1
|
Nguyen QD, Nguyen TVL, Tran TTV, Ngo-Thi NH, Truong-Thi HT, Nguyen VL, Luong TK, Do AD. Fermentation of Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.) root extract using Levilactobacillus brevis QD-1: Changes in majonoside R2 content and pharmacological activities. Food Res Int 2025; 208:116275. [PMID: 40263859 DOI: 10.1016/j.foodres.2025.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigated the biotransform beneficial effects of Levilactobacillus brevis QD-1 fermentation on the bioactive compounds and pharmacological activities of Ngoc Linh ginseng root extract through in silico and in vitro analyses. Whole-genome sequencing revealed that L. brevis QD-1 lacks virulence factors and biogenic amine synthesis genes, confirming its safety for food and pharmaceutical applications. Genome annotation identified β-glucosidase from glycoside hydrolase families (GH1, GH2, GH3, and GH30), suggesting its potential role in ginsenoside biotransformation. In vitro study demonstrated that L. brevis QD-1 might proliferate in Ngoc Linh ginseng extract and express β-glucosidase after 24 h of fermentation. Fermentation significantly altered the ginsenoside profile, notably increasing the rare saponin majonoside R2 from 479.65 mg/L to 649.32 mg/L after 48 h. Additionally, fermentation enhanced total phenolic content and facilitated the release of essential and non-essential amino acids, particularly threonine, valine, lysine, and histidine, which were initially undetectable in the raw extract. These compositional changes correlated with improved pharmacological properties, as the fermented extract exhibited significantly stronger antioxidant, anti-inflammatory, and DNA-protective activities compared to the raw extract. These findings highlight the potential of L. brevis QD-1 as a safe and effective microbial agent for enhancing the bioactivity of Ngoc Linh ginseng, paving the way for its applications in functional foods and natural therapeutics.
Collapse
Affiliation(s)
- Quoc-Duy Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Van-Linh Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Thi Tuong Vi Tran
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | | | | | - Vinh-Lam Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | | | - Anh Duy Do
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
2
|
Dai ZQ, Guo ZQ, Zhang T, Chu YF, Yan Y, Gao F, Li SL, Gu YH, Jiao JY, Lin YX, Zhao SW, Xu B, Lei HM. Integrating network pharmacology and transcriptomics to study the potential mechanism of Jingzhi Niuhuang Jiedu tablet in rats with accumulation of heat in the lungs and stomach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118890. [PMID: 39366495 DOI: 10.1016/j.jep.2024.118890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Accumulation of heat in the lungs and stomach (AHLS) is an important syndrome within the realm of traditional Chinese medicine (TCM). It is the fundamental reason behind numerous illnesses, including mouth ulcers, dermatological conditions, acne, and pharyngitis. Jingzhi Niuhuang Jiedu tablet (JN) serves as the representative prescription for treatment of AHLS clinically. However, the effective components and mechanism of JN's impact on AHLS remain unexplored. AIM OF THE STUDY The objective of this research was to analyze the effective components of JN and investigate the therapeutic effect and potential mechanism of JN on AHLS. MATERIALS AND METHODS The effective compounds of JN extract were analyzed and identified using UHPLC-Q-Exactive/HRMS. Utilizing network pharmacology to investigate JN's multi-target, multi-pathway process in treating AHLS. Subsequently, anti-inflammatory activities of JN extract were evaluated in the RAW264.7 cells stimulated by lipopolysaccharide (LPS). In addition, a rat AHLS model induced by LPS and dried ginger was established. Pathological changes in rat lung and stomach tissues observed by HE staining and Masson's trichrome staining. Additionally, the expression of TNF-α, IL-6, and IL-1β in bronchoalveolar lavage fluid (BALF) was identified through the ELISA assay. For a deeper understanding of how JN might affect AHLS, transcriptomics was utilized to examine differential genes and their underlying mechanisms. Concurrently, techniques like quantitative polymerase chain reaction (q-PCR), immunofluorescence, and western blotting (WB) were employed to confirm various mRNA and protein expression, including Il17ra, Il17re, IL-17A, IL-1β, IL-6, PPARγ, PGC1-α and UCP1. RESULTS We identified 178 potential effective components in the JN extract. Network pharmacology analysis showed that the 144 components in JN act on 200 key targets for the treatment of AHLS by suppressing inflammation, regulating energy metabolism, and gastric function. In addition, JN suppressed the LPS-stimulated generation of NO, TNF-α, IL-1β, and IL-6 in RAW264.7 cells. And JN treatment effectively alleviated lung and stomach injury and reduced inflammation in rats. Analysis of RNA-seq from lung tissues revealed JN's substantial control over crucial genes in the IL-17 signaling pathway, including Il1b and Il17ra. Likewise, RNA sequencing of stomach tissues revealed that JN markedly decreased crucial genes in the Thermogenesis pathway, including Ppargc1a and Ppara. Additional experimental findings confirmed that treatment with JN significantly reduced the expression levels of mRNA (Il17ra, Il17re, Il1b, Ppargc1a and Ucp1), and the expression levels of protein (IL-17A, IL-1β, IL-6, PPARγ, PGC1-α and UCP1). CONCLUSION This study not only analyzes the effective components of JN but also reveals that JN could effectively ameliorate AHLS by inhibiting IL-17 signaling pathway and Thermogenesis pathway, which provides evidence for subsequent clinical studies and drug development.
Collapse
Affiliation(s)
- Zi-Qi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Zhuo-Qian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ya-Fen Chu
- Beijing Tongrentang Science and Technology Development Co. Technology Development Co., Ltd., Beijing, 100079, China
| | - Ying Yan
- Beijing Tongrentang Science and Technology Development Co. Technology Development Co., Ltd., Beijing, 100079, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shan-Lan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yu-Hao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jing-Yi Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yi-Xuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shu-Wu Zhao
- Beijing Tongrentang Science and Technology Development Co. Technology Development Co., Ltd., Beijing, 100079, China.
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
3
|
Lee YJ, Shin JS, Oh SM, Bae JE, Ye SJ, Lee H, Kim W, Baik MY. Changes in Ginsenoside Composition, Antioxidant Activity and Anti-Inflammatory Activity of Ginseng Berry by Puffing. Foods 2024; 13:4151. [PMID: 39767093 PMCID: PMC11675374 DOI: 10.3390/foods13244151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The effects of puffing on the ginsenoside composition as well as antioxidant and anti-inflammatory activities of ginseng berry were investigated to increase the utilization of ginseng berry. There was no significant difference in extraction yield between the control and puffed samples at all moisture contents and pressure conditions (p < 0.05). Major ginsenosides of ginseng berry (especially ginsenoside Re) were degraded through deglycosylation and dehydration by heat and pressure, and new minor ginsenosides (Rg3, F2, Rh2 and Rb2) were produced after puffing. Puffed ginseng berries showed higher total phenolic content (TPC), total flavonoid content (TFC) and Maillard reaction products (MRPs) than those of the control group, and these contents were increased as puffing pressure increased. In addition, higher antioxidant activities were observed in puffed ginseng berries compared to the controls, possibly due to the increase in TPC and MRPs. Antioxidant activity increased with increasing puffing pressure at all moisture contents. Nitric oxide (NO) production showed no significant inhibitory effect between control and puffed ginseng berries (p < 0.05). In the case of inflammatory cytokines, IL-6 had an inhibitory effect, but TNF-α had no inhibitory effect. Consequently, puffing showed a positive effect on the composition and the transformation of ginsenosides as well as the antioxidant activity of ginseng berries, suggesting that puffed ginseng berries can be used as a high value-added food material.
Collapse
Affiliation(s)
- You-Jeong Lee
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.-J.L.); (J.-S.S.); (S.-M.O.); (J.-E.B.); (S.-J.Y.)
| | - Jae-Sung Shin
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.-J.L.); (J.-S.S.); (S.-M.O.); (J.-E.B.); (S.-J.Y.)
| | - Seon-Min Oh
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.-J.L.); (J.-S.S.); (S.-M.O.); (J.-E.B.); (S.-J.Y.)
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Ji-Eun Bae
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.-J.L.); (J.-S.S.); (S.-M.O.); (J.-E.B.); (S.-J.Y.)
| | - Sang-Jin Ye
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.-J.L.); (J.-S.S.); (S.-M.O.); (J.-E.B.); (S.-J.Y.)
| | - Hyungjae Lee
- Department of Food Engineering, Dankook University, Cheonan 31116, Republic of Korea;
| | - Wooki Kim
- Department of Food and Nutrition, Yonsei University, Seoul 03722, Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.-J.L.); (J.-S.S.); (S.-M.O.); (J.-E.B.); (S.-J.Y.)
| |
Collapse
|
4
|
Zhang J, Li D, Lu C, Wang X, Wang J, Wang J, Li B, Du Z, Yang Y, Zhu L. Negative effects of polyvinyl chloride microplastics and the plasticizer DnOP on earthworms: Co-exposure enhances oxidative stress and immune system damage in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136338. [PMID: 39486341 DOI: 10.1016/j.jhazmat.2024.136338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Polyvinyl chloride microplastics (PVC-MPs) are the most used plastics in agriculture. Di-n-octyl phthalate (DnOP), a commonly used plasticizer in PVC-MPs, may be released from plastic and coexist with PVC-MPs. The effects of DnOP alone and coexisting with PVC-MPs are not known. We evaluated the effects of DnOP or/and PVC-MPs on earthworms, and used integrated biomarker response (IBR) to assess the combined toxicity. Molecular docking and transcriptomics were employed for further interpretation of possible toxicity mechanisms. The results showed that exposure to DnOP or/and PVC-MPs caused oxidative damage and interfered with reproduction, adversely affecting the growth and reproduction of earthworms. IBR results showed that toxicity of DnOP+PVC-MPs exposure was greater than that of DnOP and PVC-MPs exposure alone. DnOP has the ability to directly bind to proteins that are associated with antioxidant enzymes and alter their structure. The transcriptomics results indicated that DnOP and PVC-MPs exposure alone mainly affected growth and development-related pathways, while co-exposure affected apoptosis and immune system-related pathways more. To the best of our knowledge, this is the first comprehensive investigation of the combined toxicity of DnOP or/and PVC-MPs to earthworms from different perspectives, which gives scientifically sound evidence for the rational use of plasticizers DnOP and PVC-MPs.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Dengtan Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Xiaole Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
5
|
Zhou Y, Wang Z, Ren S, Li W. Mechanism of action of protopanaxadiol ginsenosides on hepatocellular carcinoma and network pharmacological analysis. CHINESE HERBAL MEDICINES 2024; 16:548-557. [PMID: 39606268 PMCID: PMC11589304 DOI: 10.1016/j.chmed.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 06/18/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies globally, posing a major challenge to global health care. Protopanaxadiol ginsenosides (PDs) have been believed to significantly improve liver diseases. PDs, such as Rg3, have been developed as a new class of anti-cancer drugs. Ginsenosides Rb1, Rd, Rg3, and Rh2 exhibit effective anti-inflammatory and anti-tumor activities. Studies have confirmed that PDs could be used to treat HCC. However, the mechanism of action of PDs on HCC remains unclear. In the study, we reviewed the anti-HCC effects and mechanisms of PDs including Rb1, Rd, Rg3, Rg5, Rh2, Rk1, and Compound K (CK). Then, we searched for relevant targets of PDs and HCC from databases and enriched them for analysis. Subsequently, molecular docking was simulated to reveal molecular mechanisms. We found that PDs may treat HCC through multiple signaling pathways and related targets. PDs could inhibit the proliferation, invasion, and metastasis of HCC while promoting apoptosis and inducing differentiation. In conclusion, this review and network pharmacological analysis might offer a direction for in-depth research on related mechanisms. These insights will aid in the direction of further pharmacological studies and the development of safe and effective clinical drugs.
Collapse
Affiliation(s)
- Yue Zhou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Kabadayı SN, Sadiq NB, Hamayun M, Park NI, Kim HY. Impact of Sodium Silicate Supplemented, IR-Treated Panax Ginseng on Extraction Optimization for Enhanced Anti-Tyrosinase and Antioxidant Activity: A Response Surface Methodology (RSM) Approach. Antioxidants (Basel) 2023; 13:54. [PMID: 38247479 PMCID: PMC10812770 DOI: 10.3390/antiox13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Ginseng has long been widely used for its therapeutic potential. In our current study, we investigated the impact of abiotic stress induced by infrared (IR) radiations and sodium silicate on the upregulation of antioxidant and anti-tyrosinase levels, as well as the total phenolic and total flavonoid contents of the Korean ginseng (Panax ginseng C.A. Meyer) variety Yeonpoong. The RSM-based design was used to optimize ultrasonic-assisted extraction time (1-3 h) and temperature (40-60 °C) for better anti-tyrosinase activity and improved antioxidant potential. The optimal extraction results were obtained with a one-hour extraction time, at a temperature of 40 °C, and with a 1.0 mM sodium silicate treatment. We recorded maximum anti-tyrosinase (53.69%) and antioxidant (40.39%) activities when RSM conditions were kept at 875.2 mg GAE/100 g TPC, and 3219.58 mg catechin/100 g. When 1.0 mM sodium silicate was added to the media and extracted at 40 °C for 1 h, the highest total ginsenoside content (368.09 mg/g) was recorded, with variations in individual ginsenosides. Ginsenosides Rb1, Rd, and F2 were significantly affected by extraction temperature, while Rb2 and Rc were influenced by the sodium silicate concentration. Moreover, ginsenoside F2 increased with the sodium silicate treatment, while the Rg3-S content decreased. Interestingly, higher temperatures favored greater ginsenoside diversity while sodium silicate impacted PPD-type ginsenosides. It was observed that the actual experimental values closely matched the predicted values, and this agreement was statistically significant at a 95% confidence level. Our findings suggest that the application of IR irradiation in hydroponic systems can help to improve the quality of ginseng sprouts when supplemented with sodium silicate in hydroponic media. Optimized extraction conditions using ultrasonication can be helpful in improving antioxidant and anti-tyrosinase activity.
Collapse
Affiliation(s)
- Seda Nur Kabadayı
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
| | - Nooruddin Bin Sadiq
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Guo S, Shi H, Qi Y, Tian G, Wang T, He F, Li X, Liu R. Environmental relevant concentrations of polystyrene nanoplastics and lead co-exposure triggered cellular cytotoxicity responses and underlying mechanisms in Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167264. [PMID: 37741403 DOI: 10.1016/j.scitotenv.2023.167264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Heavy metal pollution of soils and the widespread use of plastics have caused environmental problems worldwide. Nanoplastics (NPs) contaminants in water and soil environments can adsorb heavy metals, thereby affecting the bioavailability and toxicity of heavy metals. In this paper, the effect of co-exposure of polystyrene microspheres with 100 nm particle size and lead acetate (Pb) on the Eisenia fetida coelomocytes was investigated. The environmental concentration of NPs used was 0.01 mg/L and the concentration of Pb ranged from 0.01 to 1 mg/L, and the exposed cells were incubated at 298 k for 24 h. Our study demonstrated that exposure of cells to environmental relevant concentrations of NPs did not significantly affect the cytotoxicity of Pb exposure. It was shown that co-exposure induced cellular production of reactive oxygen species (ROS, increased to 134.4 %) disrupted the antioxidant system of earthworm body cavity cells, activated superoxide dismutase and catalase (CAT), produced reduced glutathione, and inhibited glutathione-dependent enzyme (GST) activity (Reduced to 64 %). Total antioxidant capacity (T-AOC) is first enhanced against ROS due to the stress of NPs and Pb. When the antioxidant reserves of cells are exhausted, the antioxidant capacity will decrease. The level of malondialdehyde, a biomarker of eventual lipid peroxidation, increased to 231.7 %. At the molecular level, due to co-exposure to NPs and Pb, CAT was loosely structured and the secondary structure is misfolded, which was responsible for exacerbating oxidative damage in E. fetida coelomocytes. The findings of this study have significant implications for the toxicological interaction and future risk assessment of co-contamination of NPs and Pb in the environment.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
8
|
Zhou N, Mao F, Cheng S. Mechanism Research and Application for Ginsenosides in the Treatment of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7214037. [PMID: 38027042 PMCID: PMC10667047 DOI: 10.1155/2023/7214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Ginsenosides, the main active pharmacological ingredients of ginseng, have been widely used for the treatment of numerous carcinomas. Hepatocellular carcinoma (HCC) is 3rd leading malignant tumor in terms of mortality worldwide. Accumulating evidence indicates that ginsenosides play a vital role in the prevention and treatment of HCC. Ginsenosides can significantly improve the symptoms of HCC, and their anticancer activity is mainly involved in inhibiting proliferation and migration, inducing cell cycle arrest at the G0/G1 phase, promoting caspase-3 and 8-mediated apoptosis, regulating autophagy related to Atg5, Atg7, Atg12, LC3-II, and PI3K/Akt pathways, and lowering invasion and metastasis associated with decreased nuclear translocation of NF-κB p65 and MMP-2/9, increasing IL-2 and IFN-γ levels to enhance immune function, as well as regulating the gut-liver axis. In addition, ginsenosides can be used as an adjuvant to conventional cancer therapies, enhancing sensitivity to chemotherapy drugs, and improving efficacy and/or reducing adverse reactions through synergistic effects. Therefore, the current manuscript discusses the mechanism and application of ginsenosides in HCC. It is hoped to provide theoretical basis for the treatment of HCC with ginsenosides.
Collapse
Affiliation(s)
- Nian Zhou
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Feifei Mao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shuqun Cheng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200438, China
| |
Collapse
|
9
|
Lee SH, Park SY, Kim JH, Kim N, Lee J. Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways. BMB Rep 2023; 56:551-556. [PMID: 37605614 PMCID: PMC10618073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKLinduced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKLinduced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 551-556].
Collapse
Affiliation(s)
- Sung-Hoon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| | - Shin-Young Park
- Division of Software Engineering, PaiChai University, Daejeon 35345, Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Junwon Lee
- Department of Life Science and Genetic Engineering, Graduate School of PaiChai University, Daejeon 35345, Korea
| |
Collapse
|
10
|
Wu Y, Duan Z, Qu L, Zhang Y, Zhu C, Fan D. Gastroprotective effects of ginsenoside Rh4 against ethanol-induced gastric mucosal injury by inhibiting the MAPK/NF-κB signaling pathway. Food Funct 2023. [PMID: 37184519 DOI: 10.1039/d2fo03693b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ginsenoside Rh4, a bioactive component extracted from Panax ginseng, exhibits various pharmacological activities, such as anti-inflammatory, anti-oxidation, anti-diabetes, anti-obesity, antitumor and immunity enhancement. However, the gastroprotective effect of ginsenoside Rh4 remains unknown. The present study evaluated the gastroprotective effect and potential mechanism of ginsenoside Rh4 in an ethanol-induced gastric ulcer model. Ginsenoside Rh4 (15, 30, and 60 mg kg-1) and omeprazole (30 mg kg-1) were administered orally for 7 days. The results showed that pretreatment with ginsenoside Rh4 reduced the gastric injury area and percentage of mucosal lesions in gastric tissue. Besides, treatment with ginsenoside Rh4 increased superoxide dismutase (SOD) activity, glutathione (GSH) and nitric oxide (NO) levels, reduced the content of malonaldehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), mediated the prostaglandin E-2-cyclooxygenase-2 (PGE2-Cox-2) pathway, and mitigated inflammation and oxidative stress via blockade of proinflammatory mitogen-activated protein kinase-nuclear factor κB (MAPK/NF-κB) signaling pathways. Furthermore, ginsenoside Rh4 significantly enhanced the protein expression of B-cell lymphoma gene 2 (Bcl-2), decreased the protein expression of Bcl-2-associated X protein (Bax) and tumor necrosis factor receptor superfamily member 6 (Fas), and inhibited the number of apoptotic cells in gastric tissues. The present work demonstrated that ginsenoside Rh4 exerted a considerable gastroprotective effect against ethanol-induced gastric ulcers in rats.
Collapse
Affiliation(s)
- Yuqing Wu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yi Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
11
|
Ye J, Lyu TJ, Li LY, Liu Y, Zhang H, Wang X, Xi X, Liu ZJ, Gao JQ. Ginsenoside Re attenuates myocardial ischemia/reperfusion induced ferroptosis via miR-144-3p/SLC7A11. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154681. [PMID: 36893674 DOI: 10.1016/j.phymed.2023.154681] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ginsenoside Re is an active component in ginseng that confers protection against myocardial ischemia/reperfusion (I/R) injury. Ferroptosis is a type of regulated cell death found in various diseases. PURPOSE Our study aims to investigate the role of ferroptosis and the protective mechanism of Ginsenoside Re in myocardial ischemia/reperfusion. METHODS In the present study, we treated rats for five days with Ginsenoside Re, then established the myocardial ischemia/reperfusion injury rat model to detect molecular implications in myocardial ischemia/reperfusion regulation and to determine the underlying mechanism. RESULTS This study identifies the mechanism behind ginsenoside Re's effect on myocardial ischemia/reperfusion injury and its regulation of ferroptosis through miR-144-3p. Ginsenoside Re significantly reduced cardiac damage caused by ferroptosis during myocardial ischemia/reperfusion injury and glutathione decline. To determine how Ginsenoside Re regulated ferroptosis, we isolated exosomes from VEGFR2+ endothelial progenitor cells after ischemia/reperfusion injury and performed miRNA profiling to screen the miRNAs aberrantly expressed in the process of myocardial ischemia/reperfusion injury and ginsenoside Re treatment. We identified that miR-144-3p was upregulated in myocardial ischemia/reperfusion injury by luciferase report and qRT-PCR. We further confirmed that the solute carrier family 7 member 11 (SLC7A11) was the target gene of miR-144-3p by database analysis and western blot. In comparison with ferropstatin-1, a ferroptosis inhibitor, in vivo studies confirmed that ferropstatin-1 also diminished myocardial ischemia/reperfusion injury induced cardiac function damage. CONCLUSION We demonstrated that ginsenoside Re attenuates myocardial ischemia/reperfusion induced ferroptosis via miR-144-3p/SLC7A11.
Collapse
Affiliation(s)
- Jian Ye
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Tian-Jiao Lyu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Ling-Yan Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Ying Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Hong Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Xu Wang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Xin Xi
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Zong-Jun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China; Department of Cardiology, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai 200062, People's Republic of China.
| | - Jun-Qing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China.
| |
Collapse
|
12
|
In vitro hypoglycemic and antioxidant activities of steamed Polygonatum cyrtonema Hua with various steaming degrees: Relationship with homoisoflavonoids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
13
|
Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis. J Ginseng Res 2023; 47:237-245. [PMID: 36926610 PMCID: PMC10014178 DOI: 10.1016/j.jgr.2022.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022] Open
Abstract
Background Ginsenoside Rg2 (Rg2) has a variety of pharmacological activities and provides benefits during inflammation, cancer, and other diseases. However, there are no reports about the relationship between Rg2 and atherosclerosis. Methods We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to detect the cell viability of Rg2 in vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). The expression of inflammatory factors in HUVECs and the expression of phenotypic transformation-related marker in VSMCs were detected at mRNA levels. Western blot method was used to detect the expression of inflammation pathways and the expression of phenotypic transformation at the protein levels. The rat carotid balloon injury model was performed to explore the effect of Rg2 on inflammation and phenotypic transformation in vivo. Results Rg2 decreased the expression of inflammatory factors induced by lipopolysaccharide in HUVECs-without affecting cell viability. These events depend on the blocking regulation of NF-κB and p-ERK signaling pathway. In VSMCs, Rg2 can inhibit the proliferation, migration, and phenotypic transformation of VSMCs induced by platelet derived growth factor-BB (PDGF-BB)-which may contribute to its anti-atherosclerotic role. In rats with carotid balloon injury, Rg2 can reduce intimal proliferation after injury, regulate the inflammatory pathway to reduce inflammatory response, and also suppress the phenotypic transformation of VSMCs. Conclusion These results suggest that Rg2 can exert its anti-atherosclerotic effect at the cellular level and animal level, which provides a more sufficient basis for ginseng as a functional dietary regulator.
Collapse
|
14
|
Chen Q, Xiao Z, He QY, Zhang RR, Chen SX, Dong JW, Zhang H, Chen XF. Effect of Shenling Baizhu powder on immunity to diarrheal disease: A systematic review and meta-analysis. Front Pharmacol 2022; 13:938932. [PMID: 36188567 PMCID: PMC9516002 DOI: 10.3389/fphar.2022.938932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Diarrhea is one of the leading causes of death worldwide and is associated with immune dysfunction. The modulatory effects of Shenling Baizhu powder (SLBZS) on immune function in diarrheal disease have been validated in various animal models. However, the results of these studies have not been systematically evaluated. This study aimed to evaluate the preclinical data on SLBZS for the treatment of diarrhea from an immunological perspective. Methods: PubMed, Embase, Cochrane Library, CNKI, Wanfang Database, VIP, and Chinese Medicine Database were searched for all animal trials on SLBZS for the treatment of diarrhea published up to April 2022. Standardized mean differences (SMD) were used as effect sizes in the meta-analysis of continuous variables, including immune organs, immune cells, and immune cytokines. Subgroup analysis was performed according to animal species and disease models. The GRADE was used to assess the quality of evidence. Results: A total of 26 studies were included. Meta-analysis showed that compared to those in the model group, SLBZS significantly increased body weight [SMD = 1.54, 95% confidence interval (CI) (1.06, 2.02)], spleen mass [SMD = 1.42, 95% CI (0.98, 1.87)], thymus mass [SMD = 1.11, 95% CI (0.69, 1.53)], macrophage phagocytic capacity (SMD = 1.07, 95% CI [0.59, 1.54]), sIgA [SMD = 1.04, 95% CI (0.33, 1.74)], RBC-C3b-RR [SMD = 1.16, 95% CI (0.65, 1.67)], IL-2 [SMD = 1.52, 95% CI (0.89, 2.14)] and decreased diarrhea scores [SMD = -1.40, 95% CI (-2.03, -0.87)], RBC-IC-RR [SMD = -1.40, 95% CI (-1.94, -0.87)], and IL-8 [SMD = -2.80, 95% CI (-3.54, -2.07)]. Subgroup analysis showed that SLBZS regulated TNF-α, IL-1β, and IL-10 in rats and mice, and improved IL-6 and IL-10 in different diseases, with differences between subgroups (p < 0.05). Owing to heterogeneity, the reliability of the results remains to be verified. The quality of evidence was "very low". Conclusion: SLBZS improve diarrhea symptoms by enhancing immune function. It has curative effects with differences between different species and diseases, however, because the reporting in the original studies was too unclear to be assessed, the analysis was inconclusive. For higher quality evidences, future research should pay attention to the scientific rigor of the experimental design and the completeness of the reported results.
Collapse
Affiliation(s)
- Qian Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zheng Xiao
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qing-Ying He
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Rui-Rong Zhang
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Shu-Xian Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jia-Wei Dong
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiao-Fan Chen
- Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Lu F, Wu X, Hu H, Zhang J, Song X, Jin X, Chen L, Sun J, Chen H. Yangonin treats inflammatory osteoporosis by inhibiting the secretion of inflammatory factors and RANKL expression. Inflammopharmacology 2022; 30:1445-1458. [PMID: 35451724 DOI: 10.1007/s10787-022-00985-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES As the main cause of osteoporosis, abnormal activity of osteoclasts could disrupt the balance between bone resorption and formation. Moreover, up-regulation of nuclear factor-kappa ligand (RANKL) expression by chronic inflammation-mediated inflammatory factors might contribute to the differentiation of osteoclast precursor cells. Therefore, an anti-inflammatory agent named yangonin was presented for inhibiting osteoclast and relieving inflammatory osteoporosis through down-regulating inflammatory factors. METHODS We established a model of macrophage inflammation and then verified the anti-inflammatory effect of yangonin. The inhibitory effect of yangonin on osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining, Western blotting and quantitative real-time PCR (qRT-PCR). Finally, micro-CT, TRAP and hematoxylin-eosin (HE) staining were used to show the effect of yangonin on inflammatory osteoporosis in vivo. RESULTS Our results suggested that yangonin was able to reduce the secretion of inflammatory factors, down-regulate osteoclast-related genes such as TRAP, RANKL, cathepsin K (CTSK) and nuclear factor-activated T-cell 1 (NFATc1). Furthermore, it was demonstrated that yangonin could suppress the function of inflammatory cytokines in osteoclast differentiation and reporting, wherein NF-κB, AKT and downstream c-Fos/NFATc1 signaling pathways were involved. In an in vivo study, we implied that yangonin has a relieving effect on inflammatory osteoporosis. CONCLUSION Our research shows that yangonin down-regulates inflammatory factors and inhibits the bone-breaking effect of inflammation through NF-κB, AKT and downstream c-Fos/NFATc1 signaling pathways to achieve the purpose of treating inflammatory osteoporosis.
Collapse
Affiliation(s)
- Feng Lu
- Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Orthopedic, Taizhou Hospital of Zhejiang Province, Zhejiang University, No. 150 Ximen Street, Gucheng Street, Linhai City, Taizhou City, 317000, Zhejiang Province, China
| | - Xinhui Wu
- Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Huiqun Hu
- Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiapeng Zhang
- Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xiaoting Song
- Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xiangang Jin
- Zhejiang University School of Medicine, Hangzhou, 310009, China.,Department of Orthopedic, Taizhou Hospital of Zhejiang Province, Zhejiang University, No. 150 Ximen Street, Gucheng Street, Linhai City, Taizhou City, 317000, Zhejiang Province, China
| | - Lihua Chen
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jiacheng Sun
- Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Haixiao Chen
- Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Department of Orthopedic, Taizhou Hospital of Zhejiang Province, Zhejiang University, No. 150 Ximen Street, Gucheng Street, Linhai City, Taizhou City, 317000, Zhejiang Province, China. .,Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, China.
| |
Collapse
|
16
|
Zhang H, Zhang L, Yang C, Zhang Y, Li J, Zhang X, Chen J, Huang B, Zhao D, Li X, Zhang W, Qi B. Prevention Effect of Protopanaxadiol-Type Saponins Saponins and Protopanaxatriol-Type Saponins on Myelosuppression Mice Induced by Cyclophosphamide. Front Pharmacol 2022; 13:845034. [PMID: 35431938 PMCID: PMC9011104 DOI: 10.3389/fphar.2022.845034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/07/2022] [Indexed: 11/07/2022] Open
Abstract
Ginsenosides from ginseng are used as a therapeutic agent for various diseases. They enhance the immunomodulatory effect in cyclophosphamide (CP)-treated tumor disease. The structural characteristics of steroidal saponins are mainly divided into protopanaxadiol-type saponin (PDS) and protopanaxatriol-type saponin (PTS). At present, few researchers have studied which kind of saponin plays a more important role, thus, we compared the prevention effect of PDS and PTS on myelosuppression mice induced by CP. The components and contents of saponin and monosaccharide were analyzed by using ultra high performance liquid chromatography-charged aerosol detector (UPLC-CAD) and reversed phase-high performance liquid chromatography (RP-HPLC), respectively. Thirty-two mice were randomly divided into four groups, including control, model (CP), CP+PDS, and CP+PTS. The mice were orally administered with PDS or PTS for 28 days and then injected with CP saline solution on 25, 26, 27, and 28 days at a dose of 50 mg × kg-1. After the end of modeling, the whole blood of mice from the ophthalmic venous plexus was collected to detect routine blood tests, inflammatory cytokines, and hematopoiesis-related cytokines. Cell cycle and the apoptosis of bone marrow in the right femur were detected. The spleen and thymus were used to calculate the organ index and histological examination, and splenocytes were used to detect the percentage of CD4+ and CD25+ T cells. In the saponins analysis, PDS mainly included the Rb1, Rc, Rb2, and Rd of protopanaxadiol-type ginsenosides (accounted for 91.64%), and PTS mainly included the Re, Rg1, and Rf of protopanaxatriol-type ginsenosides (accounted for 75.46%). The animal results showed that both PDS and PTS improved the most indicators of myelosuppression mice induced by CP, including increased weight, blood cell numbers, hematopoiesis-related cytokines, and inflammatory cytokines; promoted the cell cycle of bone marrow and inhibited the apoptosis of bone marrow; elevated the spleen and thymus indexes and CD4+ count of splenocytes. The prevention effect of PDS was better than PTS in some indicators, such as red blood cells, hemoglobin, interleukin (IL)-1β, IL-4, IL-10, tumor necrosis factor-α, CD4+, and thymus index. These results suggest both PDS and PTS can prevent myelosuppression of mice induced by CP. Meanwhile, PDS and its metabolite showed higher bioavailability and bioactivity compared with PTS.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Lancao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Chunhui Yang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xu Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Baotai Huang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Zhang
- Office of Academic Research, Changchun University of Chinese Medicine, Changchun, China
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
17
|
Dyshlyuk LS, Fotina NV, Milentyeva IS, Ivanova SA, Izgarysheva NV, Golubtsova YV. Antimicrobial and antioxidant activity of Panax ginseng and Hedysarum neglectum root crop extracts. BRAZ J BIOL 2022; 84:e256944. [PMID: 35293535 DOI: 10.1590/1519-6984.256944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
In order to ensure the timely and uninterrupted supply of medicinal plant raw materials, the methods of cultivation of plant cell cultures, namely, the production of plant root cultures, are relevant. In this paper, the geroprotective potential of Hedysarum neglectum Ledeb and Panax ginseng C. A. Mey root cultures is studied. They were cultured under in vitro conditions by transforming the rhizome (H. neglectum) and seed seedlings (P. ginseng) with Agrobacterium rhizogenes 15834 Swiss. To identify the geroprotective potential, the antimicrobial disc-diffusion method and the antioxidant activity were analyzed by titration of KMnO4 extracts of plant root cultures. The qualitative and quantitative composition was analyzed using high-performance liquid chromatography, thin-layer chromatography, and gas chromatography with mass spectrometry. In the course of the work, the presence of antimicrobial and antioxidant activity of plant root culture extracts was established. Biologically active substances contained in extracts of Hedysarum neglectum Ledeb root crops and Panax ginseng C. A. Mey are characterized by geroprotective potential, so they can act as a source of natural antioxidants in the functional nutrition of the geroprotective orientation.
Collapse
Affiliation(s)
| | - N V Fotina
- Kemerovo State University, Kemerovo, Russia
| | | | | | | | | |
Collapse
|
18
|
Angwa LM, Jiang Y, Pei J, Sun D. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 2022; 200:1418-1441. [PMID: 34003450 DOI: 10.1007/s12011-021-02729-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Linet M Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Clinical Medicine, Kabarak University, Nakuru, 20157, Kenya
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
19
|
Lv J, Yao L, Li S, Dong J, Ye M, Fan D, Li C, Tian F, Li Y. New aniline derivatives from the volva of Phallus rubrovolvatus and their anti-inflammatory activity. Bioorg Chem 2022; 119:105577. [DOI: 10.1016/j.bioorg.2021.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
|
20
|
Integration of transcriptomics and metabolomics confirmed hepatoprotective effects of steamed shoot extracts of ginseng (Panax ginseng C.A. Meyer) on toxicity caused by overdosed acetaminophen. Biomed Pharmacother 2021; 143:112177. [PMID: 34555627 DOI: 10.1016/j.biopha.2021.112177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023] Open
Abstract
The study aimed, by integrating transcriptomics and metabolomics, to reveal novel biomarkers caused by overdosed acetaminophen (APAP) and liver protection substances procured by pre-administration of ginseng shoots extract (GSE). Totally 4918 genes and 127 metabolites were identified as differentially expressed genes and differential metabolites, respectively. According to KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment, such pathways as primary bile acid biosynthesis, bile secretion, retinol metabolism, histidine and several other amino-related metabolism were significantly altered by GSE and disturbed by subsequent overdosed APAP at the transcriptomic as well as metabolomic levels. Fifteen key biomarker metabolites related to these pathways were up-regulated in APAP-treated vs GSE-pretreated liver tissues, and were reported exerting anti-oxidant, anti-inflammatory, anti-apoptotic and/or immunomodulate functions, three of which even possessed direct hepatoprotection effects. Twenty five vital unigenes modulating these metabolites were further verified by correlation analysis and expression levels of fifteen of them were examined by qRT-PCR. Our findings indicate that GSE may be an effective dietary supplement for preventing the liver damage caused by the overdosed APAP.
Collapse
|
21
|
Zhuang T, Li W, Yang L, Wang Z, Ding L, Zhou M. Gut Microbiota: Novel Therapeutic Target of Ginsenosides for the Treatment of Obesity and Its Complications. Front Pharmacol 2021; 12:731288. [PMID: 34512356 PMCID: PMC8429618 DOI: 10.3389/fphar.2021.731288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, generally characterized by excessive lipid accumulation, is a metabolic threat worldwide due to its rapid growth in global prevalence. Ginsenosides are crucial components derived from natural plants that can confer metabolic benefits for obese patients. Considering the low bioavailability and degradable properties of ginsenosides in vivo, it should be admitted that the mechanism of ginsenosides on anti-obesity contribution is still obscure. Recently, studies have indicated that ginsenoside intervention has beneficial metabolic effects on obesity and its complications because it allows for the correction of gut microbiota dysbiosis and regulates the secretion of related endogenous metabolites. In this review, we summarize the role of gut microbiota in the pathogenetic process of obesity, and explore the mechanism of ginsenosides for ameliorating obesity, which can modulate the composition of gut microbiota by improving the metabolism of intestinal endogenous substances and alleviating the level of inflammation. Ginsenosides are expected to become a promising anti-obesity medical intervention in the foreseeable clinical settings.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Yu X, Li H, Lin D, Guo W, Xu Z, Wang L, Guan S. Ginsenoside Prolongs the Lifespan of C. elegans via Lipid Metabolism and Activating the Stress Response Signaling Pathway. Int J Mol Sci 2021; 22:9668. [PMID: 34575832 PMCID: PMC8465798 DOI: 10.3390/ijms22189668] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Panax ginseng is a valuable traditional Chinese medicine in Northeast China. Ginsenoside, the active component of ginseng, has not been investigated much for its effects on aging and its underlying mechanism(s) of action. Here, we investigated the effects of total ginsenoside (TG), a mixture of the primary active ginsenosides from Panax ginseng, on the lifespan of Caenorhabditis elegans (C. elegans). We found that TG extended the lifespan of C. elegans and reduced lipofuscin accumulation. Moreover, TG increased the survival of C. elegans in response to heat and oxidative stress via the reduction of ROS. Next, we used RNA-seq to fully define the antiaging mechanism(s) of TG. The KEGG pathway analysis showed that TG can prolong the lifespan and is involved in the longevity regulating pathway. qPCR showed that TG upregulated the expression of nrh-80, daf-12, daf-16, hsf-1 and their downstream genes. TG also reduced the fat accumulation and promoted lipid metabolism. Moreover, TG failed to extend the lifespan of daf-16 and hsf-1 mutants, highlighting their role in the antiaging effects of TG in C. elegans. The four main constitution of TG were then confirmed by HPLC and included ginsenoside Re, Rg1, Rg2 and Rd. Of the ginsenosides, only ginsenoside Rd prolonged the lifespan of C. elegans to levels comparable to TG. These findings provided mechanistic insight into the antiaging effects of ginsenoside in C. elegans.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (X.Y.); (L.W.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Hui Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Dongfa Lin
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Weizhuo Guo
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Zhihao Xu
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (X.Y.); (L.W.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Shuwen Guan
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (X.Y.); (L.W.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| |
Collapse
|
23
|
Bustos-Salgado P, Andrade-Carrera B, Domínguez-Villegas V, Díaz-Garrido N, Rodríguez-Lagunas MJ, Badía J, Baldomà L, Mallandrich M, Calpena-Campmany A, Garduño-Ramírez ML. Screening Anti-Inflammatory Effects of Flavanones Solutions. Int J Mol Sci 2021; 22:ijms22168878. [PMID: 34445584 PMCID: PMC8396196 DOI: 10.3390/ijms22168878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
There are a large number of remedies in traditional medicine focused on relieving pain and inflammation. Flavanones have been a potential source in the search for leading compounds and biologically active components, and they have been the focus of much research and development in recent years. Eysenhardtia platycarpa is used in traditional medicine for the treatment of kidney diseases, bladder infections, and diabetes mellitus. Many compounds have been isolated from this plant, such as flavones, flavanones, phenolic compounds, triterpenoid acids, chalcones, sugars, and fatty acids, among others. In this paper, natural flavanone 1 (extracted from Eysenhardtia platycarpa) as lead compound and flavanones 1a–1d as its structural analogues were screened for anti-inflammatory activity using Molinspiration® and PASS Online in a computational study. The hydro alcoholic solutions (FS) of flavanones 1, 1a–1d (FS1, FS1a–FS1d) were also assayed to investigate their in vivo anti-inflammatory cutaneous effect using two experimental models, a rat ear edema induced by arachidonic acid (AA) and a mouse ear edema induced by 12-O-tetradecanoylphorbol acetate (TPA). Histological studies and analysis of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 were also assessed in AA-inflamed rat ear tissue. The results showed that the flavanone hydro alcoholic solutions (FS) caused edema inhibition in both evaluated models. This study suggests that the evaluated flavanones will be effective when used in the future in skin pathologies with inflammation, with the results showing 1b and 1d to be the best.
Collapse
Affiliation(s)
- Paola Bustos-Salgado
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (M.M.)
| | - Berenice Andrade-Carrera
- Faculty of Chemical Sciences and Engineering, Autonomous University of the State of Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico; (B.A.-C.); (V.D.-V.)
| | - Valeri Domínguez-Villegas
- Faculty of Chemical Sciences and Engineering, Autonomous University of the State of Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico; (B.A.-C.); (V.D.-V.)
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (M.J.R.-L.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
- Research Institute Sant Joan De Déu (IR-SJD), University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (M.J.R.-L.); (J.B.); (L.B.)
- Institute of Research in Food Nutrition and Safety, University of Barcelona (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Josefa Badía
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (M.J.R.-L.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
- Research Institute Sant Joan De Déu (IR-SJD), University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (M.J.R.-L.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain
- Research Institute Sant Joan De Déu (IR-SJD), University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (M.M.)
| | - Ana Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (M.M.)
- Correspondence: (A.C.-C.); (M.L.G.-R.); Tel.: +34-93-402-4578 (A.C.-C.); +52-777-329-7997 (M.L.G.-R.)
| | - María Luisa Garduño-Ramírez
- Center for Chemical Research, Institute for Research Basic and Applied Sciences, Autonomous University of the State of Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
- Correspondence: (A.C.-C.); (M.L.G.-R.); Tel.: +34-93-402-4578 (A.C.-C.); +52-777-329-7997 (M.L.G.-R.)
| |
Collapse
|
24
|
Phytochemical Composition, Antioxidant Activity, and Enzyme Inhibitory Activities (α-Glucosidase, Xanthine Oxidase, and Acetylcholinesterase) of Musella lasiocarpa. Molecules 2021; 26:molecules26154472. [PMID: 34361630 PMCID: PMC8348986 DOI: 10.3390/molecules26154472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.
Collapse
|
25
|
Zhang M, Ren H, Li K, Xie S, Zhang R, Zhang L, Xia J, Chen X, Li X, Wang J. Therapeutic effect of various ginsenosides on rheumatoid arthritis. BMC Complement Med Ther 2021; 21:149. [PMID: 34034706 PMCID: PMC8145820 DOI: 10.1186/s12906-021-03302-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease which causes disability and threatens the health of humans. Therefore, it is of great significance to seek novel effective drugs for RA. It has been reported that various ginsenoside monomers are able to treat RA. However, it is still unclear which ginsenoside is the most effective and has the potential to be developed into an anti-RA drug. Methods The ginsenosides, including Rg1, Rg3, Rg5, Rb1, Rh2 and CK, were evaluated and compared for their therapeutic effect on RA. In in vitro cell studies, methotrexate (MTX) and 0.05% dimethyl sulfoxide (DMSO) was set as a positive control group and a negative control group, respectively. LPS-induced RAW264.7 cells and TNF-α-induced HUVEC cells were cultured with MTX, DMSO and six ginsenosides, respectively. Cell proliferation was analyzed by MTT assay and cell apoptosis was carried out by flow cytometry. CIA mice model was developed to evaluate the therapeutic efficacy of ginsenosides. The analysis of histology, immunohistochemistry, flow cytometry and cytokine detections of the joint tissues were performed to elucidate the action mechanisms of ginsenosides. Results All six ginsenosides showed good therapeutic effect on acute arthritis compared with the negative control group, Ginsenoside CK provided the most effective treatment ability. It could significantly inhibit the proliferation and promote the apoptosis of RAW 264.7 and HUVEC cells, and substantially reduce the swelling, redness, functional impairment of joints and the pathological changes of CIA mice. Meanwhile, CK could increase CD8 + T cell to down-regulate the immune response, decrease the number of activated CD4 + T cell and proinflammatory M1-macrophages, thus resulting in the inhibition of the secretion of proinflammatory cytokine such as TNF-α and IL-6. Conclusion Ginsenoside CK was proved to be a most potential candidate among the tested ginsenosides for the treatment of RA, with a strong anti-inflammation and immune modulating capabilities.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Hongwei Ren
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Kun Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shengsheng Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Ru Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Longlong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Xilin Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China. .,Institute of Integrative Medicine, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
26
|
Zheng Y, Tian C, Fan C, Xu N, Xiao J, Zhao X, Lu Z, Cao H, Liu J, Yu L. Sheng-Mai Yin exerts anti-inflammatory effects on RAW 264.7 cells and zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113497. [PMID: 33091492 DOI: 10.1016/j.jep.2020.113497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sheng-Mai Yin (SMY), a famous traditional Chinese medicine formula, has been commonly used in China for centuries to treat various diseases, such as inflammation-related diseases. However, the anti-inflammatory activity of SMY and its potential mechanisms still have not yet been clearly understood. AIM OF THE STUDY In this study, we aimed to determine the anti-inflammatory effect of SMY and explore its underlying mechanisms both on RAW 264.7 cells and zebrafish. MATERIALS AND METHODS The levels of pro-inflammatory cytokines IL-6 and TNF-α secreted by RAW 264.7 cells were measured by ELISA. The protein expressions of IκBα, p-IκBα (Ser32), STAT3 and p-STAT3 (Tyr705) were determined by Western blotting. And the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 macrophage cells was detected by confocal microscopy. Moreover, the in vivo anti-inflammatory effect of SMY and its potential mechanisms were further investigated by survival analysis, hematoxylin-eosin staining (H&E), observation of neutrophil migration and quantitative real-time PCR (qRT-PCR) analysis in zebrafish inflammatory models. RESULTS SMY reduced the release of IL-6 and TNF-α, inhibited the phosphorylation of IκBα and STAT3 as well as the nuclear translocation of NF-κB p65 in LPS-induced RAW 264.7 cells. Furthermore, the increased survival, decreased infiltration of inflammatory cells and the attenuated migration of neutrophils together suggested the in vivo anti-inflammatory effects of SMY. More importantly, SMY reduced the gene expressions of pro-inflammatory cytokines and suppressed LPS-induced up-regulation of NF-κB, IκBα and STAT3 in zebrafish inflammatory models. CONCLUSION SMY exerts significant anti-inflammatory effects with a potential mechanism of inhibiting the NF-κB and STAT3 signal pathways. Our findings suggest a scientific rationale of SMY to treat inflammatory diseases in clinic.
Collapse
Affiliation(s)
- Yuanru Zheng
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Chunyang Tian
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Chunlin Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Nishan Xu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Junjie Xiao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Xiaoyang Zhao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Zibin Lu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Junshan Liu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China.
| | - Linzhong Yu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China.
| |
Collapse
|
27
|
Evaluation of Metabolite Profiles of Ginseng Berry Pomace Obtained after Different Pressure Treatments and Their Correlation with the Antioxidant Activity. Molecules 2021; 26:molecules26020284. [PMID: 33429987 PMCID: PMC7827211 DOI: 10.3390/molecules26020284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Ginseng berry pomace (GBP) is a byproduct of ginseng berry processing and is rich in numerous bioactive components, including ginsenosides and their derivatives. The application of GBP as a beneficial biomaterial is currently limited. In this study, we aimed to evaluate their potential as a promising source of bioactive compounds using metabolite profiling. The GBP obtained after different ultra-high-pressure (UHP) treatments was analyzed by GC-TOF-MS and UHPLC-LTQ-Orbitrap-MS/MS. In multivariate analyses, we observed a clear demarcation between the control and UHP-treated groups. The results demonstrated that the relative abundance of primary metabolites and a few ginsenosides was higher in the control, whereas UHP treatment contained higher levels of fatty acids and sugars. Furthermore, GBPs were fractionated using different solvents, followed by UHPLC-LTQ-Orbitrap-MS/MS analyses. The heatmap revealed that phenolics (e.g., quercetin, kaempferol) and fewer polar ginsenosides (e.g., F4, Rh2) were abundant in the ethyl acetate fraction, whereas the levels of lignans (e.g., 7-hydroxysecoisolariciresinol, syringaresinol) and fatty acids (e.g., trihydroxy-octadecenoic acid, oxo-dihydroxy-octadecenoic acid) were high in chloroform. Correlation analysis showed that phenolics, less polar ginsenosides, and fatty acids were positively correlated with the antioxidant activity of GBP. Our study highlights GBP as a functional ingredient for the development of high-quality ginseng berry products.
Collapse
|
28
|
Hua M, Sun Y, Shao Z, Lu J, Lu Y, Liu Z. Functional soluble dietary fiber from ginseng residue: Polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. J Food Biochem 2020; 44:e13524. [PMID: 33073381 DOI: 10.1111/jfbc.13524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023]
Abstract
Ginseng (Panax ginseng C.A. Meyer) is the most famous edible Chinese herbal medicine. In the present study, soluble dietary fiber of ginseng (ginseng-SDF, 8.98% content) was extracted from ginseng residue, and its physicochemical characterization, structure, and biological activities were studied. Ginseng-SDF was an acidic heteropolysaccharide (uronic acid, 4.42% content) rich in protein, amino acids, and mineral elements. Glucose was its main monosaccharide composition (58.03%). Ginseng-SDF had a porous microstructure, a typical cellulose I structure and a large number of hydroxyl functional groups. These chemical composition and structural characteristics gave ginseng-SDF a good water solubility (98.56%), oil-holding capacity (OHC) (3.01 g/g), and biological activities, as the antioxidant activity (13.35 μM TE/g, 105.17 μM TE/g, 54.20 μM TE/g for DPPH, ABTs, and FRAP assays, respectively), glucose diffusion retardation index (GDRI, 33.33%-7.43%), and α-amylase/α-glucosidase inhibitory activities (IC50 , 6.70 mg/ml, and 4.89 mg/ml, respectively). The results suggested that ginseng residue is a valuable source of functional dietary fiber, and the ginseng-SDF has a potential use in antioxidant and hypoglycemic foods. PRACTICAL APPLICATIONS: Ginseng has long been popular as a health food in Asia, North America, and Europe. Ginseng residue is rich in polysaccharides, dietary fiber, proteins, and other components, which is also of great research value. However, there are few studies focus on the soluble dietary fiber of ginseng at present. The research shows that ginseng residue is a valuable source of functional dietary fiber. The chemical components and structural characteristics give ginseng-SDF a noteworthy antioxidant activity and enzyme inhibitory activity in vitro. These properties and biological activities indicate that ginseng-SDF has application value in antioxidant and hypoglycemic foods.
Collapse
Affiliation(s)
- Mei Hua
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zijun Shao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaxi Lu
- The Hague University of Applied Science, The Hague, the Netherlands
| | - Yushun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhengbo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
29
|
Gu I, Brownmiller C, Stebbins NB, Mauromoustakos A, Howard L, Lee SO. Berry Phenolic and Volatile Extracts Inhibit Pro-Inflammatory Cytokine Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB Signaling Pathway. Antioxidants (Basel) 2020; 9:antiox9090871. [PMID: 32942640 PMCID: PMC7554842 DOI: 10.3390/antiox9090871] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are a rich source of phytochemicals, especially phenolics well known for protective activity against many chronic diseases. Berries also contain a complex mixture of volatile compounds that are responsible for the unique aromas of berries. However, there is very limited information on the composition and potential health benefits of berry volatiles. In this study, we isolated phenolic and volatile fractions from six common berries and characterized them by HPLC/HPLC-MS and GC/GC-MS, respectively. Berry phenolic and volatile fractions were evaluated for an anti-inflammatory effect using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells by measuring levels of pro-inflammatory cytokines and the nuclear factor-kappa B (NF-κB) signaling pathway. Results showed that LPS-induced excessive production of nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which were inhibited by berry phenolic and volatile extracts. Moreover, berry phenolic and volatile extracts reduced the nuclear translocation of NF-κB by blocking the phosphorylation of p65 and degradation of IκBα. These findings showed that berry volatiles from six berries had comparable anti-inflammatory effects to berry phenolics through the suppression of pro-inflammatory mediators and cytokines expression via NF-κB down-regulation, despite being present in the fruit at a lower concentration.
Collapse
Affiliation(s)
- Inah Gu
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Cindi Brownmiller
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Nathan B. Stebbins
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Andy Mauromoustakos
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Luke Howard
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Sun-Ok Lee
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
- Correspondence: ; Tel.: +1-479-575-6921
| |
Collapse
|
30
|
Kim JG, Kim MJ, Lee JS, Sydara K, Lee S, Byun S, Jung SK. Smilax guianensis Vitman Extract Prevents LPS-Induced Inflammation by Inhibiting the NF-κB Pathway in RAW 264.7 Cells. J Microbiol Biotechnol 2020; 30:822-829. [PMID: 32238770 PMCID: PMC9728178 DOI: 10.4014/jmb.1911.11042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/22/2020] [Indexed: 12/15/2022]
Abstract
Nutraceutical treatments can reduce inflammation and prevent the development of inflammatory diseases. In this study, the anti-inflammatory effects of Smilax guianensis Vitman extract (SGE) were examined. SGE suppressed lipopolysaccharide (LPS)-mediated nitrite production in RAW 264.7 cells. SGE also prevented the LPS-induced expression of inducible nitric oxide synthase (iNOS) but not cyclooxygenase (COX)-2. Western blot analysis showed that SGE attenuated LPS-induced phosphorylation of IκB kinase (IKK), inhibitor of kappa B (IκB), and p65. Additionally, SGE inhibited LPS-induced IκB degradation in RAW 264.7 cells. Western blot analysis of the cytosolic and nuclear fractions, as well as immunofluorescence assay results, revealed that SGE suppressed LPS-induced p65 nuclear translocation in RAW 264.7 cells. Moreover, SGE reduced LPS-induced interleukin (IL)- 1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA expression and IL-1β and IL-6 protein expression in RAW 264.7 cells. Collectively, these results indicate that SGE suppresses the NF-κB signaling pathway and thereby inhibits the production of NO, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Ju Gyeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Ji Su Lee
- Division of Bioengineering, Incheon National University, Incheon 01, Republic of Korea
| | - Kongmany Sydara
- Ministry of Health, Institute of Traditional Medicine, Vientiane 116, Lao PDR
| | - Sangwoo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 311, Republic of Korea
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 4566, Republic of Korea,Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 415, Republic of Korea,Corresponding author Phone: +82-53-950-7764 Fax: +82-53-950-7762 E-mail:
| |
Collapse
|
31
|
Intra-Articular Route for the System of Molecules 14G1862 from Centella Asiatica: Pain Relieving and Protective Effects in a Rat Model of Osteoarthritis. Nutrients 2020; 12:nu12061618. [PMID: 32486519 PMCID: PMC7352185 DOI: 10.3390/nu12061618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Current pharmacological therapies for the management of chronic articular diseases are far from being satisfactory, so new strategies need to be investigated. We tested the intra-articular pain relieving properties of a system of molecules from a characterized Centella asiatica extract (14G1862) in a rat model of osteoarthritis induced by monoiodoacetate (MIA). 14G1862 (0.2–2 mg mL−1) was intra-articularly (i.a.) injected 7 days after MIA, behavioural and histological evaluations were performed 14, 30 and 60 days after treatments. Moreover, the effect of 14G1862 on nitrate production and iNOS expression in RAW 264.7 macrophages stimulated with LPS was assessed. In vitro, 14G1862 treatment attenuated LPS-induced NO production and iNOS expression in a comparable manner to celecoxib. In vivo, 14G1862 significantly reduced mechanical allodynia and hyperalgesia, spontaneous pain and motor alterations starting on day 14 up to day 60. The efficacy was higher or comparable to that evoked by triamcinolone acetonide (100 μg i.a.) used as reference drug. Histological evaluation highlighted the improvement of several morphological parameters in MIA + 14G1862-treated animals with particularly benefic effects on joint space and fibrin deposition. In conclusion, i.a. treatment with Centella asiatica is a candidate to be a novel effective approach for osteoarthritis therapy.
Collapse
|
32
|
Cheng C, Shou Q, Lang J, Jin L, Liu X, Tang D, Yang Z, Fu H. Gehua Jiecheng Decoction Inhibits Diethylnitrosamine-Induced Hepatocellular Carcinoma in Mice by Improving Tumor Immunosuppression Microenvironment. Front Pharmacol 2020; 11:809. [PMID: 32547401 PMCID: PMC7272686 DOI: 10.3389/fphar.2020.00809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Gehua Jiecheng Decoction (GHJCD), a famous traditional Chinese medicine, has been used in the prevention and treatment of precancerous lesion of liver cancer, but its active mechanism has not been reported. This study aimed to evaluate the therapeutic effect of GHJCD on diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in mice and the mechanism of this effect. We found that GHJCD effectively inhibited the occurrence of liver cancer and reduced the tumor area. The ratio of regulatory cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) in HCC microenvironment was down-regulated, whereas that of CD8 T and effective CD8 T cells was up-regulated. In addition, the expression levels of inflammatory factors IL-6, IL-10, TNF-α, and CCL-2 in the liver were inhibited, whereas those of the angiogenesis related molecules CD31 and VEGF were decreased. Moreover, WNT1, β-catenin, NF-kB, p-MAPK, p-AKT, and p-SRC content in the liver decreased, whereas APC content increased. These results suggested that GHJCD exerted a good inhibitory effect on liver cancer induced by DEN and thus may have a multi-target effect; GHJCD not only antagonized the immunosuppressive effect of the microenvironment of liver cancer but also exerted strong anti-inflammatory and antiangiogenesis effects.
Collapse
Affiliation(s)
- Changpei Cheng
- Affiliated First Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiyang Shou
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Lang
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Jin
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Liu
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongxin Tang
- Affiliated First Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhu Yang
- Affiliated First Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Huiying Fu
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
33
|
Chen Y, Zou S, Xu W, Sun Q, Yun L. Spectrum–effect relationship of antioxidant and anti‐inflammatory activities of
Laportea bulbifera
based on multivariate statistical analysis. Biomed Chromatogr 2020; 34:e4734. [DOI: 10.1002/bmc.4734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Yinrui Chen
- Guiyang College of Traditional Chinese Medicine Huaxi District, Guiyang P. R. China
| | - Shuhan Zou
- Guiyang College of Traditional Chinese Medicine Huaxi District, Guiyang P. R. China
| | - Wenfen Xu
- Guiyang College of Traditional Chinese Medicine Huaxi District, Guiyang P. R. China
| | - Qingwen Sun
- Guiyang College of Traditional Chinese Medicine Huaxi District, Guiyang P. R. China
| | - Li Yun
- Guiyang College of Traditional Chinese Medicine Huaxi District, Guiyang P. R. China
| |
Collapse
|