouri, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Mt. Sinai School of Medicine, New York City, New York, United States of America
| |
Collapse
|
27
|
Yang YJ, Kim MJ, Yang JH, Heo JW, Kim HH, Kim WH, Kim GS, Lee HJ, Kim YW, Kim KY, Park KI. Liquid Chromatography/Tandem Mass Spectrometry Analysis of Sophora flavescens Aiton and Protective Effects against Alcohol-Induced Liver Injury and Oxidative Stress in Mice. Antioxidants (Basel) 2024; 13:541. [PMID: 38790646 PMCID: PMC11117756 DOI: 10.3390/antiox13050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we investigated the hepatoprotective effects of an ethanol extract of Sophora flavescens Aiton (ESF) on an alcohol-induced liver disease mouse model. Alcoholic liver disease (ALD) was caused by the administration of ethanol to male C57/BL6 mice who were given a Lieber-DeCarli liquid diet, including ethanol. The alcoholic fatty liver disease mice were orally administered ESF (100 and 200 mg/kg bw/day) or silymarin (50 mg/kg bw/day), which served as a positive control every day for 16 days. The findings suggest that ESF enhances hepatoprotective benefits by significantly decreasing serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), markers for liver injury. Furthermore, ESF alleviated the accumulation of triglyceride (TG) and total cholesterol (TC), increased serum levels of superoxide dismutase (SOD) and glutathione (GSH), and improved serum alcohol dehydrogenase (ADH) activity in the alcoholic fatty liver disease mice model. Cells and organisms rely on the Kelch-like ECH-associated protein 1- Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) system as a critical defensive mechanism in response to oxidative stress. Therefore, Nrf2 plays an important role in ALD antioxidant responses, and its level is decreased by increased reactive oxidation stress (ROS) in the liver. ESF increased Nrf2, which was decreased in ethanol-damaged livers. Additionally, four polyphenol compounds were identified through a qualitative analysis of the ESF using LC-MS/MS. This study confirmed ESF's antioxidative and hangover-elimination effects and suggested the possibility of using Sophora flavescens Aiton (SF) to treat ALD.
Collapse
Affiliation(s)
- Ye Jin Yang
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Min Jung Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Ju-Hye Yang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ji Woong Heo
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hun Hwan Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Woo H. Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Gon Sup Kim
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Hu-Jang Lee
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Kwang Youn Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Kwang Il Park
- Departments of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (W.H.K.); (G.S.K.); (H.-J.L.)
| |
Collapse
|
28
|
Zhang L, Ma Z, Zhang X, Wang J, Tian W, Ren Y, Liu Y, Wang T, Li Y, Liu Y, Shen W, Li T, Liu J, Ma J, Zhang X, Yang S, Wang H. Butyrate alleviates alcoholic liver disease-associated inflammation through macrophage regulation and polarization via the HDAC1/miR-155 axis. Int Immunopharmacol 2024; 131:111852. [PMID: 38492338 DOI: 10.1016/j.intimp.2024.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments. METHODS For in vivo experiments, C57BL/6J mice were fed modified Lieber-DeCarli liquid diets supplemented with or without ethanol and sodium butyrate (NaB). After 6 weeks of treatment, mice were euthanized and associated indicators were analyzed. For in vitro experiments, lipopolysaccharide (LPS)-induced inflammatory murine RAW264.7 cells were treated with NaB or miR-155 inhibitor/mimic to verify the anti-inflammatory effect and underlying mechanism. RESULTS The administration of NaB alleviated pathological damage and associated inflammation, including LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β levels in ALD mice. NaB intervention restored the imbalance of macrophage polarization by inhibiting inducible nitric oxide synthase (iNOS) and elevating arginase-1 (Arg-1). Moreover, NaB reduced histone deacetylase-1 (HDAC1), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and miR-155 expression in ALD mice, but also increased peroxisome proliferator-activated receptor-γ (PPAR-γ). Thus, MiR-155 was identified as a strong regulator of ALD. To further penetrate the role of miR-155, LPS-stimulated RAW264.7 cells co-cultured with NaB were treated with the specific inhibitor or mimic. Intriguingly, miR-155 was capable of negatively regulated inflammation with NaB intervention by targeting SOCS1, SHIP1, and IRAK-M genes. CONCLUSION Butyrate suppresses the inflammation in mice with ALD by regulating macrophage polarization via the HDAC1/miR-155 axis, which may potentially contribute to the novel therapeutic treatment for the disease.
Collapse
Affiliation(s)
- Lina Zhang
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China
| | - Zhiguo Ma
- Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan 750004 Ningxia, China
| | - Xiaoxu Zhang
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China
| | - Jing Wang
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China
| | - Wenyan Tian
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China
| | - Yi Ren
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China
| | - Yajuan Liu
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Wenke Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Ting Li
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China
| | - Jian Liu
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China
| | - Junbai Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| | - Shaoqi Yang
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan 750004 Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004 Ningxia, China.
| |
Collapse
|
29
|
He YX, Liu MN, Wang YY, Wu H, Wei M, Xue JY, Zou Y, Zhou X, Chen H, Li Z. Hovenia dulcis: a Chinese medicine that plays an essential role in alcohol-associated liver disease. Front Pharmacol 2024; 15:1337633. [PMID: 38650630 PMCID: PMC11033337 DOI: 10.3389/fphar.2024.1337633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Globally, alcohol-associated liver disease (ALD) has become an increased burden for society. Disulfirams, Benzodiazepines (BZDs), and corticosteroids are commonly used to treat ALD. However, the occurrence of side effects such as hepatotoxicity and dependence, impedes the achievement of desirable and optimal therapeutic efficacy. Therefore, there is an urgent need for more effective and safer treatments. Hovenia dulcis is an herbal medicine promoting alcohol removal clearance, lipid-lowering, anti-inflammatory, and hepatoprotective properties. Hovenia dulcis has a variety of chemical components such as dihydromyricetin, quercetin and beta-sitosterol, which can affect ALD through multiple pathways, including ethanol metabolism, immune response, hepatic fibrosis, oxidative stress, autophagy, lipid metabolism, and intestinal barrier, suggesting its promising role in the treatment of ALD. Thus, this work aims to comprehensively review the chemical composition of Hovenia dulcis and the molecular mechanisms involved in the process of ALD treatment.
Collapse
Affiliation(s)
- Yi-Xiang He
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Meng-Nan Liu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang-Yang Wang
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Wu
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mei Wei
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jin-Yi Xue
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Zou
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
30
|
Scarlata GGM, Colaci C, Scarcella M, Dallio M, Federico A, Boccuto L, Abenavoli L. The Role of Cytokines in the Pathogenesis and Treatment of Alcoholic Liver Disease. Diseases 2024; 12:69. [PMID: 38667527 PMCID: PMC11048950 DOI: 10.3390/diseases12040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of chronic liver disease. This term covers a broad spectrum of liver lesions, from simple steatosis to alcoholic hepatitis and cirrhosis. The pathogenesis of ALD is multifactorial and not fully elucidated due to complex mechanisms related to direct ethanol toxicity with subsequent hepatic and systemic inflammation. The accumulation of pro-inflammatory cytokines and the reduction of anti-inflammatory cytokines promote the development and progression of ALD. To date, there are no targeted therapies to counter the progression of chronic alcohol-related liver disease and prevent acute liver failure. Corticosteroids reduce mortality by acting on the hepatic-systemic inflammation. On the other hand, several studies analyzed the effect of inhibiting pro-inflammatory cytokines and stimulating anti-inflammatory cytokines as potential therapeutic targets in ALD. This narrative review aims to clarify the role of the main cytokines involved in the pathogenesis and treatment of ALD.
Collapse
Affiliation(s)
| | - Carmen Colaci
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (C.C.)
| | - Marialaura Scarcella
- Anesthesia, Intensive Care and Nutritional Science, Azienda Ospedaliera “Santa Maria”, Via Tristano di Joannuccio, 05100 Terni, Italy;
| | - Marcello Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.D.); (A.F.)
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy; (M.D.); (A.F.)
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (C.C.)
| |
Collapse
|
31
|
Li Q, Pei R, Chen E, Zheng F, Zhang Y, Meng S. Efficacy of Jiuzao polysaccharides in ameliorating alcoholic fatty liver disease and modulating gut microbiota. Heliyon 2024; 10:e26167. [PMID: 38420496 PMCID: PMC10900577 DOI: 10.1016/j.heliyon.2024.e26167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Jiuzao, the residue from Baijiu production, has shown radical scavenging properties in prior investigations, suggesting its potential as a hepatoprotective agent against acute liver damage. This study reveals that Jiuzao polysaccharides ameliorated liver morphological damage in zebrafish larvae afflicted with alcoholic fatty liver disease (AFLD), as evidenced by Oil red O, H&E, and Nile red staining. These polysaccharides notably modulated antioxidant enzyme levels and lipid peroxidation components. The real-time quantitative polymerase chain reactions analyses illustrated the significant impact of Jiuzao polysaccharides on genes integral to ethanol and lipid metabolism. The 16 S rRNA results showed that Jiuzao polysaccharides could improve the intestinal flora in zebrafish larvae exposed to ethanol. In summary, Jiuzao polysaccharides efficaciously mitigate liver lipid accumulation, enhance ethanol metabolism, and reduce oxidative stress by downregulating genes involved in AFLD development. They also regulate the changes in gut microbiota, providing further protection against acute alcoholic liver insult in zebrafish larvae.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ronghong Pei
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Erbao Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuhang Zhang
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui, 053009, China
| | - Shihao Meng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Quality and Safety of Alcoholic Beverages of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
32
|
Lai W, Zhou S, Bai Y, Che Q, Cao H, Guo J, Su Z. Glucosamine attenuates alcohol-induced acute liver injury via inhibiting oxidative stress and inflammation. Curr Res Food Sci 2024; 8:100699. [PMID: 38420347 PMCID: PMC10900259 DOI: 10.1016/j.crfs.2024.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Alcohol liver disease (ALD) is a liver disease caused by long-term heavy drinking. Glucosamine (GLC) is an amino monosaccharide that plays a very important role in the synthesis of human and animal cartilage. GLC is commonly used in the treatment of mild to moderate osteoarthritis and has good anti-inflammatory and antioxidant properties. In this study, alcoholic injury models were constructed in mice and human normal hepatocyte L02 cells to explore the protective effect and mechanism of GLC on ALD. Mice were given GLC by gavage for 30 days. Liver injury models of both mice and L02 cells were produced by ethanol. Detecting the levels of liver injury biomarkers, lipid metabolism, oxidative stress biomarkers, and inflammatory factors through different reagent kits. Exploring oxidative and inflammatory pathways in mouse liver tissue through Western blot and RT-PCR. The results showed that GLC can significantly inhibit the abnormal increase of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), triglycerides (TG), total cholesterol (TC), very low density lipoprotein (VLDL), low-density lipoprotein cholesterol (LDL-C), and can significantly improve the level of high-density lipoprotein cholesterol (HDL-C). In addition, GLC intervention significantly improved alcohol induced hepatic oxidative stress by reducing the levels of malondialdehyde (MDA) and, increasing the levels of glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the liver. Further mechanisms suggest that GLC can inhibit the expression of ethanol metabolism enzyme cytochrome P4502E1 (CYP2E1), activate the antioxidant pathway Keap1/Nrf2/HO-1, down-regulate the phosphorylation of MAPK and NF-κB signaling pathways, and thus reduce the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Therefore, GLC may be a significant candidate functional food for attenuating alcohol induced acute liver injury.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
33
|
Kronborg TM, Gao Q, Trošt K, Ytting H, O’Connell MB, Werge MP, Thing M, Gluud LL, Hamberg O, Møller S, Moritz T, Bendtsen F, Kimer N. Low sphingolipid levels predict poor survival in patients with alcohol-related liver disease. JHEP Rep 2024; 6:100953. [PMID: 38283758 PMCID: PMC10820332 DOI: 10.1016/j.jhepr.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Background & Aims Alcohol-related hepatitis (AH) and alcohol-related cirrhosis are grave conditions with poor prognoses. Altered hepatic lipid metabolism can impact disease development and varies between different alcohol-related liver diseases. Therefore, we aimed to investigate lipidomics and metabolomics at various stages of alcohol-related liver diseases and their correlation with survival. Methods Patients with newly diagnosed alcohol-related cirrhosis, who currently used alcohol (ALC-A), stable outpatients with decompensated alcohol-related cirrhosis with at least 8 weeks of alcohol abstinence (ALC), and patients with AH, were compared with each other and with healthy controls (HC). Circulating lipids and metabolites were analysed using HPLC and mass spectrometry. Results Forty patients with ALC, 95 with ALC-A, 30 with AH, and 42 HC provided plasma. Lipid levels changed according to disease severity, with generally lower levels in AH and cirrhosis than in the HC group; this was most pronounced for AH, followed by ALC-A. Nine out of 10 free fatty acids differed between cirrhosis groups by relative increases of 0.12-0.66 in ALC compared with the ALC-A group (p <0.0005). For metabolomics, total bile acids increased by 19.7, 31.3, and 80.4 in the ALC, ALC-A, and AH groups, respectively, compared with HC (all p <0.0001). Low sphingolipid ([d42:1] and [d41:1]) levels could not predict 180-day mortality (AUC = 0.73, p = 0.95 and AUC = 0.73, p = 0.95) more accurately than the model for end-stage liver disease score (AUC = 0.71), but did predict 90-day mortality (AUC d42:1 = 0.922, AUC d41:1 = 0.893; pd42:1 = 0.005, pd41:1 = 0.007) more accurately than the MELD score AUCMELD = 0.70, pMELD = 0.19). Conclusions Alcohol-related severe liver disease is characterised by low lipid levels progressing with severity of liver disease, especially low sphingomyelins, which also associate to poor prognoses. Impact and implications Lipidomics has the potential to diagnose and risk stratify patients with liver diseases. Lipidomics differed between patients with alcohol-related hepatitis and alcohol-related cirrhosis with and without recent alcohol use. Furthermore, lipidomics could predict short-term mortality and might be suitable as a prognostic tool in the future. Clinical Trials Registration Scientific Ethics Committee of the Capital Region of Denmark, journal no. H-21013476.
Collapse
Affiliation(s)
| | - Qian Gao
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Ytting
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mira Thing
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Ole Hamberg
- Medical Department, University Hospital of Zealand, Koege, Denmark
| | - Søren Møller
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Functional and Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, Hvidovre, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
34
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
35
|
Chen D, Lu P, Sun T, Ding A. Long non-coding RNA HOX transcript antisense intergenic RNA depletion protects against alcoholic hepatitis through the microRNA-148a-3p/sphingosine 1-phosphate receptor 1 axis. Cell Tissue Res 2023; 394:471-485. [PMID: 37851113 DOI: 10.1007/s00441-023-03835-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The aggravating role of long noncoding RNA (lncRNA) HOTAIR has been indicated in liver injury caused by hepatic ischemia/reperfusion. However, under the condition of alcoholic hepatitis (AH), its effects remain unclear. The present study aimed to examine the effect of lncRNA HOTAIR on hepatic stellate cell viability and apoptosis during liver injury caused by AH. In the liver tissues of AH rats, HOTAIR and S1PR1 were overexpressed, and microRNA (miR)-148a-3p was poorly expressed. Loss-of-function assays revealed that silencing of HOTAIR alleviated liver injury in AH by inhibiting the activated phenotype of hepatic stellate cells, inflammation, and fibrosis. Using the bioinformatics databases, dual-luciferase, RIP, and FISH assays, we observed that HOTAIR was mainly localized in the cytoplasm of hepatic stellate cells, and HOTAIR could bind specifically to miR-148a-3p. In addition, miR-148a-3p could target S1PR1 expression. Rescue experiments showed that silencing of miR-148a-3p or overexpression of S1PR1 reversed the alleviating effects of HOTAIR silencing on liver injury. Taken together, our findings revealed that HOTAIR regulates hepatic stellate cell proliferation via the miR-148a-3p/S1PR1 axis in liver injury, which may serve as the basis for developing novel therapeutic strategies to treat AH.
Collapse
Affiliation(s)
- Dan Chen
- Department of Integrated TCM & Western Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| | - Ping Lu
- Department of Hepatology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 39, Xiashatang, Mudu Town, Wuzhong District, Suzhou, Jiangsu, 215101, People's Republic of China.
| | - Tianfeng Sun
- Department of Liver Disease Infection, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| | - Aliang Ding
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| |
Collapse
|
36
|
Kruchinina MV, Parulikova MV, Belkovets AV, Nikolaev KY, Ovsyannikova AK. Features of the fatty acid profile of erythrocyte membranes in patients with fatty liver disease of alcoholic genesis. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2023:84-96. [DOI: 10.21518/ms2023-391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Introduction. Alcoholic steatosis, which is a reversible condition, is currently considered a significant risk factor for the progression of diffuse liver pathology, therefore understanding of its mechanisms at the molecular level is essential.Aim. To study the features of the fatty acid profile of erythrocyte membranes in patients with fatty liver disease of alcoholic origin for possible use of fatty acids (FAs) as biomarkers and potential therapeutic targets.Materials and methods. A total of 31 men with alcoholic fatty liver disease (AFLD) (average age of 45.1 ± 17.1 years) and 28 men of comparable age without AFLD and symptomatic pathology of internal organs were examined. The FA composition and levels of erythrocyte membranes (ER) were studied using Agilent 7000B (USA) triple quadrupole gas chromatography/mass spectrometry.Results and discussion. A higher level of a range of saturated FAs (lauric, margaric, pentadecane), monounsaturated FAs (MUFAs), which are additional factors for the progression of AFLD (palmitoleic, total monounsaturated acids), n-6/n-3 polyun-saturated FAs ratio (PUFAs), alpha-linolenic FA was detected in patients with AFL vs the control group (p = 0.00002–0.05). In contrast, the levels of arachidic and docosahexaenoic acids, total eicosapentaenoic and docosahexaenoic n-3 PUFAs, and total n-3 PUFAs were lower in patients with AFLD than in healthy men (p = 0.003–0.01), which is associated with increased ethanol induced adipose tissue lipolysis via PDE3B-AMPK axis. The use of FAs panel (C16:1;9, sum MUFA, n-6/n-3 PUFA, C22:6n3, C20:0) to distinguish patients with AFLD from healthy ones ensured high levels of sensitivity (79%), and specificity (81%) (AUC 0.808). Multidirectional associations of FA levels in erythrocyte membranes with each other and liver tests and lipid profile results were revealed.Conclusion. Thus, the features of erythrocytes membrane FAs in patients with AFLD and the potential to use them as biomarkers for differentiation of people with AFLD from healthy individuals have been identified.
Collapse
Affiliation(s)
- M. V. Kruchinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Medical University
| | - M. V. Parulikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - A. V. Belkovets
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Medical University
| | - K. Yu. Nikolaev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - A. K. Ovsyannikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
37
|
Yao C, Dai S, Wang C, Fu K, Wu R, Zhao X, Yao Y, Li Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023; 167:115464. [PMID: 37713990 DOI: 10.1016/j.biopha.2023.115464] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Luteolin is a flavonoid widely present in various traditional Chinese medicines. In recent years, luteolin has received more attention due to its impressive liver protective effect, such as metabolic associated fatty liver disease, hepatic fibrosis and hepatoma. This article summarizes the pharmacological effects, pharmacokinetic characteristics, and toxicity of luteolin against liver diseases, and provides prospect. The results indicate that luteolin improves liver lesions through various mechanisms, including inhibiting inflammatory factors, reducing oxidative stress, regulating lipid balance, slowing down excessive aggregation of extracellular matrix, inducing apoptosis and autophagy of liver cancer cells. Pharmacokinetics research manifested that due to metabolic effects, the bioavailability of luteolin is relatively low. It is worth noting that appropriate modification, new delivery systems, and derivatives can enhance its bioavailability. Although many studies have shown that the toxicity of luteolin is minimal, strict toxicity experiments are still needed to evaluate its safety and promote its reasonable development. In addition, this study also discussed the clinical applications related to luteolin, indicating that it is a key component of commonly used liver protective drugs in clinical practice. In view of its excellent pharmacological effects, luteolin is expected to become a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
38
|
Pratim Das P, Medhi S. Role of inflammasomes and cytokines in immune dysfunction of liver cirrhosis. Cytokine 2023; 170:156347. [PMID: 37639845 DOI: 10.1016/j.cyto.2023.156347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Liver cirrhosis develops as a result of persistent inflammation and liver injury. The prolonged inflammation triggers the buildup of fibrous tissue and regenerative nodules within the liver, leading to the distortion of the hepatic vascular structure and impaired liver function. Cirrhosis disrupts the ability of liver function to maintain homeostasis and hepatic immunosurveillance which causes immunological dysfunction in the body. In pathological conditions, the production of cytokines in the liver is carefully regulated by various cells in response to tissue stimulation. Cytokines and inflammasomes are the key regulators and systematically contribute to the development of cirrhosis which involves an inflammatory response. However, the crosstalk role of different cytokines in the cirrhosis progression is poorly understood. Tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interferon-gamma (IFN-γ), among others, are proinflammatory cytokines that contribute to liver cell necrosis, which in turn causes the development of fibrosis. While IL-10 exhibits a potent anti-inflammatory effect on the liver by inhibiting immune cell activation and neutralizing pro-inflammatory cytokine activity. Inflammasomes have also been implicated in the profibrotic processes of liver cirrhosis, as well as the production of chemokines such as CCL2/MCP-1. It is evident that inflammasomes have a role in the proinflammatory response seen in chronic liver illnesses. In conclusion, cirrhosis significantly impacts the immune system, leading to immunological dysfunction and alterations in both innate and acquired immunity. Proinflammatory cytokines like TNF-α, IL-1β, IL-6, and IFNγ are upregulated in cirrhosis, contributing to liver cell necrosis and fibrosis development. Managing cytokine-mediated inflammation and fibrosis is a key therapeutic approach to alleviate portal hypertension and its associated liver complications. This review attempted to focus largely on the role of immune dysfunction mediated by different cytokines and inflammasomes involved in the progression, regulation and development of liver cirrhosis.
Collapse
Affiliation(s)
- Partha Pratim Das
- Dept. of Bioengineering & Technology, Gauhati University, Assam 781014, India
| | - Subhash Medhi
- Dept. of Bioengineering & Technology, Gauhati University, Assam 781014, India.
| |
Collapse
|
39
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14:1205821. [PMID: 37841267 PMCID: PMC10570533 DOI: 10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
Affiliation(s)
| | | | | | - Palash Mandal
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
40
|
Aghara H, Chadha P, Zala D, Mandal P. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1205821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.
Collapse
|
41
|
Zhu H, Zhang M, Ye Y, Liu Z, Wang J, Wu X, Lv X. CD73 mitigates hepatic damage in alcoholic steatohepatitis by regulating PI3K/AKT-mediated hepatocyte pyroptosis. Biochem Pharmacol 2023; 215:115753. [PMID: 37611643 DOI: 10.1016/j.bcp.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Alcohol use is a major risk factor for death and disability, resulting in a significant global disease burden. Alcoholic steatohepatitis (ASH) reflects an acute exacerbation of alcoholic liver disease (ALD) and is a growing health care and economic burden worldwide. Pyroptosis plays a central role in the pathogenesis of ASH. Nt5e (CD73) is a cell surface ecto-5'-nucleotidase, which is a key enzyme that converts the proinflammatory signal ATP to the anti-inflammatory mediator adenosine (ADO). Studies have found that CD73 is involved in multiple diseases and can alleviate gasdermin D (GSDMD)-mediated pyroptosis; however, its role and mechanism in ASH are not explicit. AIM To investigate the role and mechanisms of CD73-mediated hepatocyte pyroptosis in alcohol-induced liver injury through in vivo and in vitro experiments. METHODS CD73 knockout (CD73-/-) mice, wild-type (WT) mice, and AML-12 cells were used to evaluate the effect of CD73 on hepatocyte pyroptosis in vivo and in vitro. A combination of molecular and histological methods was performed to assess pyroptosis and investigate the mechanism both in vivo and in vitro. RESULTS The protein expression of CD73 and pyroptosis pathway-associated genes was increased significantly in hepatocyte injury model both in vivo and in vitro. In vivo, CD73 knockout dramatically aggravated inflammatory damage, lipid accumulation, and hepatocyte pyroptosis in the liver. In vitro, overexpression of CD73 by pEGFP-C1/CD73 can decrease NLRP3 inflammasome activation and pyroptosis in hepatocytes. Further analysis revealed that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is a possible mechanism of CD73 regulation. Meanwhile, this pathological process was inhibited after the use of PI3K inhibitors. CONCLUSION Our results show a novel function of CD73 regulates hepatocytes pyroptosis and highlights the therapeutic opportunity for reducing the disease process in ALD.
Collapse
Affiliation(s)
- Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Mengda Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ying Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Zhenni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jianpeng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
42
|
Li K, Wang WH, Wu JB, Xiao WH. β-hydroxybutyrate: A crucial therapeutic target for diverse liver diseases. Biomed Pharmacother 2023; 165:115191. [PMID: 37487440 DOI: 10.1016/j.biopha.2023.115191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
β-hydroxybutyrate (β-HB), the most abundant ketone body, is produced primarily in the liver and acts as a substitute energy fuel to provide energy to extrahepatic tissues in the event of hypoglycemia or glycogen depletion. We now have an improved understanding of β-HB as a signal molecule and epigenetic regulatory factor as a result of intensive research over the last ten years. Because β-HB regulates various physiological and pathological processes, it may have a potential role in the treatment of metabolic diseases. The liver is the most significant metabolic organ, and the part that β-HB plays in liver disorders is receiving increasing attention. In this review, we summarize the therapeutic effects of β-HB on liver diseases and its underlying mechanisms of action. Moreover, we explore the prospects of exogenous supplements and endogenous ketosis including fasting, caloric restriction (CR), ketogenic diet (KD), and exercise as adjuvant nutritional therapies to protect the liver from damage and provide insights and strategies for exploring the treatment of various liver diseases.
Collapse
Affiliation(s)
- Ke Li
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wen-Hong Wang
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Jia-Bin Wu
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei-Hua Xiao
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
43
|
Dogra A, Li F. Small-molecule chemical probes for the potential therapeutic targets in alcoholic liver diseases. LIVER RESEARCH 2023; 7:177-188. [PMID: 39958379 PMCID: PMC11792063 DOI: 10.1016/j.livres.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 02/18/2025]
Abstract
Alcoholic liver disease (ALD) encompasses a range of conditions resulting from prolonged and excessive alcohol consumption, causing liver damage such as alcoholic fatty liver, inflammation, fibrosis, and cirrhosis. Alcohol consumption contributes to millions of deaths each year. So far, the effective treatments for ALD are limited. To date, the most effective treatment for ALD is still prevention by avoiding excessive alcohol consumption, and only few specialized medicines are in the market for the treatment of patients suffering from ALD. Small molecules targeting various pathways implicated in ALD pathogenesis can potentially be used for effective therapeutics development. In this review, we provide a concise overview of the latest research findings on potential therapeutic targets, specifically emphasizing small-molecule interventions for the treatment and prevention of ALD.
Collapse
Affiliation(s)
- Ashish Dogra
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry & Molecular Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Qiao J, Li H, Jinxiang C, Shi Y, Li N, Zhu P, Zhang S, Miao M. Mulberry fruit repairs alcoholic liver injury by modulating lipid metabolism and the expression of miR-155 and PPARα in rats. Funct Integr Genomics 2023; 23:261. [PMID: 37530875 DOI: 10.1007/s10142-023-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023]
Abstract
As alcohol consumption increases, alcoholic liver disease (ALD) has become more popular and is threating our human life. In this study, we found mulberry fruit extract (MFE) repaired alcohol-caused liver diseases by regulating hepatic lipid biosynthesis pathway and oxidative singling in alcoholically liver injured (ALI) rats. MFE administration inhibited hepatic lipid accumulation and improved liver steatosis in ALI rats. MFE also enhanced the antioxidant capacity and alleviated the inflammatory response by increasing the activities of antioxidant enzymes and decreasing the contents of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally, MFE regulated the expression of miRNA-155 and lipid metabolism-related PPARα protein in rats. Both miR-155 and PPARα play important roles in liver function. The results indicate that MFE has hepatoprotective effects against ALI in rats.
Collapse
Affiliation(s)
- Jingyi Qiao
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- People's Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Hanwei Li
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen Jinxiang
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Shi
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ning Li
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pingsheng Zhu
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Sisen Zhang
- People's Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Mingsan Miao
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
45
|
Lin Z, Li Y, Wang M, Li H, Wang Y, Li X, Zhang Y, Gong D, Fu L, Wang S, Long D. Protective effects of yeast extract against alcohol-induced liver injury in rats. Front Microbiol 2023; 14:1217449. [PMID: 37547679 PMCID: PMC10399763 DOI: 10.3389/fmicb.2023.1217449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Oxidative stress, inflammatory response, and gut-liver axis dysbiosis have been suggested as the primarily involved in the pathogenesis of alcoholic liver injury. Previous research established that yeast extract (YE) has antioxidant, immune-boosting or microbiota-regulating properties. However, there is currently lack of information regarding the efficacy of YE on alcoholic liver injury. This study seeks to obtain data that will help to address this research gap using a Wistar male rat experimental model. Histologic and biochemical analysis results showed that the groups treated with both low-dose yeast extract (YEL) and high-dose yeast extract (YEH) had lower degrees of alcohol-induced liver injury. The abundance of Peptococcus and Ruminococcus reduced in the low-dose yeast extract (YEL) group, while that of Peptococcus, Romboutsia, Parasutterella, and Faecalibaculum reduced in the high-dose (YEH) group. Furthermore, Spearman analysis showed that the gut microbes were significantly associated with several liver-related indicators. For the analysis of differential metabolites and enriched pathways in the YEL group, the abundance of lysophosphatidylcholine (16:0/0:0) significantly increased, and then the levels of histamine, adenosine and 5' -adenine nucleotide were remarkedly elevated in the YEH group. These findings suggest that both high and low doses of YE can have different protective effects on liver injury in alcoholic liver disease (ALD) rats, in addition to improving gut microbiota disorder. Besides, high-dose YE has been found to be more effective than low-dose YE in metabolic regulation, as well as in dealing with oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Zihan Lin
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Man Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yihong Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Lin Fu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Siying Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 PMCID: PMC10395298 DOI: 10.1016/j.heliyon.2023.e17878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|
47
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 DOI: 10.1016/j.heliyon.2023.e17878if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2024] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|
48
|
Itzel T, Falconer T, Roig A, Daza J, Park J, Cheong JY, Park RW, Wiest I, Ebert MP, Hripcsak G, Teufel A. Efficacy of Co-Medications in Patients with Alcoholic Liver Disease. Dig Dis 2023; 41:780-788. [PMID: 37364547 DOI: 10.1159/000529914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/08/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is still increasing and leads to acute liver injury but also liver cirrhosis and subsequent complications such as liver failure or hepatocellular carcinoma (HCC). As most patients fail to achieve alcohol abstinence, it is essential to identify alternative treatment options in order to improve the outcome of ALD patients. METHODS Evaluating two large cohorts of patients with ALD from the USA and Korea with a total of 12,006 patients, we investigated the effect on survival of aspirin, metformin, metoprolol, dopamine, and dobutamine drugs in patients with ALD between 2000 and 2020. Patient data were obtained through the "The Observational Health Data Sciences and Informatics consortium," an open-source, multi-stakeholder, and interdisciplinary collaborative effort. RESULTS The use of aspirin (p = 0.000, p = 0.000), metoprolol (p = 0.002, p = 0.000), and metformin (p = 0.000, p = 0.000) confers a survival benefit for both AUSOM- and NY-treated cohorts. Need of catecholamines dobutamine (p = 0.000, p = 0.000) and dopamine (p = 0.000, p = 0.000) was strongly indicative of poor survival. β-Blocker treatment with metoprolol (p = 0.128, p = 0.196) or carvedilol (p = 0.520, p = 0.679) was not shown to be protective in any of the female subgroups. CONCLUSION Overall, our data fill a large gap in long-term, real-world data on patients with ALD, confirming an impact of metformin, acetylsalicylic acid, and β-blockers on ALD patient's survival. However, gender and ethnic background lead to diverse efficacy in those patients.
Collapse
Affiliation(s)
- Timo Itzel
- Division of Hepatology, Division of Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Falconer
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
| | - Ana Roig
- Division of Hepatology, Division of Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jimmy Daza
- Division of Hepatology, Division of Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jimyung Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Rae Woong Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Isabella Wiest
- Division of Hepatology, Division of Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
| | - Andreas Teufel
- Division of Hepatology, Division of Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
49
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
50
|
Liu R, Hao YT, Zhu N, Liu XR, Mao RX, Kang JW, Hou C, Zhang T, Li Y. Walnut ( Juglans regia L.) Oligopeptides Alleviate Alcohol-Induced Acute Liver Injury through the Inhibition of Inflammation and Oxidative Stress in Rats. Nutrients 2023; 15:2210. [PMID: 37432394 DOI: 10.3390/nu15092210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
The study was aimed at investigating the effects of walnut oligopeptides (WOPs) on alcohol-induced acute liver injury and its underlying mechanisms. Male Sprague Dawley (SD) rats were randomly assigned to six groups: normal control, alcohol control, whey protein (440 mg/kg.bw), and three WOPs (220 mg/kg.bw, 440 mg/kg.bw, 880 mg/kg.bw) groups. After 30 days of gavage, ethanol with a volume fraction of 50%, administered at a dose of 7 g/kg.bw., caused acute liver injury. A righting reflex experiment and a blood ethanol concentration evaluation were then performed. Serum biochemical parameters, inflammatory cytokines, liver alcohol metabolism enzymes, oxidative stress biomarkers, liver nuclear factor-κB (NF-κB p65), and cytochrome P4502E1 expression were determined. The results revealed that the intervention of 440 mg/kg and 880 mg/kg WOPs could alleviate the degree of intoxication, decrease blood ethanol concentration, alleviate alcohol-induced hepatic steatosis, enhance the activity of hepatic ethanol metabolizing enzymes and antioxidant capacity, reduce lipid oxidation products and pro-inflammatory factor contents, and inhibit the expression of NF-κBp65 in the livers of rats. The outcomes of the study suggest that WOPs have beneficial effects on liver damage caused by acute ethanol binge drinking, with the high-dose WOPs (880 mg/kg.bw) exerting the most pronounced hepatoprotective effect.
Collapse
Affiliation(s)
- Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Yun-Tao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Department of Nutrition and Food Hygiene, College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
| | - Xin-Ran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing 100044, China
| | - Rui-Xue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Jia-Wei Kang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Chao Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Ting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|