1
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025:10.1007/s00204-024-03930-z. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
2
|
Takaishi M, Ishimoto T, Kataoka S, Yagyu KI, Morisawa K, Kinjo S, Ikeo K, Noma S, Takahashi C, Okazaki Y, Tokunaga M, Kokubu C, Takeda J, Sano S. A Newly Identified Spliceosomal Protein AHED Is Essential for Homeostasis of the Epidermis. J Invest Dermatol 2025:S0022-202X(25)00111-3. [PMID: 39978585 DOI: 10.1016/j.jid.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
To identify genes that are essential for the functions of cells and organs, we established a homozygous mutant mouse embryonic stem cell bank from which we identified a gene, Ahed, that plays an essential role in hematopoiesis. In this study, we characterized the role of AHED in the skin by analyzing mice with an epidermis-specific Ahed deficiency. Those mice had apoptotic cells in their epidermis from the perinatal stage. Thereafter, they developed skin barrier disruptions over time, which caused lethality soon after birth. Experiments using inducible Ahed deletion in vivo and in vitro revealed that an Ahed deficiency led to keratinocyte apoptosis, impaired keratinocyte proliferation, and promoted dermatitis development. Because we found that AHED is a nuclear protein, we further revealed that AHED interacts with known spliceosomal proteins in HeLa cells. Moreover, altered splicing mRNA patterns were demonstrated in Ahed-deficient keratinocytes. These results suggest that AHED plays a crucial role in the maintenance of epidermal integrity, and more importantly, it contributes to mRNA splicing that is essential for multiple cell lineages.
Collapse
Affiliation(s)
- Mikiro Takaishi
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tatsushi Ishimoto
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Sayo Kataoka
- Science Research Center, Kochi University, Nankoku, Japan
| | - Ken-Ichi Yagyu
- Science Research Center, Kochi University, Nankoku, Japan
| | - Keiko Morisawa
- Science Research Center, Kochi University, Nankoku, Japan
| | - Sonoko Kinjo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shohei Noma
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Chitose Takahashi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | | | - Chikara Kokubu
- Child Healthcare and Genetic Science Laboratory, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junji Takeda
- Research Institute of Microbiology and Diseases, Osaka University, Osaka, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan.
| |
Collapse
|
3
|
Baniulyte G, McCann AA, Woodstock DL, Sammons MA. Crosstalk between paralogs and isoforms influences p63-dependent regulatory element activity. Nucleic Acids Res 2024; 52:13812-13831. [PMID: 39565223 DOI: 10.1093/nar/gkae1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression. The specific mechanisms controlling p63-dependent gene regulatory activity are not well understood. Here, we use massively parallel reporter assays (MPRA) to investigate how local DNA sequence context influences p63-dependent transcriptional activity. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, although binding of the p63 paralog, p53, drives a substantial proportion of that activity. p63RE sequence content and co-enrichment with other known activating and repressing transcription factors, including lineage-specific factors, correlates with differential p63RE-mediated activities. p63 isoforms dramatically alter transcriptional behavior, primarily shifting inactive regulatory elements towards high p63-dependent activity. Our analysis provides novel insight into how local sequence and cellular context influences p63-dependent behaviors and highlights the key, yet still understudied, role of transcription factor paralogs and isoforms in controlling gene regulatory element activity.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Abby A McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Dana L Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| |
Collapse
|
4
|
Wang H, Tang S, Wu Q, He Y, Zhu W, Xie X, Qin Z, Wang X, Zhou S, Yao S, Xu X, Guo C, Tong X, Han S, Chou YH, Wang Y, Wong KK, Yang CG, Chen L, Hu L, Ji H. Integrative study of lung cancer adeno-to-squamous transition in EGFR TKI resistance identifies RAPGEF3 as a therapeutic target. Natl Sci Rev 2024; 11:nwae392. [PMID: 39687207 PMCID: PMC11647589 DOI: 10.1093/nsr/nwae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 12/18/2024] Open
Abstract
Although adeno-to-squamous transition (AST) has been observed in association with resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in clinic, its causality, molecular mechanism and overcoming strategies remain largely unclear. We here demonstrate that squamous transition occurs concomitantly with TKI resistance in PC9-derived xenograft tumors. Perturbation of squamous transition via DNp63 overexpression or knockdown leads to significant changes in TKI responses, indicative of a direct causal link between squamous transition and TKI resistance. Integrative RNA-seq, ATAC-seq analyses and functional studies reveal that FOXA1 plays an important role in maintaining adenomatous lineage and contributes to TKI sensitivity. FOXM1 overexpression together with FOXA1 knockout fully recapitulates squamous transition and TKI resistance in both PC9 xenografts and patient-derived xenograft (PDX) models. Importantly, pharmacological inhibition of RAPGEF3 combined with EGFR TKI efficiently overcomes TKI resistance, especially in RAPGEF3high PDXs. Our findings provide novel mechanistic insights into squamous transition and therapeutic strategy to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Tang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qibiao Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200092, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyun Xie
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhen Qin
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyu Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shun Yao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chenchen Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Han
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yueh-Hung Chou
- Department of Anatomical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, NY 10016, USA
| | - Cai-Guang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Foffi E, Violante A, Pecorari R, Lena AM, Rugolo F, Melino G, Candi E. BRD4 sustains p63 transcriptional program in keratinocytes. Biol Direct 2024; 19:124. [PMID: 39605045 PMCID: PMC11600901 DOI: 10.1186/s13062-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown. Our functional analyses revealed changes in cellular proliferation and differentiation in keratinocytes depleted of either p63 or BRD4, which were further supported by using the BRD4 inhibitor JQ1. Transcriptomic analyses, chromatin immunoprecipitation, and RT-qPCR indicated a synergistic mechanism between p63 and BRD4 in regulating the transcription of keratinocyte-specific p63 target genes, including HK2, FOXM1, and EVPL. This study not only highlights the complex relationship between BRD4 and p53 family members but also suggests a role for BRD4 in maintaining keratinocyte functions. Our findings pave the way for further exploration of potential therapeutic applications of BRD4 inhibitors in treating skin disorders.
Collapse
Affiliation(s)
- E Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - A Violante
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - R Pecorari
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - A M Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - F Rugolo
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - G Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - E Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
| |
Collapse
|
6
|
Garcia NMG, Becerra JN, McKinney BJ, DiMarco AV, Wu F, Fitzgibbon M, Alvarez JV. APOBEC3 activity promotes the survival and evolution of drug-tolerant persister cells during acquired resistance to EGFR inhibitors in lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.02.547443. [PMID: 37461590 PMCID: PMC10350004 DOI: 10.1101/2023.07.02.547443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTPs) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of p63 in gefitinib-resistant cells reduces the expression of the ΔNp63 target genes IL1α/β and sensitizes these cells to the third-generation EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs, and suggest that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit.
Collapse
Affiliation(s)
- Nina Marie G Garcia
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | - Jessica N Becerra
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Brock J McKinney
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Ashley V DiMarco
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | - Feinan Wu
- Genomics and Bioinformatics, Fred Hutchinson Cancer Center
| | | | - James V Alvarez
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center
| |
Collapse
|
7
|
Tao J, Mao M, Lu Y, Deng L, Yu S, Zeng X, Jia W, Wu Z, Li C, Ma R, Chen H. ΔNp63α promotes radioresistance in esophageal squamous cell carcinoma through the PLEC-KEAP1-NRF2 feedback loop. Cell Death Dis 2024; 15:793. [PMID: 39500864 PMCID: PMC11538512 DOI: 10.1038/s41419-024-07194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers and is highly prevalent in China, exhibiting resistance to current treatments. ΔNP63α, the main isoform of p63, is frequently amplified in ESCC and contributes to therapeutic resistance, although the molecular mechanisms remain unknown. Here, we report that ΔNP63α is highly expressed in ESCC and is associated with radioresistance by reducing ROS level. Furthermore, ΔNP63α plays a critical role in radioresistance by directly transactivating the expression of PLEC. PLEC competitively interacts with KEAP1, resulting in the release of NRF2 from KEAP1 and its translocation from the cytosol to the nucleus, where it activates gene expression to facilitate ROS elimination. Additionally, radiotherapy-induced ROS also activates ΔNP63α expression via NRF2. Pharmacologic inhibition of NRF2 effectively improves radiosensitivity in nude mice. Collectively, our results strongly suggest that the ΔNp63α/PLEC/NRF2 axis plays a key role in radioresistance in ESCC, indicating that targeting NRF2 is a promising therapeutic approach for ESCC treatment.
Collapse
Affiliation(s)
- Jin Tao
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Mian Mao
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhai Lu
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Liyuan Deng
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shuhan Yu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofei Zeng
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Weikun Jia
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhiqiang Wu
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chenghua Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruidong Ma
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Hu Chen
- Department of Cardiothoracic Surgery, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| |
Collapse
|
8
|
Park DB, Jang DW, Kim DH, Kim SW. Development of a New Swine Model Resembling Human Empty Nose Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1559. [PMID: 39459347 PMCID: PMC11509164 DOI: 10.3390/medicina60101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Empty nose syndrome (ENS) is a debilitating condition that often results from traumatic or iatrogenic causes, such as nasal surgery. There are various conservative and surgical treatments for ENS, but their effectiveness remains uncertain. Therefore, the development of animal models that accurately mimic human ENS is essential for advancing effective treatment strategies. Materials and Methods: To investigate ENS development, turbinoplasty was performed in the nasal cavity of swine, entailing partial removal of the ventral turbinate using turbinectomy scissors followed by electrocauterization. After 56 days, samples were obtained for histological and morphological analyses. Results: A significant reduction in the volume of the ventral turbinate in the ENS model led to an expansion of the nasal cavity. Histological analysis revealed mucosal epithelial changes similar to those observed in ENS patients, including squamous cell metaplasia, goblet cell metaplasia, submucosal fibrosis, and glandular atrophy. Biomarkers related to these histopathological features were identified, and signals potentially contributing to squamous cell metaplasia were elucidated. Conclusions: The swine ENS model is anticipated to be instrumental in unraveling the pathogenesis of ENS and may also be useful for evaluating the effectiveness of various treatments for ENS.
Collapse
Affiliation(s)
- Dan Bi Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
La Banca V, De Domenico S, Nicolai S, Gatti V, Scalera S, Maugeri M, Mauriello A, Montanaro M, Pahnke J, Candi E, D’Amico S, Peschiaroli A. ABCC1 Is a ΔNp63 Target Gene Overexpressed in Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:8741. [PMID: 39201428 PMCID: PMC11354449 DOI: 10.3390/ijms25168741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The transcription factor ΔNp63 plays a pivotal role in maintaining the integrity of stratified epithelial tissues by regulating the expression of distinct target genes involved in lineage specification, cell stemness, cell proliferation and differentiation. Here, we identified the ABC transporter subfamily member ABCC1 as a novel ΔNp63 target gene. We found that in immortalized human keratinocytes and in squamous cell carcinoma (SCC) cells, ∆Np63 induces the expression of ABCC1 by physically occupying a p63-binding site (p63 BS) located in the first intron of the ABCC1 gene locus. In cutaneous SCC and during the activation of the keratinocyte differentiation program, ∆Np63 and ABCC1 levels are positively correlated raising the possibility that ABCC1 might be involved in the regulation of the proliferative/differentiative capabilities of squamous tissue. However, we did not find any gross alteration in the structure and morphology of the epidermis in humanized hABCC1 knock-out mice. Conversely, we found that the genetic ablation of ABCC1 led to a marked reduction in inflammation-mediated proliferation of keratinocytes, suggesting that ABCC1 might be involved in the regulation of keratinocyte proliferation upon inflammatory/proliferative signals. In line with these observations, we found a significant increase in ABCC1 expression in squamous cell carcinomas (SCCs), a tumor type characterized by keratinocyte hyper-proliferation and a pro-inflammatory tumor microenvironment. Collectively, these data uncover ABCC1 as an additional ∆Np63 target gene potentially involved in those skin diseases characterized by dysregulation of proliferation/differentiation balance.
Collapse
Affiliation(s)
- Veronica La Banca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Sara De Domenico
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Sara Nicolai
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Veronica Gatti
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Stefano Scalera
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.S.); (M.M.)
| | - Marcello Maugeri
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics Division, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.S.); (M.M.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab/Section of Neuropathology Research, Department of Pathology (PAT), Medical Faculty/Clinical Medicine (KlinMed), Clinics for Laboratory Medicine (KLM), University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway;
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, The Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv 6997801, Israel
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.L.B.); (S.D.D.); (A.M.); (E.C.)
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166 Rome, Italy
| | - Silvia D’Amico
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy; (S.N.); (V.G.)
| |
Collapse
|
10
|
Lin CH, Cheng PL, Chuang CY, Kang YT, Lee LW, Hsiao TH, Hsu CP. The Expression of TP63 as a Biomarker of Early Recurrence in Resected Esophageal Squamous Cell Carcinoma after Neoadjuvant Chemoradiotherapy. Biomedicines 2024; 12:1101. [PMID: 38791062 PMCID: PMC11117789 DOI: 10.3390/biomedicines12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Esophageal cancer ranks among the ten most common cancers worldwide. Despite the adoption of neoadjuvant concurrent chemoradiotherapy (nCCRT) followed by surgery as the standard treatment approach in recent years, the local recurrence rate remains high. In this study, we employed RNA-seq to investigate distinctive gene expression profiles in esophageal squamous cell carcinoma (ESCC) with or without recurrence following a standard treatment course. Our findings indicate that recurrent ESCC exhibits heightened keratinizing and epidermis development activity compared to non-recurrent ESCC. We identified TP63 as a potential candidate for distinguishing clinical outcomes. Furthermore, immunohistochemistry confirmed the trend of TP63 overexpression in ESCC recurrence. Patients with elevated TP63 expression had poorer overall survival and lower 3-year recurrence-free survival. This study underscores the potential of TP63 as a biomarker for detecting cancer recurrence and suggests its role in guiding future treatment options.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (C.-H.L.); (C.-Y.C.)
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Cheng-Yeh Chuang
- Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (C.-H.L.); (C.-Y.C.)
| | - Yu-Ting Kang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (Y.-T.K.); (L.-W.L.)
| | - Li-Wen Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (Y.-T.K.); (L.-W.L.)
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (Y.-T.K.); (L.-W.L.)
- Research Center for Biomedical Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Ping Hsu
- Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (C.-H.L.); (C.-Y.C.)
- Division of Thoracic Surgery, Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| |
Collapse
|
11
|
Nakashoji A, Haratake N, Bhattacharya A, Mao W, Xu K, Wang K, Daimon T, Ozawa H, Shigeta K, Fushimi A, Yamashita N, Morimoto Y, Shimokawa M, Saito S, Egloff AM, Uppaluri R, Long MD, Kufe D. Identification of MUC1-C as a Target for Suppressing Progression of Head and Neck Squamous Cell Carcinomas. CANCER RESEARCH COMMUNICATIONS 2024; 4:1268-1281. [PMID: 38619287 PMCID: PMC11092937 DOI: 10.1158/2767-9764.crc-24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCC). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCC). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and IFN regulatory factors, and (iii) downstream IFN-stimulated genes. MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity, and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by single-cell RNA sequencing analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression. SIGNIFICANCE This work reports a previously unrecognized role for MUC1-C in driving STAT1-mediated chronic inflammation with the progression of HNSCC and identifies MUC1-C as a druggable target for advanced HNSCC treatment.
Collapse
Affiliation(s)
- Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Weipu Mao
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kangjie Xu
- Central Laboratory Department, Binhai County People's Hospital, Yancheng, P.R. China
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shin Saito
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ann Marie Egloff
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ravindra Uppaluri
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
McCann AA, Baniulyte G, Woodstock DL, Sammons MA. Context dependent activity of p63-bound gene regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593326. [PMID: 38766006 PMCID: PMC11100809 DOI: 10.1101/2024.05.09.593326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The p53 family of transcription factors regulate numerous organismal processes including the development of skin and limbs, ciliogenesis, and preservation of genetic integrity and tumor suppression. p53 family members control these processes and gene expression networks through engagement with DNA sequences within gene regulatory elements. Whereas p53 binding to its cognate recognition sequence is strongly associated with transcriptional activation, p63 can mediate both activation and repression. How the DNA sequence of p63-bound gene regulatory elements is linked to these varied activities is not yet understood. Here, we use massively parallel reporter assays (MPRA) in a range of cellular and genetic contexts to investigate the influence of DNA sequence on p63-mediated transcription. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, with those sites bound by p63 more frequently or adhering closer to canonical p53 family response element sequences driving higher transcriptional output. The most active regulatory elements are those also capable of binding p53. Elements uniquely bound by p63 have varied activity, with p63RE-mediated repression associated with lower overall GC content in flanking sequences. Comparison of activity across cell lines suggests differential activity of elements may be regulated by a combination of p63 abundance or context-specific cofactors. Finally, changes in p63 isoform expression dramatically alters regulatory element activity, primarily shifting inactive elements towards a strong p63-dependent activity. Our analysis of p63-bound gene regulatory elements provides new insight into how sequence, cellular context, and other transcription factors influence p63-dependent transcription. These studies provide a framework for understanding how p63 genomic binding locally regulates transcription. Additionally, these results can be extended to investigate the influence of sequence content, genomic context, chromatin structure on the interplay between p63 isoforms and p53 family paralogs.
Collapse
Affiliation(s)
- Abby A. McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Dana L. Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Morgan A. Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| |
Collapse
|
13
|
Wang J, Shang Y, Wang Y, Li Y, Wang L, Huang S, Lyu X. Nasopharyngeal carcinoma with non-squamous phenotype may be a variant of nasopharyngeal squamous cell carcinoma after inhibition of EGFR/PI3K/AKT/mTOR pathway. Histol Histopathol 2024; 39:647-657. [PMID: 37971211 DOI: 10.14670/hh-18-673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a cancerous tumor that develops in the nasopharynx epithelium and typically has squamous differentiation. The squamous phenotype is evident in immunohistochemistry, with diffuse nuclear positivity for p63 and p40. Nonetheless, a few NPCs have been identified by clinicopathological diagnosis that do not exhibit the squamous phenotype; these NPCs are currently referred to as non-squamous immunophenotype nasopharyngeal carcinomas (NSNPCs). In a previous work, we have revealed similarities between the histological appearance, etiology, and gene alterations of NSNPC and conventional NPC. According to ultrastructural findings, NSNPC still falls under the category of non-keratinized squamous cell carcinoma that is undifferentiated. NSNPC has an excellent prognosis and a low level of malignancy, according to a retrospective investigation. Based on prior research, we investigated the molecular mechanism of NSNPC not expressing the squamous phenotype and its biological behavior. IHC was used to determine the expression of EGFR, PI3K, AKT, p-AKT, mTOR, p-mTOR, Notch, STAT3 and p-STAT3 in a total of 20 NSNPC tissue samples and 20 classic NPC tissue samples. We obtained human NPC cell lines (CNE-2,5-8F) and used EGFR overexpression plasmid and shRNAs to transfect them. To find out whether mRNA and proteins were expressed in the cells, we used Western blotting and qRT-PCR. Cell biological behavior was discovered using the CCK-8 assay, cell migration assay, and cell invasion assay. EGFR, PI3K, p-AKT and p-mTOR proteins were lowly expressed in NSNPC tissues by immunohistochemistry, compared with classical NPC. In the classical NPC cell lines CNE-2 and 5-8F, overexpression EGFR can up-regulate the expression of p63 through the PI3K/AKT/mTOR pathway, and promote the proliferation, migration, and invasion of nasopharyngeal carcinoma cells. At the same time, knockout of EGFR can down-regulate p63 expression through the PI3K/AKT/mTOR pathway, and inhibit the proliferation, migration, and invasion of nasopharyngeal carcinoma cells. The lack of p63 expression in NSNPC was linked with the inhibition of the EGFR/PI3K/AKT/mTOR pathway, and NSNPC may be a variant of classical NPC.
Collapse
Affiliation(s)
- Jiahe Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Shang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujiao Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ye Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sixia Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinquan Lyu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
14
|
Huang L, Woods CM, Dharmawardana N, Michael MZ, Ooi EH. The mechanisms of action of metformin on head and neck cancer in the pre-clinical setting: a scoping review. Front Oncol 2024; 14:1358854. [PMID: 38454932 PMCID: PMC10917904 DOI: 10.3389/fonc.2024.1358854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
This scoping review identifies the mechanistic pathways of metformin when used to treat head and neck cancer cells, in the pre-clinical setting. Understanding the underlying mechanisms will inform future experimental designs exploring metformin as a potential adjuvant for head and neck cancer. This scoping review was conducted according to the Joanna-Briggs Institute framework. A structured search identified 1288 studies, of which 52 studies fulfilled the eligibility screen. The studies are presented in themes addressing hallmarks of cancer. Most of the studies demonstrated encouraging anti-proliferative effects in vitro and reduced tumor weight and volume in animal models. However, a few studies have cautioned the use of metformin which supported cancer cell growth under certain conditions.
Collapse
Affiliation(s)
- Lucy Huang
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Otolaryngology Head and Neck Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Charmaine M. Woods
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Otolaryngology Head and Neck Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Nuwan Dharmawardana
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Otolaryngology Head and Neck Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Michael Z. Michael
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Gastroenterology and Hepatology, Flinders Medical Centre, Adelaide, SA, Australia
| | - Eng Hooi Ooi
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Otolaryngology Head and Neck Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
15
|
Fondevila MF, Novoa E, Gonzalez-Rellan MJ, Fernandez U, Heras V, Porteiro B, Parracho T, Dorta V, Riobello C, da Silva Lima N, Seoane S, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Senra A, Leiva M, Marcos M, Sabio G, Perez-Fernandez R, Dieguez C, Prevot V, Schwaninger M, Woodhoo A, Martinez-Chantar ML, Schwabe R, Cubero FJ, Varela-Rey M, Crespo J, Iruzubieta P, Nogueiras R. p63 controls metabolic activation of hepatic stellate cells and fibrosis via an HER2-ACC1 pathway. Cell Rep Med 2024; 5:101401. [PMID: 38340725 PMCID: PMC10897550 DOI: 10.1016/j.xcrm.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-β1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magdalena Leiva
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Marcos
- University of Salamanca, Department of Internal Medicine, University Hospital of Salamanca-IBSAL, 37008 Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, European Genomic Institute for Diabetes (EGID), 59000 Lille, France
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, 23562 Lübeck, Germany
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Robert Schwabe
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Francisco J Cubero
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, 15702 Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Odrzywolski A, Tüysüz B, Debeer P, Souche E, Voet A, Dimitrov B, Krzesińska P, Vermeesch JR, Tylzanowski P. Gollop-Wolfgang Complex Is Associated with a Monoallelic Variation in WNT11. Genes (Basel) 2024; 15:129. [PMID: 38275609 PMCID: PMC10815061 DOI: 10.3390/genes15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Gollop-Wolfgang complex (GWC) is a rare congenital limb anomaly characterized by tibial aplasia with femur bifurcation, ipsilateral bifurcation of the thigh bone, and split hand and monodactyly of the feet, resulting in severe and complex limb deformities. The genetic basis of GWC, however, has remained elusive. We studied a three-generation family with four GWC-affected family members. An analysis of whole-genome sequencing results using a custom pipeline identified the WNT11 c.1015G>A missense variant associated with the phenotype. In silico modelling and an in vitro reporter assay further supported the link between the variant and GWC. This finding further contributes to mapping the genetic heterogeneity underlying split hand/foot malformations in general and in GWC specifically.
Collapse
Affiliation(s)
- Adrian Odrzywolski
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey
| | - Philippe Debeer
- Locomotor and Neurological Disorders, Department of Development and Regeneration, KU Leuven, B-3000 Leuven, Belgium
| | - Erika Souche
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001 Heverlee, Belgium
| | - Boyan Dimitrov
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Paulina Krzesińska
- Laboratory of Molecular Genetics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joris Robert Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Przemko Tylzanowski
- Laboratory of Molecular Genetics, Medical University of Lublin, 20-093 Lublin, Poland
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
17
|
Ma N, Zhang M, Xu G, Zhang L, Luo M, Luo M, Wang X, Tang H, Wang X, Liu L, Zhong X, Feng J, Li Y. Mesenchymal Stem Cell-derived Type II Alveolar Epithelial Progenitor Cells Attenuate LPS-induced Acute Lung Injury and Reduce P63 Expression. Curr Stem Cell Res Ther 2024; 19:245-256. [PMID: 37138488 DOI: 10.2174/1574888x18666230501234836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 05/05/2023]
Abstract
AIM Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe clinical respiratory-failure disease mainly characterized by acute damage to the alveolar epithelium and pulmonary vascular endothelial cells. Stem cell therapy has emerged as a potential regenerative strategy for ARDS/ALI, however, the outcome is limited, and the underlying mechanisms are unclear. INTRODUCTION We established a differentiation system for bone marrow-derived mesenchymal stem cellderived (BM-MSC) type II alveolar epithelial progenitor cells (AECIIs) and assessed their regulatory effects on lipopolysaccharide (LPS)-induced ALI. METHODS We induced BM-MSC differentiation into AECIIs using a specific conditioned medium. After 26 days of differentiation, 3×105 BM-MSC-AECIIs were used to treat mice with LPS-induced ALI through tracheal injection. RESULTS After tracheal injection, BM-MSC-AECIIs migrated to the perialveolar area and reduced LPSinduced lung inflammation and pathological injury. RNA-seq suggested that P63 protein was involved in the effects of BM-MSC-AECIIs on lung inflammation. CONCLUSION Our results suggest that BM-MSC-AECIIs may reduce LPS-induced acute lung injury by decreasing P63 expression.
Collapse
Affiliation(s)
- Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mengwei Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lifang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Min Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meihua Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Liu
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuying Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
18
|
Wieland R, Adhikari P, North J. The utility of p63, CK7, and CAM5.2 staining in differentiating pagetoid intraepidermal carcinomas. J Cutan Pathol 2023; 50:1110-1115. [PMID: 37203381 DOI: 10.1111/cup.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extramammary Paget disease (EMPD), pagetoid squamous cell carcinoma in situ (PSCCIS), and Paget disease of the breast (PD) are intraepidermal carcinomas with overlapping histopathologic features. CK7 and CAM5.2 stains are frequently utilized to distinguish PSCCIS from EMPD and PD. However, some cases of PSCCIS can stain positively for CAM5.2 and CK7, indicating a potential pitfall with these stains. p63 has been shown to distinguish PSCCIS from EMPD. We assessed p63 staining in PD and compared it to p63 staining of PSCCIS and EMPD. METHODS A retrospective search for 15 examples each of PSCCIS, EMPD, and PD with remaining tissue in the paraffin block was performed. The diagnosis was confirmed by a board-certified dermatopathologist and immunostaining for p63, CK7, and CAM5.2 was performed. Staining >55% was scored as positive. Staining <55% was scored as negative and an approximate percentage of positive cells was recorded. RESULTS Diffuse nuclear expression for p63 was detected in 100% (15/15) of PSCCIS cases, 0% (0/15) of PD cases, and 0% (0/15) of EMPD cases. CK7 and CAM5.2 stains were positive in 100% of PD. CAM5.2 was positive in 100% of EMPD and CK7 was positive in 93% of EMPD. CAM5.2 was positive in 0% of PSCCIS biopsy specimens, but partial staining was seen in 20%. CK7 was positive in 13%, but partial staining was seen in 47%. CONCLUSIONS p63 immunostaining is a highly sensitive and specific method for differentiating between PSCCIS and PD or EMPD. While CAM5.2 and CK7 are also useful ancillary stains in this differential diagnosis, false-positive and false-negative staining occurs with these two markers.
Collapse
Affiliation(s)
- Rebekah Wieland
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Prajesh Adhikari
- Department of Pathology, Creighton University School of Medicine, Phoenix, Arizona, USA
| | - Jeffrey North
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Peng A, Lin X, Yang Q, Sun Y, Chen R, Liu B, Yu X. ΔNp63α facilitates proliferation and migration, and modulates the chromatin landscape in intrahepatic cholangiocarcinoma cells. Cell Death Dis 2023; 14:777. [PMID: 38012140 PMCID: PMC10682000 DOI: 10.1038/s41419-023-06309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
p63 plays a crucial role in epithelia-originating tumours; however, its role in intrahepatic cholangiocarcinoma (iCCA) has not been completely explored. Our study revealed the oncogenic properties of p63 in iCCA and identified the major expressed isoform as ΔNp63α. We collected iCCA clinical data from The Cancer Genome Atlas database and analyzed p63 expression in iCCA tissue samples. We further established genetically modified iCCA cell lines in which p63 was overexpressed or knocked down to study the protein function/function of p63 in iCCA. We found that cells overexpressing p63, but not p63 knockdown counterparts, displayed increased proliferation, migration, and invasion. Transcriptome analysis showed that p63 altered the iCCA transcriptome, particularly by affecting cell adhesion-related genes. Moreover, chromatin accessibility decreased at p63 target sites when p63 binding was lost and increased when p63 binding was gained. The majority of the p63 bound sites were located in the distal intergenic regions and showed strong enhancer marks; however, active histone modifications around the Transcription Start Site changed as p63 expression changed. We also detected an interaction between p63 and the chromatin structural protein YY1. Taken together, our results suggest an oncogenic role for p63 in iCCA.
Collapse
Affiliation(s)
- Anghui Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Xiaowen Lin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yihao Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Ruiyan Chen
- Department of Dermatology, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
| | - Xinyang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
| |
Collapse
|
20
|
Cappello A, Tosetti G, Smirnov A, Ganini C, Yang X, Shi Y, Wang Y, Melino G, Bernassola F, Candi E. p63 orchestrates serine and one carbon metabolism enzymes expression in head and neck cancer. Biol Direct 2023; 18:73. [PMID: 37946250 PMCID: PMC10636826 DOI: 10.1186/s13062-023-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is characterized by high proliferation and limited differentiation. The altered expression of the p53 family members, and specifically of p63, represents a pivotal event in the pathogenesis of HNSCC. Physiologically, p63 affects metabolism through the direct transactivation of the enzyme hexokinase 2, and subsequently controls the proliferation of epithelial cells; nonetheless, its role in cancer metabolism is still largely unclear. The high energetic demand of cancer and the consequent needs of a metabolic reshape, also involve the serine and glycine catabolic and anabolic pathways, including the one carbon metabolism (OCM), to produce energetic compounds (purines) and to maintain cellular homeostasis (glutathione and S-adenosylmethionine). RESULTS The involvement in serine/glycine starvation by other p53 family members has been reported, including HNSCC. Here, we show that in HNSCC p63 controls the expression of the enzymes regulating the serine biosynthesis and one carbon metabolism. p63 binds the promoter region of genes involved in the serine biosynthesis as well as in the one carbon metabolism. p63 silencing in a HNSCC cell line affects the mRNA and protein levels of these selected enzymes. Moreover, the higher expression of TP63 and its target enzymes, negatively impacts on the overall survival of HNSCC patients. CONCLUSION These data indicate a direct role of p63 in the metabolic regulation of HNSCC with significant clinical effects.
Collapse
Affiliation(s)
- Angela Cappello
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Giulia Tosetti
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - Carlo Ganini
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
- Division of Medical Oncology, A.O.U. Policlinico di Bari, 70124, Bari, Italy
| | - Xue Yang
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 201805, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Soochow University, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
| |
Collapse
|
21
|
Oyelakin A, Sosa J, Nayak K, Glathar A, Gluck C, Sethi I, Tsompana M, Nowak N, Buck M, Romano RA, Sinha S. An integrated genomic approach identifies follistatin as a target of the p63-epidermal growth factor receptor oncogenic network in head and neck squamous cell carcinoma. NAR Cancer 2023; 5:zcad038. [PMID: 37492374 PMCID: PMC10365026 DOI: 10.1093/narcan/zcad038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Although numerous putative oncogenes have been associated with the etiology of head and neck squamous cell carcinoma (HNSCC), the mechanisms by which these oncogenes and their downstream targets mediate tumor progression have not been fully elucidated. We performed an integrative analysis to identify a crucial set of targets of the oncogenic transcription factor p63 that are common across multiple transcriptomic datasets obtained from HNSCC patients, and representative cell line models. Notably, our analysis revealed FST which encodes follistatin, a secreted glycoprotein that inhibits the transforming growth factor TGFβ/activin signaling pathways, to be a direct transcriptional target of p63. In addition, we found that FST expression is also driven by epidermal growth factor receptor EGFR signaling, thus mediating a functional link between the TGF-β and EGFR pathways. We show through loss- and gain-of-function studies that FST predominantly imparts a tumor-growth and migratory phenotype in HNSCC cells. Furthermore, analysis of single-cell RNA sequencing data from HNSCC patients unveiled cancer cells as the dominant source of FST within the tumor microenvironment and exposed a correlation between the expression of FST and its regulators with immune infiltrates. We propose FST as a prognostic biomarker for patient survival and a compelling candidate mediating the broad effects of p63 on the tumor and its associated microenvironment.
Collapse
Affiliation(s)
- Akinsola Oyelakin
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer Sosa
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kasturi Bala Nayak
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Alexandra Glathar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christian Gluck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Isha Sethi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Maria Tsompana
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Norma Nowak
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael Buck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
22
|
Puttaraju MK, Nitin P. Conceptual model for progression of oral cancer - our perspective. Am J Cancer Res 2023; 13:3650-3658. [PMID: 37693161 PMCID: PMC10492112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/28/2022] [Indexed: 09/12/2023] Open
Abstract
Oral cancer was and still is an underestimated disease in terms of incidence and mortality rates. As a result, requires early detection and urgent prevention. This article describes a framework that covers the significant stages of conceptual development of oral cancer. Conceptual model is useful in understanding the pathogenesis and understand the disease processes. This article signifies information on various aspects of perspective risk and the role played by it. Article covers the following aspects: what are the perspective risks, what changes it causes to normal cell, what are the direct and indirect effects on normal cell, cellular changes seen with normal cell when affected with perspective risk, transformation of normal cell to oral potentially malignant disorders (OPMD) and changes seen during transformation into cancer. Understanding the conceptual model of oral cancer transformation will be a paradigm shift in future research in the field and early management of oral cancer, which will reduce the disease burden on the nation.
Collapse
Affiliation(s)
- Mahesh Kagarae Puttaraju
- Department of Oral Medicine and Radiology, JSS Dental College & Hospital, JSS Academy of Higher Education & ResearchMysuru 570015, Karnataka, India
| | - Priyanka Nitin
- Department of Oral Pathology and Microbiology, JSS Dental College & Hospital, JSS Academy of Higher Education & ResearchMysuru 570015, Karnataka, India
| |
Collapse
|
23
|
Sakakibara N, Clavijo PE, Sievers C, Gray VC, King KE, George AL, Ponnamperuma RM, Walter BA, Chen Z, Van Waes C, Allen CT, Weinberg WC. Oncogenic Ras and ΔNp63α cooperate to recruit immunosuppressive polymorphonuclear myeloid-derived suppressor cells in a mouse model of squamous cancer pathogenesis. Front Immunol 2023; 14:1200970. [PMID: 37638000 PMCID: PMC10449460 DOI: 10.3389/fimmu.2023.1200970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Amplification of human chromosome 3q26-29, which encodes oncoprotein ΔNp63 among other isoforms of the p63 family, is a feature common to squamous cell carcinomas (SCCs) of multiple tissue origins. Along with overexpression of ΔNp63, activation of the protooncogene, RAS, whether by overexpression or oncogenic mutation, is frequently observed in many cancers. In this study, analysis of transcriptome data from The Cancer Genome Atlas (TCGA) demonstrated that expression of TP63 mRNA, particularly ΔNp63 isoforms, and HRAS are significantly elevated in advanced squamous cell carcinomas of the head and neck (HNSCCs), suggesting pathological significance. However, how co-overexpressed ΔNp63 and HRAS affect the immunosuppressive tumor microenvironment (TME) is incompletely understood. Methods Here, we established and characterized an immune competent mouse model using primary keratinocytes with retroviral-mediated overexpression of ΔNp63α and constitutively activated HRAS (v-rasHa G12R) to evaluate the role of these oncogenes in the immune TME. Results In this model, orthotopic grafting of wildtype syngeneic keratinocytes expressing both v-rasHa and elevated levels of ΔNp63α consistently yield carcinomas in syngeneic hosts, while cells expressing v-rasHa alone yield predominantly papillomas. We found that polymorphonuclear (PMN) myeloid cells, experimentally validated to be immunosuppressive and thus representing myeloid-derived suppressor cells (PMN-MDSCs), were significantly recruited into the TME of carcinomas arising early following orthotopic grafting of ΔNp63α/v-rasHa-expressing keratinocytes. ΔNp63α/v-rasHa-driven carcinomas expressed higher levels of chemokines implicated in recruitment of MDSCs compared to v-rasHa-initiated tumors, providing a heretofore undescribed link between ΔNp63α/HRAS-driven carcinomas and the development of an immunosuppressive TME. Conclusion These results support the utilization of a genetic carcinogenesis model harboring specific genomic drivers of malignancy to study mechanisms underlying the development of local immunosuppression.
Collapse
Affiliation(s)
- Nozomi Sakakibara
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Paúl E. Clavijo
- Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Cem Sievers
- Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Veronica C. Gray
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Kathryn E. King
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Andrea L. George
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Roshini M. Ponnamperuma
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Beatriz A. Walter
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, MD, United States
| | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Clint T. Allen
- Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - Wendy C. Weinberg
- Office of Biotechnology Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD, United States
| |
Collapse
|
24
|
Alkhatib DZR, Thi Kim Truong T, Fujii S, Hasegawa K, Nagano R, Tajiri Y, Kiyoshima T. Stepwise activation of p63 and the MEK/ERK pathway induces the expression of ARL4C to promote oral squamous cell carcinoma cell proliferation. Pathol Res Pract 2023; 246:154493. [PMID: 37141698 DOI: 10.1016/j.prp.2023.154493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Carcinogenesis is a multistep process wherein cells accumulate multiple genetic alterations and progress to a more malignant phenotype. It has been proposed that sequential accumulation of gene abnormalities in specific genes drives the transition from non-tumorous epithelia through a preneoplastic lesion/benign tumor to cancer. Histologically, oral squamous cell carcinoma (OSCC) progresses in multiple ordered steps that begin with mucosal epithelial cell hyperplasia, which is followed by dysplasia, carcinoma in situ and invasive carcinoma. It is therefore hypothesized that genetic alteration-mediated multistep carcinogenesis would be involved in the development of OSCC; however, the detailed molecular mechanisms are unknown. We clarified the comprehensive gene expression patterns and carried out an enrichment analysis using DNA microarray data from a pathological specimen of OSCC (including a non-tumor region, carcinoma in situ lesion and invasive carcinoma lesion). The expression of numerous genes and signal activation were altered in the development of OSCC. Among these, the p63 expression was increased and the MEK/ERK-MAPK pathway was activated in carcinoma in situ lesion and in invasive carcinoma lesion. Immunohistochemical analyses revealed that p63 was initially upregulated in carcinoma in situ and ERK was sequentially activated in invasive carcinoma lesions in OSCC specimens. ADP-ribosylation factor (ARF)-like 4c (ARL4C), the expression of which is reportedly induced by p63 and/or the MEK/ERK-MAPK pathway in OSCC cells, has been shown to promote tumorigenesis. Immunohistochemically, in OSCC specimens, ARL4C was more frequently detected in tumor lesions, especially in invasive carcinoma lesions, than in carcinoma in situ lesions. Additionally, ARL4C and phosphorylated ERK were frequently merged in invasive carcinoma lesions. Loss-of-function experiments using inhibitors and siRNAs revealed that p63 and MEK/ERK-MAPK cooperatively induce the expression of ARL4C and cell growth in OSCC cells. These results suggest that the stepwise activation of p63 and MEK/ERK-MAPK contributes to OSCC tumor cell growth through regulation of ARL4C expression.
Collapse
Affiliation(s)
- Dania Zuhier Ragheb Alkhatib
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Thinh Thi Kim Truong
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryoko Nagano
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yudai Tajiri
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Dentistry and Oral Surgery, National Hospital Organization, Fukuokahigashi Medical Center, 1-1-1 Chidori, Koga, Fukuoka 811-3195, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
25
|
Deng S, Qian L, Liu L, Liu H, Xu Z, Liu Y, Wang Y, Chen L, Zhou Y. Circular RNA ARHGAP5 inhibits cisplatin resistance in cervical squamous cell carcinoma by interacting with AUF1. Cancer Sci 2023; 114:1582-1595. [PMID: 36632741 PMCID: PMC10067438 DOI: 10.1111/cas.15723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical squamous cell carcinoma (CSCC) is one of the leading causes of cancer death in women worldwide. Patients with advanced cervical carcinoma always have a poor prognosis once resistant to cisplatin due to the lack of effective treatment. It is urgent to investigate the molecular mechanisms of cisplatin resistance. Circular RNAs (circRNAs) are known to exert their regulatory functions in a series of malignancies. However, their effects on CSCC remain to be elucidated. Here, we found that cytoplasmic circARHGAP5, derived from second and third exons of the ARHGAP5 gene, was downregulated in cisplatin-resistant tissues compared with normal cervix tissues and untreated cervical cancer tissues. In addition, experiments from overexpression/knockdown cell lines revealed that circARHGAP5 could inhibit cisplatin-mediated cell apoptosis in CSCC cells both in vitro and in vivo. Mechanistically, circARHGAP5 interacted with AU-rich element RNA-binding protein (AUF1) directly. Overexpression of AUF1 could also inhibit cell apoptosis mediated by cisplatin. Furthermore, we detected the potential targets of AUF1 related to the apoptotic pathway and found that bcl-2-like protein 11 (BIM) was not only negatively regulated by AUF1 but positively regulated by circARHGAP5, which indicated that BIM mRNA might be degraded by AUF1 and thereby inhibited tumor cell apoptosis. Collectively, our data indicated that circARHGAP5 directly bound to AUF1 and prevented AUF1 from interacting with BIM mRNA, thereby playing a pivotal role in cisplatin resistance in CSCC. Our study provides insights into overcoming cancer resistance to cisplatin treatment.
Collapse
Affiliation(s)
- Sisi Deng
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Lili Qian
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Luwen Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Hanyuan Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhihao Xu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yujie Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yingying Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Liang Chen
- Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Ying Zhou
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
26
|
Fisher ML, Balinth S, Mills AA. ΔNp63α in cancer: importance and therapeutic opportunities. Trends Cell Biol 2023; 33:280-292. [PMID: 36115734 PMCID: PMC10011024 DOI: 10.1016/j.tcb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Our understanding of cancer and the key pathways that drive cancer survival has expanded rapidly over the past several decades. However, there are still important challenges that continue to impair patient survival, including our inability to target cancer stem cells (CSCs), metastasis, and drug resistance. The transcription factor p63 is a p53 family member with multiple isoforms that carry out a wide array of functions. Here, we discuss the critical importance of the ΔNp63α isoform in cancer and potential therapeutic strategies to target ΔNp63α expression to impair the CSC population, as well as to prevent metastasis and drug resistance to improve patient survival.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
27
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Brennan J, Lu ML, Kang Y. A New Model of Esophageal Cancers by Using a Detergent-Free Decellularized Matrix in a Perfusion Bioreactor. Bioengineering (Basel) 2023; 10:96. [PMID: 36671668 PMCID: PMC9854977 DOI: 10.3390/bioengineering10010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The lack of physiologically relevant human esophageal cancer models has as a result that many esophageal cancer studies are encountering major bottleneck challenges in achieving breakthrough progress. To address the issue, here we engineered a 3D esophageal tumor tissue model using a biomimetic decellularized esophageal matrix in a customized bioreactor. To obtain a biomimetic esophageal matrix, we developed a detergent-free, rapid decellularization method to decellularize porcine esophagus. We characterized the decellularized esophageal matrix (DEM) and utilized the DEM for the growth of esophageal cancer cell KYSE30 in well plates and the bioreactor. We then analyzed the expression of cancer-related markers of KYSE30 cells and compared them with formalin-fixed, paraffin-embedded (FFPE) esophageal squamous cell carcinoma (ESCC) tissue biospecimens. Our results show that the detergent-free decellularization method preserved the esophageal matrix components and effectively removed cell nucleus. KYSE30 cancer cells proliferated well on and inside the DEM. KYSE30 cells cultured on the DEM in the dynamic bioreactor show different cancer marker expressions than those in the static well plate, and also share some similarities to the FFPE-ESCC biospecimens. These findings built a foundation with potential for further study of esophageal cancer behavior in a biomimetic microenvironment using this new esophageal cancer model.
Collapse
Affiliation(s)
- Jordan Brennan
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael L. Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Faculty of Integrative Biology PhD Program, Department of Biological Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Faculty of Integrative Biology PhD Program, Department of Biological Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
29
|
Logotheti S, Pavlopoulou A, Marquardt S, Takan I, Georgakilas AG, Stiewe T. p73 isoforms meet evolution of metastasis. Cancer Metastasis Rev 2022; 41:853-869. [PMID: 35948758 DOI: 10.1007/s10555-022-10057-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/30/2022] [Indexed: 01/25/2023]
Abstract
Cancer largely adheres to Darwinian selection. Evolutionary forces are prominent during metastasis, the final and incurable disease stage, where cells acquire combinations of advantageous phenotypic features and interact with a dynamically changing microenvironment, in order to overcome the metastatic bottlenecks, while therapy exerts additional selective pressures. As a strategy to increase their fitness, tumors often co-opt developmental and tissue-homeostasis programs. Herein, 25 years after its discovery, we review TP73, a sibling of the cardinal tumor-suppressor TP53, through the lens of cancer evolution. The TP73 gene regulates a wide range of processes in embryonic development, tissue homeostasis and cancer via an overwhelming number of functionally divergent isoforms. We suggest that TP73 neither merely mimics TP53 via its p53-like tumor-suppressive functions, nor has black-or-white-type effects, as inferred by the antagonism between several of its isoforms in processes like apoptosis and DNA damage response. Rather, under dynamic conditions of selective pressure, the various p73 isoforms which are often co-expressed within the same cancer cells may work towards a common goal by simultaneously activating isoform-specific transcriptional and non-transcriptional programs. Combinatorial co-option of these programs offers selective advantages that overall increase the likelihood for successfully surpassing the barriers of the metastatic cascade. The p73 functional pleiotropy-based capabilities might be present in subclonal populations and expressed dynamically under changing microenvironmental conditions, thereby supporting clonal expansion and propelling evolution of metastasis. Deciphering the critical p73 isoform patterns along the spatiotemporal axes of tumor evolution could identify strategies to target TP73 for prevention and therapy of cancer metastasis.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Greece.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340, Balcova, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197, Berlin, Germany
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340, Balcova, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Greece
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.,Institute of Lung Health, Giessen, Germany.,German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| |
Collapse
|
30
|
Lau SCM, Pan Y, Velcheti V, Wong KK. Squamous cell lung cancer: Current landscape and future therapeutic options. Cancer Cell 2022; 40:1279-1293. [PMID: 36270277 DOI: 10.1016/j.ccell.2022.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 01/09/2023]
Abstract
Squamous cell lung cancers (lung squamous cell carcinomas [LUSCs]) are associated with high mortality and a lack of therapies specific to this disease. Although recurrent molecular aberrations are present in LUSCs, efforts to develop targeted therapies against receptor tyrosine kinases, signaling transduction, and cell cycle checkpoints in LUSCs were met with significant challenges. The present therapeutic landscape focuses on epigenetic therapies to modulate the expression of lineage-dependent survival pathways and undruggable oncogenes. Another important therapeutic approach is to exploit metabolic vulnerabilities unique to LUSCs. These novel therapies may synergize with immune checkpoint inhibitors in the right therapeutic context. For example, the recognition that alterations in KEAP1-NFE2L2 in LUSCs affected antitumor immune responses created unique opportunities for targeted, metabolic, and immune combinations. This article provides a perspective on how lessons learned from the past influence the current therapeutic landscape and opportunities for future drug development for LUSCs.
Collapse
Affiliation(s)
- Sally C M Lau
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Yuanwang Pan
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA
| | - Kwok Kin Wong
- Department of Medical Oncology, Laura & Issac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, Smilow Building 10th Floor, Suite 1001, New York, NY 10016, USA.
| |
Collapse
|
31
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
32
|
Long E, Patel H, Byun J, Amos CI, Choi J. Functional studies of lung cancer GWAS beyond association. Hum Mol Genet 2022; 31:R22-R36. [PMID: 35776125 PMCID: PMC9585683 DOI: 10.1093/hmg/ddac140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
Fourteen years after the first genome-wide association study (GWAS) of lung cancer was published, approximately 45 genomic loci have now been significantly associated with lung cancer risk. While functional characterization was performed for several of these loci, a comprehensive summary of the current molecular understanding of lung cancer risk has been lacking. Further, many novel computational and experimental tools now became available to accelerate the functional assessment of disease-associated variants, moving beyond locus-by-locus approaches. In this review, we first highlight the heterogeneity of lung cancer GWAS findings across histological subtypes, ancestries and smoking status, which poses unique challenges to follow-up studies. We then summarize the published lung cancer post-GWAS studies for each risk-associated locus to assess the current understanding of biological mechanisms beyond the initial statistical association. We further summarize strategies for GWAS functional follow-up studies considering cutting-edge functional genomics tools and providing a catalog of available resources relevant to lung cancer. Overall, we aim to highlight the importance of integrating computational and experimental approaches to draw biological insights from the lung cancer GWAS results beyond association.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
33
|
Orstad G, Fort G, Parnell TJ, Jones A, Stubben C, Lohman B, Gillis KL, Orellana W, Tariq R, Klingbeil O, Kaestner K, Vakoc CR, Spike BT, Snyder EL. FoxA1 and FoxA2 control growth and cellular identity in NKX2-1-positive lung adenocarcinoma. Dev Cell 2022; 57:1866-1882.e10. [PMID: 35835117 PMCID: PMC9378547 DOI: 10.1016/j.devcel.2022.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Changes in cellular identity (also known as histologic transformation or lineage plasticity) can drive malignant progression and resistance to therapy in many cancers, including lung adenocarcinoma (LUAD). The lineage-specifying transcription factors FoxA1 and FoxA2 (FoxA1/2) control identity in NKX2-1/TTF1-negative LUAD. However, their role in NKX2-1-positive LUAD has not been systematically investigated. We find that Foxa1/2 knockout severely impairs tumorigenesis in KRAS-driven genetically engineered mouse models and human cell lines. Loss of FoxA1/2 leads to the collapse of a dual-identity state, marked by co-expression of pulmonary and gastrointestinal transcriptional programs, which has been implicated in LUAD progression. Mechanistically, FoxA1/2 loss leads to aberrant NKX2-1 activity and genomic localization, which in turn actively inhibits tumorigenesis and drives alternative cellular identity programs that are associated with non-proliferative states. This work demonstrates that FoxA1/2 expression is a lineage-specific vulnerability in NKX2-1-positive LUAD and identifies mechanisms of response and resistance to targeting FoxA1/2 in this disease.
Collapse
Affiliation(s)
- Grace Orstad
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Gabriela Fort
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alex Jones
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Chris Stubben
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brian Lohman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Katherine L Gillis
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Walter Orellana
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rushmeen Tariq
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Klaus Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Benjamin T Spike
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Eric L Snyder
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
34
|
[Artículo traducido] Perfil de expresión de CD10, BCL-2, p63 y EMA en los carcinomas normales de piel y de células basales: Revaloración inmunohistoquímica. ACTAS DERMO-SIFILIOGRAFICAS 2022. [DOI: 10.1016/j.ad.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Pokorna Z, Hrabal V, Tichy V, Vojtesek B, Coates PJ. DNA Demethylation Switches Oncogenic ΔNp63 to Tumor Suppressive TAp63 in Squamous Cell Carcinoma. Front Oncol 2022; 12:924354. [PMID: 35912167 PMCID: PMC9331744 DOI: 10.3389/fonc.2022.924354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
The TP63 gene encodes two major protein variants; TAp63 contains a p53-like transcription domain and consequently has tumor suppressor activities whereas ΔNp63 lacks this domain and acts as an oncogene. The two variants show distinct expression patterns in normal tissues and tumors, with lymphocytes and lymphomas/leukemias expressing TAp63, and basal epithelial cells and some carcinomas expressing high levels of ΔNp63, most notably squamous cell carcinomas (SCC). Whilst the transcriptional functions of TAp63 and ΔNp63 isoforms are known, the mechanisms involved in their regulation are poorly understood. Using squamous epithelial cells that contain high levels of ΔNp63 and low/undetectable TAp63, the DNA demethylating agent decitabine (5-aza-2’-deoxycytidine, 5-dAza) caused a dose-dependent increase in TAp63, with a simultaneous reduction in ΔNp63, indicating DNA methylation-dependent regulation at the isoform-specific promoters. The basal cytokeratin KRT5, a direct ΔNp63 transcriptional target, was also reduced, confirming functional alteration of p63 activity after DNA demethylation. We also showed high level methylation of three CpG sites in the TAP63 promoter in these cells, which was reduced by decitabine. DNMT1 depletion using inducible shRNAs partially replicated these effects, including an increase in the ratio of TAP63:ΔNP63 mRNAs, a reduction in ΔNp63 protein and reduced KRT5 mRNA levels. Finally, high DNA methylation levels were found at the TAP63 promoter in clinical SCC samples and matched normal tissues. We conclude that DNA methylation at the TAP63 promoter normally silences transcription in squamous epithelial cells, indicating DNA methylation as a therapeutic approach to induce this tumor suppressor in cancer. That decitabine simultaneously reduced the oncogenic activity of ΔNp63 provides a “double whammy” for SCC and other p63-positive carcinomas. Whilst a variety of mechanisms may be involved in producing the opposite effects of DNA demethylation on TAp63 and ΔNp63, we propose an “either or” mechanism in which TAP63 transcription physically interferes with the ability to initiate transcription from the downstream ΔNP63 promoter on the same DNA strand. This mechanism can explain the observed inverse expression of p63 isoforms in normal cells and cancer.
Collapse
Affiliation(s)
- Zuzana Pokorna
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Vaclav Hrabal
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vlastimil Tichy
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Borivoj Vojtesek
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Philip J. Coates
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
- *Correspondence: Philip J. Coates,
| |
Collapse
|
36
|
Bard JE, Nowak NJ, Buck MJ, Sinha S. Multimodal Dimension Reduction and Subtype Classification of Head and Neck Squamous Cell Tumors. Front Oncol 2022; 12:892207. [PMID: 35912202 PMCID: PMC9326399 DOI: 10.3389/fonc.2022.892207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023] Open
Abstract
Traditional analysis of genomic data from bulk sequencing experiments seek to group and compare sample cohorts into biologically meaningful groups. To accomplish this task, large scale databases of patient-derived samples, like that of TCGA, have been established, giving the ability to interrogate multiple data modalities per tumor. We have developed a computational strategy employing multimodal integration paired with spectral clustering and modern dimension reduction techniques such as PHATE to provide a more robust method for cancer sub-type classification. Using this integrated approach, we have examined 514 Head and Neck Squamous Carcinoma (HNSC) tumor samples from TCGA across gene-expression, DNA-methylation, and microbiome data modalities. We show that these approaches, primarily developed for single-cell sequencing can be efficiently applied to bulk tumor sequencing data. Our multimodal analysis captures the dynamic heterogeneity, identifies new and refines subtypes of HNSC, and orders tumor samples along well-defined cellular trajectories. Collectively, these results showcase the inherent molecular complexity of tumors and offer insights into carcinogenesis and importance of targeted therapy. Computational techniques as highlighted in our study provide an organic and powerful approach to identify granular patterns in large and noisy datasets that may otherwise be overlooked.
Collapse
Affiliation(s)
- Jonathan E. Bard
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States,Genomics and Bioinformatics Core, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Norma J. Nowak
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States,Genomics and Bioinformatics Core, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michael J. Buck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States,Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States,*Correspondence: Michael J. Buck, ; Satrajit Sinha,
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States,*Correspondence: Michael J. Buck, ; Satrajit Sinha,
| |
Collapse
|
37
|
Chen H, Hu K, Xie Y, Qi Y, Li W, He Y, Fan S, Liu W, Li C. CDK1 Promotes Epithelial–Mesenchymal Transition and Migration of Head and Neck Squamous Carcinoma Cells by Repressing ∆Np63α-Mediated Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23137385. [PMID: 35806389 PMCID: PMC9266818 DOI: 10.3390/ijms23137385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
∆Np63α is a key transcription factor overexpressed in types of squamous cell carcinomas (SCCs), which represses epithelial–mesenchymal transition (EMT) and cell migration. In this study, we found that CDK1 phosphorylates ∆Np63α at the T123 site, impairing its affinity to the target promoters of its downstream genes and its regulation of them in turn. Database analysis revealed that CDK1 is overexpressed in head and neck squamous cell carcinomas (HNSCCs), especially the metastatic HNSCCs, and is negatively correlated with overall survival. We further found that CDK1 promotes the EMT and migration of HNSCC cells by inhibiting ∆Np63α. Altogether, our study identified CDK1 as a novel regulator of ΔNp63α, which can modulate EMT and cell migration in HNSCCs. Our findings will help to elucidate the migration mechanism of HNSCC cells.
Collapse
Affiliation(s)
- Huimin Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Ke Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Ying Xie
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Yucheng Qi
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Wenjuan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Yaohui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
- Correspondence:
| |
Collapse
|
38
|
Guven-Maiorov E, Sakakibara N, Ponnamperuma RM, Dong K, Matar H, King KE, Weinberg WC. Delineating functional mechanisms of the p53/p63/p73 family of transcription factors through identification of protein-protein interactions using interface mimicry. Mol Carcinog 2022; 61:629-642. [PMID: 35560453 PMCID: PMC9949960 DOI: 10.1002/mc.23405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Abstract
Members of the p53 family of transcription factors-p53, p63, and p73-share a high degree of homology; however, members can be activated in response to different stimuli, perform distinct (sometimes opposing) roles and are expressed in different tissues. The level of complexity is increased further by the transcription of multiple isoforms of each homolog, which may interact or interfere with each other and can impact cellular outcome. Proteins perform their functions through interacting with other proteins (and/or with nucleic acids). Therefore, identification of the interactors of a protein and how they interact in 3D is essential to fully comprehend their roles. By utilizing an in silico protein-protein interaction prediction method-HMI-PRED-we predicted interaction partners of p53 family members and modeled 3D structures of these protein interaction complexes. This method recovered experimentally known interactions while identifying many novel candidate partners. We analyzed the similarities and differences observed among the interaction partners to elucidate distinct functions of p53 family members and provide examples of how this information may yield mechanistic insight to explain their overlapping versus distinct/opposing outcomes in certain contexts. While some interaction partners are common to p53, p63, and p73, the majority are unique to each member. Nevertheless, most of the enriched pathways associated with these partners are common to all members, indicating that the members target the same biological pathways but through unique mediators. p63 and p73 have more common enriched pathways compared to p53, supporting their similar developmental roles in different tissues.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| | - Nozomi Sakakibara
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Roshini M. Ponnamperuma
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kun Dong
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States
| | - Hector Matar
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kathryn E. King
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Wendy C. Weinberg
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| |
Collapse
|
39
|
G R, Mitra A, Pk V. Predicting functional riboSNitches in the context of alternative splicing. Gene X 2022; 837:146694. [PMID: 35738445 DOI: 10.1016/j.gene.2022.146694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
RNAs are the major regulators of gene expression, and their secondary structures play crucial roles at different levels. RiboSNitches are disease-associated SNPs that cause changes in the pre-mRNA secondary structural ensemble. Several riboSNitches have been detected in the 5' and 3' untranslated regions and lncRNA. Although cases of secondary structural elements playing a regulatory role in alternative splicing are known, regions specific to splicing events, such as splice junctions have not received much attention. We tested splice-site mutations for their efficiency in disrupting the secondary structure and hypothesized that these could play a crucial role in alternative splicing. Multiple riboSNitch prediction methods were applied to obtain overlapping results that are potentially more reliable. Putative riboSNitches were identified from aberrant 5' and 3' splice site mutations, cancer-causing somatic mutations, and genes that harbor the regulatory RNA secondary structural elements. Our workflow for predicting riboSNitches associated with alternative splicing is novel and paves the way for subsequent experimental validation.
Collapse
Affiliation(s)
- Ramya G
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Vinod Pk
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| |
Collapse
|
40
|
Glathar AR, Oyelakin A, Gluck C, Bard J, Sinha S. p63 Directs Subtype-Specific Gene Expression in HPV+ Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:879054. [PMID: 35712470 PMCID: PMC9192977 DOI: 10.3389/fonc.2022.879054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
The complex heterogeneity of head and neck squamous cell carcinoma (HNSCC) reflects a diverse underlying etiology. This heterogeneity is also apparent within Human Papillomavirus-positive (HPV+) HNSCC subtypes, which have distinct gene expression profiles and patient outcomes. One aggressive HPV+ HNSCC subtype is characterized by elevated expression of genes involved in keratinization, a process regulated by the oncogenic transcription factor ΔNp63. Furthermore, the human TP63 gene locus is a frequent HPV integration site and HPV oncoproteins drive ΔNp63 expression, suggesting an unexplored functional link between ΔNp63 and HPV+ HNSCC. Here we show that HPV+ HNSCCs can be molecularly stratified according to ΔNp63 expression levels and derive a ΔNp63-associated gene signature profile for such tumors. We leveraged RNA-seq data from p63 knockdown cells and ChIP-seq data for p63 and histone marks from two ΔNp63high HPV+ HNSCC cell lines to identify an epigenetically refined ΔNp63 cistrome. Our integrated analyses reveal crucial ΔNp63-bound super-enhancers likely to mediate HPV+ HNSCC subtype-specific gene expression that is anchored, in part, by the PI3K-mTOR pathway. These findings implicate ΔNp63 as a key regulator of essential oncogenic pathways in a subtype of HPV+ HNSCC that can be exploited as a biomarker for patient stratification and treatment choices.
Collapse
|
41
|
Evaluation of Heterogeneous Nuclear Ribonucleoprotein D Expression as a Diagnostic Marker for Oral Squamous Cell Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12061332. [PMID: 35741145 PMCID: PMC9221583 DOI: 10.3390/diagnostics12061332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein D (hnRNPD) serves as a prognostic marker for oral squamous cell carcinoma (OSCC). We evaluated the diagnostic potential of hnRNPD to differentiate between OSCC and normal mucosa. Immunohistochemistry for hnRNPD and a routinely used diagnostic marker deltaNp63 (p40) was performed in 32 normal mucosae and 46 OSCC specimens. Subsequently, receiver-operating characteristic analysis was performed to evaluate the diagnostic potential of hnRNPD in comparison to that of p40. Immunostaining for p40 and hnRNPD was observed in 39 (84.78%) and 38 (82.60%) cases, respectively, in OSCC specimens. The poorly differentiated squamous cell carcinoma displayed 100% (eight cases) immunoreactivity for hnRNPD as compared to 87.5% (seven cases) for p40. Nuclear staining of p40 and hnRNPD was observed in all OSCC specimens. p40 staining was restricted to basal cells, whereas both basal and para-basal cells displayed hnRNPD staining in OSCC specimens. Areas under the curve for p40 and hnRNPD were 0.86 and 0.87, respectively. p40 and hnRNPD showed equal sensitivities (80.95%). However, hnRNPD displayed marginally higher (88.23%) specificity for tumor cells as compared to that of p40 (85.29%). Conclusion: In addition to being a well-established prognostic marker, hnRNPD can serve as a diagnostic marker for OSCC.
Collapse
|
42
|
Hussein M, Ahmed A. Expression Profile of CD10, BCL-2, p63, and EMA in the Normal Skin and Basal Cell Carcinomas: An Immunohistochemical Reappraisal. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:848-855. [DOI: 10.1016/j.ad.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022] Open
|
43
|
Chen Y, Wang MH, Wu JY, Zhu JY, Xie CF, Li XT, Wu JS, Geng SS, Li YD, Han HY, Zhong CY. ΔNp63α mediates sulforaphane suppressed colorectal cancer stem cell properties through transcriptional regulation of Nanog/Oct4/Sox2. J Nutr Biochem 2022; 107:109067. [DOI: 10.1016/j.jnutbio.2022.109067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
44
|
Yang Y, Yu J, Hu J, Zhou C, Niu J, Ma H, Han J, Fan S, Liu Y, Zhao Y, Zhao L, Wang G. A systematic and comprehensive analysis of colorectal squamous cell carcinoma: Implication for diagnosis and treatment. Cancer Med 2022; 11:2492-2502. [PMID: 35194959 PMCID: PMC9189455 DOI: 10.1002/cam4.4616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background This study was aimed at establishing a nomogram for survival prediction of Colorectal squamous cell carcinoma (CSCC), understanding the molecular pathogenesis, exploring a better treatment, and predicting the potential therapeutic agents. Methods Surveillance, Epidemiology, and End Results (SEER) database was used to obtained CSCC patients and the nomogram was performed. Propensity score matching (PSM), Kaplan–Meier analysis, subgroup analysis, and interaction test were used to explore the better treatment strategy for CSCC. Bioinformatics were used to explore the molecular mechanism and potential therapeutic drugs of CSCC. Results A total of 3949 CSCC patients were studied. The nomogram was constructed and evaluated to have a good performance. We found that the radiotherapy had a better effect than surgery, and the difference between radiotherapy and combined therapy was not significant. 821 differentially expressed genes in CSCC were obtained from GSE6988 dataset. DNA damage repair, mismatch repair, and cell cycle pathways might contribute to CSCC occurrence as indicated by KEGGpathway and GSEA analysis. Transcription factors analysis revealed that TP63 and STAT1 may have an important role in occurrence and development of CSCC. 1607 potential drugs against CSCC were found using the CMAP database, and molecular docking was carried out to show the binding energy between TP63 and drugs. Conclusions A good prognosis nomogram was constructed for CSCC. We also have a better understanding of the underlying molecular mechanisms of occurrence and development of CSCC and predicted potential therapeutic drugs, providing a theoretical basis for the treatment of CSCC.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiarui Yu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, Hebei, China
| | - Jitao Hu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Niu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongqing Ma
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaxu Han
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaoqing Fan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Youqiang Liu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yalei Zhao
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Centers, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
45
|
Pokorna Z, Vyslouzil J, Vojtesek B, Coates PJ. Identifying pathways regulating the oncogenic p53 family member ΔNp63 provides therapeutic avenues for squamous cell carcinoma. Cell Mol Biol Lett 2022; 27:18. [PMID: 35196980 PMCID: PMC8903560 DOI: 10.1186/s11658-022-00323-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Background ΔNp63 overexpression is a common event in squamous cell carcinoma (SCC) that contributes to tumorigenesis, making ΔNp63 a potential target for therapy. Methods We created inducible TP63-shRNA cells to study the effects of p63-depletion in SCC cell lines and non-malignant HaCaT keratinocytes. DNA damaging agents, growth factors, signaling pathway inhibitors, histone deacetylase inhibitors, and metabolism-modifying drugs were also investigated for their ability to influence ΔNp63 protein and mRNA levels. Results HaCaT keratinocytes, FaDu and SCC-25 cells express high levels of ΔNp63. HaCaT and FaDu inducible TP63-shRNA cells showed reduced proliferation after p63 depletion, with greater effects on FaDu than HaCaT cells, compatible with oncogene addiction in SCC. Genotoxic insults and histone deacetylase inhibitors variably reduced ΔNp63 levels in keratinocytes and SCC cells. Growth factors that regulate proliferation/survival of squamous cells (IGF-1, EGF, amphiregulin, KGF, and HGF) and PI3K, mTOR, MAPK/ERK or EGFR inhibitors showed lesser and inconsistent effects, with dual inhibition of PI3K and mTOR or EGFR inhibition selectively reducing ΔNp63 levels in HaCaT cells. In contrast, the antihyperlipidemic drug lovastatin selectively increased ΔNp63 in HaCaT cells. Conclusions These data confirm that ΔNp63-positive SCC cells require p63 for continued growth and provide proof of concept that p63 reduction is a therapeutic option for these tumors. Investigations of ΔNp63 regulation identified agent-specific and cell-specific pathways. In particular, dual inhibition of the PI3K and mTOR pathways reduced ΔNp63 more effectively than single pathway inhibition, and broad-spectrum histone deacetylase inhibitors showed a time-dependent biphasic response, with high level downregulation at the transcriptional level within 24 h. In addition to furthering our understanding of ΔNp63 regulation in squamous cells, these data identify novel drug combinations that may be useful for p63-based therapy of SCC. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00323-x.
Collapse
Affiliation(s)
- Zuzana Pokorna
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jan Vyslouzil
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Philip J Coates
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
46
|
Patient derived ex vivo tissue slice cultures demonstrate a profound DNA double-strand break repair defect in HPV-positive oropharyngeal head and neck cancer. Radiother Oncol 2022; 168:138-146. [DOI: 10.1016/j.radonc.2022.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022]
|
47
|
Fu Y, Tian G, Zhang Z, Yang X. SYT7 acts as an oncogene and a potential therapeutic target and was regulated by ΔNp63α in HNSCC. Cancer Cell Int 2021; 21:696. [PMID: 34930262 PMCID: PMC8691088 DOI: 10.1186/s12935-021-02394-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/05/2021] [Indexed: 01/14/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) are one of the most common types of head and neck cancer, and it is urgent to find effective treatment for advanced patients. Exploring developing and progressing mechanisms of HNSCC could provide a theoretical basis to find new therapeutic targets. Methods In our research, we performed a whole-gene expression profile microarray analysis to identify differential expression genes between squamous cell carcinoma cells and ΔNp63 alpha (ΔNp63α) knockdown cells. As a result, an important gene Synaptotagmin VII (SYT7) was screened out. Results SYT7 knockdown affected the proliferation, apoptosis and cell cycle of squamous cell carcinoma cells. The rescue experiment in vitro with ΔNp63α and SYT7 double knockdown resulted in partial reversion of ΔNp63α-induced phenotypes. This was also confirmed by experiments in vivo. Conclusions Taken together, we found that ΔNp63α could inhibit the occurrence and progression of HNSCC throughout downregulating the expression of SYT7. Therefore, SYT7/ΔNp63α axis could be a potential therapeutic target for clinical treatment of HNSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02394-w.
Collapse
Affiliation(s)
- You Fu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Guocai Tian
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Yang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
48
|
TMEM116 is required for lung cancer cell motility and metastasis through PDK1 signaling pathway. Cell Death Dis 2021; 12:1086. [PMID: 34789718 PMCID: PMC8599864 DOI: 10.1038/s41419-021-04369-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Transmembrane protein (TMEM) is a family of protein that spans cytoplasmic membranes and allows cell-cell and cell-environment communication. Dysregulation of TMEMs has been observed in multiple cancers. However, little is known about TMEM116 in cancer development. In this study, we demonstrate that TMEM116 is highly expressed in non-small-cell lung cancer (NSCLC) tissues and cell lines. Inactivation of TMEM116 reduced cell proliferation, migration and invasiveness of human cancer cells and suppressed A549 induced tumor metastasis in mouse lungs. In addition, TMEM116 deficiency inhibited PDK1-AKT-FOXO3A signaling pathway, resulting in accumulation of TAp63, while activation of PDK1 largely reversed the TMEM116 deficiency induced defects in cancer cell motility, migration and invasive. Together, these results demonstrate that TMEM116 is a critical integrator of oncogenic signaling in cancer metastasis.
Collapse
|
49
|
MicroRNA31 and MMP-1 contribute to the differentiated pathway of invasion -with enhanced epithelial-to-mesenchymal transition- in squamous cell carcinoma of the skin. Arch Dermatol Res 2021; 314:767-775. [PMID: 34647185 DOI: 10.1007/s00403-021-02288-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is an important mechanism of invasion in cutaneous squamous cell carcinomas (cSCCs) and has been found to be enhanced in tumors originated from actinic keratosis with transformation limited to the basal epithelial layer -differentiated pathway-, compared to cases with invasion subsequent to complete epidermal transformation -classical pathway-. Several microRNAs and proteins can contribute to EMT modulation in cSCCs. MicroRNA21 and microRNA31 are involved in posttranscriptional regulation of protein expression and could play a relevant role in EMT and cSCC progression. Throughout the EMT process upregulation of matrix metalloproteinases (MMPs) enhances invasiveness and MMP-1 and MMP-3 contribute to local invasion, angiogenesis and metastasis in cSCCs. Additionally, cSCC development is associated with PTEN loss and NF-κB, NOTCH-1 and p63 activation. The aim of this work is to identify differences in the expression of those molecules between both pathways of cSCCs development. Eight tissue microarrays from 80 consecutive cSCCs were analyzed using LNA-based miRNA in situ hybridization for miRNA21 and miRNA31 evaluation, and immunohistochemistry for MMP-1, MMP-3, PTEN, NOTCH-1, NF-κB, p63 and CD31. Significantly higher expression of miRNA31 (p < 0.0001) and MMP-1 (p = 0.0072) and angiogenesis (p = 0.0199) were found in the differentiated pathway, whereas PTEN loss (p = 0.0430) was more marked in the classical pathway. No significant differences were found for the other markers. Our findings support a contribution of miRNA31 and MMP-1 in the differentiated pathway, associated to EMT and increased microvascularization. The greater PTEN loss in the classical pathway indicate that its relevance in cSCC is not EMT-related.
Collapse
|
50
|
Prieto-Garcia C, Tomašković I, Shah VJ, Dikic I, Diefenbacher M. USP28: Oncogene or Tumor Suppressor? A Unifying Paradigm for Squamous Cell Carcinoma. Cells 2021; 10:2652. [PMID: 34685632 PMCID: PMC8534253 DOI: 10.3390/cells10102652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.
Collapse
Affiliation(s)
- Cristian Prieto-Garcia
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ines Tomašković
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Varun Jayeshkumar Shah
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (I.T.); (V.J.S.); (I.D.)
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Markus Diefenbacher
- Protein Stability and Cancer Group, Department of Biochemistry and Molecular Biology, University of Würzburg, 97074 Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, 97074 Würzburg, Germany
- Mildred Scheel Early Career Center, 97074 Würzburg, Germany
| |
Collapse
|