1
|
Xia B, Shaheen N, Chen H, Zhao J, Guo P, Zhao Y. RNA aptamer-mediated RNA nanotechnology for potential treatment of cardiopulmonary diseases. Pharmacol Res 2025; 213:107659. [PMID: 39978660 DOI: 10.1016/j.phrs.2025.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Ribonucleic acid (RNA) aptamers are single-stranded RNAs that bind to target proteins or other molecules with high specificity and affinity, modulating biological functions through distinct mechanisms. These aptamers can act n as antagonists to block pathological interactions, agonists to activate signaling pathways, or delivery vehicles for therapeutic cargos such as siRNAs and miRNAs. The advances in RNA nanotechnology further enhances the versatility of RNA aptamers, offering scalable platforms for engineering. In this review, we have summarized recent developments in RNA aptamer-mediated RNA nanotechnology and provide an overview of its potential in treating cardiovascular and respiratory disorders, including atherosclerosis, acute coronary syndromes, heart failure, lung cancer, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), acute lung injury, viral respiratory infections, and pulmonary fibrosis. By integrating aptamer technologies with innovative delivery systems, RNA aptamers hold the potential to revolutionize the treatment landscape for cardiopulmonary diseases.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Huilong Chen
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
3
|
Xu C, Tan Y, Zhang LY, Luo XJ, Wu JF, Ma L, Deng F. The Application of Aptamer and Research Progress in Liver Disease. Mol Biotechnol 2024; 66:1000-1018. [PMID: 38305844 PMCID: PMC11087326 DOI: 10.1007/s12033-023-01030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lan Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Fei Deng
- Department of Oncology, The Second People's Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
4
|
Nguyen MN, Than VT. RNA therapeutics in cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:197-223. [PMID: 38359999 DOI: 10.1016/bs.pmbts.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapeutics are a class of drugs that use RNA molecules to treat diseases, including cancer. RNA therapeutics work by targeting specific genes or proteins involved in the disease process, with the aim of blocking or altering their activity to ultimately halt or reverse the disease progression. The use of RNA therapeutics in cancer treatment has shown great potential, as they offer the ability to specifically target cancer cells while leaving healthy cells intact. This is in contrast to traditional chemotherapy and radiation treatments, which can damage healthy cells and cause unpleasant side effects. The field of RNA therapeutics is rapidly advancing, with several types of RNA molecules being developed for cancer treatment, including small interfering RNA, microRNA, mRNA, and RNA aptamers. Each type of RNA molecule has unique properties and mechanisms of action, allowing for targeted and personalized cancer treatments. In this chapter, we will explore the different types of RNA therapeutics used in cancer treatment, their mechanisms of action, and their potential applications in treating different types of cancer. We will also discuss the challenges and opportunities in the development and research of RNA therapeutics for cancer, as well as the future outlook for this promising field.
Collapse
Affiliation(s)
- Minh Nam Nguyen
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, National University HCMC, Ho Chi Minh City, Vietnam.
| | - Van Thai Than
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
5
|
Wang T, Zhou Y, Zhang W, Xue Y, Xiao Z, Zhou Y, Peng X. Exosomes and exosome composite scaffolds in periodontal tissue engineering. Front Bioeng Biotechnol 2024; 11:1287714. [PMID: 38304105 PMCID: PMC10831513 DOI: 10.3389/fbioe.2023.1287714] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
Promoting complete periodontal regeneration of damaged periodontal tissues, including dental cementum, periodontal ligament, and alveolar bone, is one of the challenges in the treatment of periodontitis. Therefore, it is urgent to explore new treatment strategies for periodontitis. Exosomes generated from stem cells are now a promising alternative to stem cell therapy, with therapeutic results comparable to those of their blast cells. It has great potential in regulating immune function, inflammation, microbiota, and tissue regeneration and has shown good effects in periodontal tissue regeneration. In addition, periodontal tissue engineering combines exosomes with biomaterial scaffolds to maximize the therapeutic advantages of exosomes. Therefore, this article reviews the progress, challenges, and prospects of exosome and exosome-loaded composite scaffolds in periodontal regeneration.
Collapse
Affiliation(s)
- Tingyu Wang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Yanxing Zhou
- Institute of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenwen Zhang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Ziteng Xiao
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yanfang Zhou
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Giles B, Nakhjavani M, Wiesa A, Knight T, Shigdar S, Samarasinghe RM. Unravelling the Glioblastoma Tumour Microenvironment: Can Aptamer Targeted Delivery Become Successful in Treating Brain Cancers? Cancers (Basel) 2023; 15:4376. [PMID: 37686652 PMCID: PMC10487158 DOI: 10.3390/cancers15174376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The key challenges to treating glioblastoma multiforme (GBM) are the heterogeneous and complex nature of the GBM tumour microenvironment (TME) and difficulty of drug delivery across the blood-brain barrier (BBB). The TME is composed of various neuronal and immune cells, as well as non-cellular components, including metabolic products, cellular interactions, and chemical compositions, all of which play a critical role in GBM development and therapeutic resistance. In this review, we aim to unravel the complexity of the GBM TME, evaluate current therapeutics targeting this microenvironment, and lastly identify potential targets and therapeutic delivery vehicles for the treatment of GBM. Specifically, we explore the potential of aptamer-targeted delivery as a successful approach to treating brain cancers. Aptamers have emerged as promising therapeutic drug delivery vehicles with the potential to cross the BBB and deliver payloads to GBM and brain metastases. By targeting specific ligands within the TME, aptamers could potentially improve treatment outcomes and overcome the challenges associated with larger therapies such as antibodies.
Collapse
Affiliation(s)
- Breanna Giles
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Maryam Nakhjavani
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Andrew Wiesa
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Tareeque Knight
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (B.G.); (S.S.); (R.M.S.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
7
|
Current status and outlook of advances in exosome isolation. Anal Bioanal Chem 2022; 414:7123-7141. [PMID: 35962791 PMCID: PMC9375199 DOI: 10.1007/s00216-022-04253-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022]
Abstract
Exosomes are extracellular vesicles with a diameter ranging from 30 to 150 nm, which are an important medium for intercellular communication and are closely related to the progression of certain diseases. Therefore, exosomes are considered promising biomarkers for the diagnosis of specific diseases, and thereby, treatments based on exosomes are being widely examined. For exosome-related research, a rapid, simple, high-purity, and recovery isolation method is the primary prerequisite for exosomal large-scale application in medical practice. Although there are no standardized methods for exosome separation and analysis, various techniques have been established to explore their biochemical and physicochemical properties. In this review, we analyzed the progress in exosomal isolation strategies and proposed our views on the development prospects of various exosomal isolation techniques.
Collapse
|
8
|
Mansour MA, Caputo VS, Aleem E. Highlights on selected growth factors and their receptors as promising anticancer drug targets. Int J Biochem Cell Biol 2021; 140:106087. [PMID: 34563698 DOI: 10.1016/j.biocel.2021.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Growth factor receptors (GFRs) and receptor tyrosine kinases (RTK) are groups of proteins mediating a plethora of physiological processes, including cell growth, proliferation, survival, differentiation and migration. Under certain circumstances, expression of GFRs and subsequently their downstream kinase signaling are deregulated by genetic, epigenetic, and somatic changes leading to uncontrolled cell division in many human diseases, most notably cancer. Cancer cells rely on growth factors to sustain the increasing need to cell division and metabolic reprogramming through cancer-associated activating mutations of their receptors (i.e., GFRs). In this review, we highlight the recent advances of selected GFRs and their ligands (growth factors) in cancer with emphasis on structural and functional differences. We also interrogate how overexpression and/or hyperactivation of GFRs contribute to cancer initiation, development, progression, and resistance to conventional chemo- and radiotherapies. Novel approaches are being developed as anticancer agents to target growth factor receptors and their signaling pathways in different cancers. Here, we illustrate how the current knowledge of GFRs biology, and their ligands lead to development of targeted therapies to inhibit and/or block the activity of growth factors, GFRs and downstream kinases to treat diseases such as cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Valentina S Caputo
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK
| | - Eiman Aleem
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.
| |
Collapse
|
9
|
Kopylov AM, Fab LV, Antipova O, Savchenko EA, Revishchin AV, Parshina VV, Pavlova SV, Kireev II, Golovin AV, Usachev DY, Pavlova GV. RNA Aptamers for Theranostics of Glioblastoma of Human Brain. BIOCHEMISTRY (MOSCOW) 2021; 86:1012-1024. [PMID: 34488577 DOI: 10.1134/s0006297921080113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conventional approaches for studying and molecular typing of tumors include PCR, blotting, omics, immunocytochemistry, and immunohistochemistry. The last two methods are the most used, as they enable detecting both tumor protein markers and their localizations within the cells. In this study, we have investigated a possibility of using RNA aptamers, in particular, 2'-F-pyrimidyl-RNA aptamer ME07 (48 nucleotides long), specific to the receptor of epidermal growth factor (EGFR, ErbB1, Her1), as an alternative to monoclonal antibodies for aptacytochemistry and aptahistochemistry for human glioblastoma multiforme (GBM). A specificity of binding of FAM-ME07 to the receptor on the tumor cells has been demonstrated by flow cytometry; an apparent dissociation constant for the complex of aptamer - EGFR on the cell has been determined; a number of EGFR molecules has been semi-quantitatively estimated for the tumor cell lines having different amount of EGFR: A431 (106 copies per cell), U87 (104 copies per cell), MCF7 (103 copies per cell), and ROZH, primary GBM cell culture derived from patient (104 copies per cell). According to fluorescence microscopy, FAM-ME07 interacts directly with the receptors on A431 cells, followed by its internalization into the cytoplasm and translocation to the nucleolus; this finding opens a possibility of ME07 application as an escort aptamer for a delivery of therapeutic agents into tumor cells. FAM-ME07 efficiently stains sections of GBM clinical specimens, which enables an identification of EGFR-positive clones within a heterogeneous tumor; and providing a potential for further studying animal models of GBM.
Collapse
Affiliation(s)
- Alexey M Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Lika V Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Olga Antipova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Savchenko
- Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia
| | - Alexander V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Viktoriya V Parshina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Svetlana V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Igor I Kireev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrey V Golovin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Dmitry Y Usachev
- Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia
| | - Galina V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.,Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
10
|
Cao XH, Liang MX, Wu Y, Yang K, Tang JH, Zhang W. Extracellular vesicles as drug vectors for precise cancer treatment. Nanomedicine (Lond) 2021; 16:1519-1537. [PMID: 34011162 DOI: 10.2217/nnm-2021-0123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicle structures secreted from a variety of cells, which carry numerous biological macromolecules, participate in cell signal transduction and avoid immune system clearance. EVs have a plethora of specific signal recognition factors, and many studies have shown that they can play an important role in the precise treatment of tumors. This review aims to compile the applications of EVs as nanocarriers for antitumor drugs, gene drugs and other nanomaterials with anticancer capability. Additionally, we systematically summarize the preparation methodology and expound upon how to improve the drug loading and cancer-targeting capacity of EVs. We highlight that EV-based drug delivery has the potential to become the future of precise cancer treatment.
Collapse
Affiliation(s)
- Xin-Hui Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,School of Clinical Medicine, Xuzhou Medical University, Xuzhou 221000, PR China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Yang Wu
- Biobank, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Kai Yang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou 221000, PR China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.,School of Clinical Medicine, Xuzhou Medical University, Xuzhou 221000, PR China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| |
Collapse
|
11
|
Li Z, Fu X, Huang J, Zeng P, Huang Y, Chen X, Liang C. Advances in Screening and Development of Therapeutic Aptamers Against Cancer Cells. Front Cell Dev Biol 2021; 9:662791. [PMID: 34095130 PMCID: PMC8170048 DOI: 10.3389/fcell.2021.662791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer has become the leading cause of death in recent years. As great advances in medical treatment, emerging therapies of various cancers have been developed. Current treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and targeted therapy. Aptamers are synthetic ssDNA or RNA. They can bind tightly to target molecules due to their unique tertiary structure. It is easy for aptamers to be screened, synthesized, programmed, and chemically modified. Aptamers are emerging targeted drugs that hold great potentials, called therapeutic aptamers. There are few types of therapeutic aptamers that have already been approved by the US Food and Drug Administration (FDA) for disease treatment. Now more and more therapeutic aptamers are in the stage of preclinical research or clinical trials. This review summarized the screening and development of therapeutic aptamers against different types of cancer cells.
Collapse
Affiliation(s)
- Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Peiyuan Zeng
- Department of Biochemistry, University of Victoria, Victoria, BC, Canada
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Kaniowski D, Ebenryter-Olbińska K, Kulik K, Suwara J, Cypryk W, Jakóbik-Kolon A, Leśnikowski Z, Nawrot B. Composites of Nucleic Acids and Boron Clusters (C 2B 10H 12) as Functional Nanoparticles for Downregulation of EGFR Oncogene in Cancer Cells. Int J Mol Sci 2021; 22:ijms22094863. [PMID: 34064412 PMCID: PMC8125477 DOI: 10.3390/ijms22094863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most promising molecular targets for anticancer therapy. We used boron clusters as a platform for generation of new materials. For this, functional DNA constructs conjugated with boron clusters (B-ASOs) were developed. These B-ASOs, built from 1,2-dicarba-closo-dodecaborane linked with two anti-EGFR antisense oligonucleotides (ASOs), form with their complementary congeners torus-like nanostructures, as previously shown by atomic force microscope (AFM) and transmission electron cryo-microscopy (cryo-TEM) imaging. In the present work, deepened studies were carried out on B-ASO's properties. In solution, B-ASOs formed four dominant complexes as confirmed by non-denaturing polyacrylamide gel electrophoresis (PAGE). These complexes exhibited increased stability in cell lysate comparing to the non-modified ASO. Fluorescently labeled B-ASOs localized mostly in the cytoplasm and decreased EGFR expression by activating RNase H. Moreover, the B-ASO complexes altered the cancer cell phenotype, decreased cell migration rate, and arrested the cells in the S phase of cell cycle. The 1,2-dicarba-closo-dodecaborane-containing nanostructures did not activate NLRP3 inflammasome in human macrophages. In addition, as shown by inductively coupled plasma mass spectrometry (ICP MS), these nanostructures effectively penetrated the human squamous carcinoma cells (A431), showing their potential applicability as anticancer agents.
Collapse
Affiliation(s)
- Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Katarzyna Ebenryter-Olbińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Justyna Suwara
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Agata Jakóbik-Kolon
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland;
| | - Zbigniew Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Lodz, Poland;
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
- Correspondence: ; Tel.: +48-42-6803248
| |
Collapse
|
13
|
Wang T, Chen L, Chikkanna A, Chen S, Brusius I, Sbuh N, Veedu RN. Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis. Theranostics 2021; 11:5174-5196. [PMID: 33859741 PMCID: PMC8039946 DOI: 10.7150/thno.56471] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lateral flow assay (LFA) has made a paradigm shift in the in vitro diagnosis field due to its rapid turnaround time, ease of operation and exceptional affordability. Currently used LFAs predominantly use antibodies. However, the high inter-batch variations, error margin and storage requirements of the conventional antibody-based LFAs significantly impede its applications. The recent progress in aptamer technology provides an opportunity to combine the potential of aptamer and LFA towards building a promising platform for highly efficient point-of-care device development. Over the past decades, different forms of aptamer-based LFAs have been introduced for broad applications ranging from disease diagnosis, agricultural industry to environmental sciences, especially for the detection of antibody-inaccessible small molecules such as toxins and heavy metals. But commercial aptamer-based LFAs are still not used widely compared with antibodies. In this work, by analysing the key issues of aptamer-based LFA design, including immobilization strategies, signalling methods, and target capturing approaches, we provide a comprehensive overview about aptamer-based LFA design strategies to facilitate researchers to develop optimised aptamer-based LFAs.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Lanmei Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Guangdong Key Laboratory for Research and Development of Nature Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Arpitha Chikkanna
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Isabell Brusius
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Nabayet Sbuh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| |
Collapse
|
14
|
Song Z, Mao J, Barrero RA, Wang P, Zhang F, Wang T. Development of a CD63 Aptamer for Efficient Cancer Immunochemistry and Immunoaffinity-Based Exosome Isolation. Molecules 2020; 25:molecules25235585. [PMID: 33261145 PMCID: PMC7730289 DOI: 10.3390/molecules25235585] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022] Open
Abstract
CD63, a member of transmembrane-4-superfamily of tetraspanin proteins and a highly N-glycosylated type III lysosomal membrane protein, is known to regulate malignancy of various types of cancers such as melanoma and breast cancer and serves as a potential marker for cancer detection. Recently, its important role as a classic exosome marker was also emphasized. In this work, via using a magnetic bead-based competitive SELEX (systematic evolution of ligands by exponential enrichment) procedure and introducing a 0.5 M NaCl as elution buffer, we identified two DNA aptamers (CD63-1 and CD63-2) with high affinity and specificity to CD63 protein (Kd = 38.71 nM and 78.43, respectively). Furthermore, CD63-1 was found to be efficient in binding CD63 positive cells, including breast cancer MDA-MB-231 cells and CD63-overexpressed HEK293T cells, with a medium binding affinity (Kd ~ 100 nM) as assessed by flow cytometry. When immunostaining assay was performed using clinical breast cancer biopsy, the CD63-1 aptamer demonstrated a comparable diagnostic efficacy for CD63 positive breast cancer with commercial antibodies. After developing a magnetic bead-based exosome immunoaffinity separation system using CD63-1 aptamer, it was found that this bead-based system could effectively isolate exosomes from both MDA-MB-231 and HT29 cell culture medium. Importantly, the introduction of the NaCl elution in this work enabled the isolation of native exosomes via a simple 0.5M NaCl incubation step. Based on these results, we firmly believe that the developed aptamers could be useful towards efficient isolation of native state exosomes from clinical samples and various theranostic applications for CD63-positive cancers.
Collapse
Affiliation(s)
- Zhenguo Song
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China;
| | - Jun Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Roberto A. Barrero
- eResearch Office, Division of Research and Innovation, Queensland University of Technology, Brisbane City QLD 4001, Australia;
| | - Peng Wang
- College of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (F.Z.); (T.W.); Tel.: +86-1393839312 (F.Z.); +61-432684878 (T.W.)
| | - Tao Wang
- College of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China;
- Correspondence: (F.Z.); (T.W.); Tel.: +86-1393839312 (F.Z.); +61-432684878 (T.W.)
| |
Collapse
|
15
|
Kunjiappan S, Pavadai P, Vellaichamy S, Ram Kumar Pandian S, Ravishankar V, Palanisamy P, Govindaraj S, Srinivasan G, Premanand A, Sankaranarayanan M, Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev Res 2020; 82:309-340. [DOI: 10.1002/ddr.21758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics Arulmigu Kalasalingam College of Pharmacy Krishnankoil Tamilnadu India
| | | | | | - Ponnusamy Palanisamy
- School of Mechanical Engineering Vellore Institute of Technology Vellore Tamilnadu India
| | - Saravanan Govindaraj
- Department of Pharmaceutical Chemistry MNR College of Pharmacy Sangareddy Telangana India
| | - Gowshiki Srinivasan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Adhvitha Premanand
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | | | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry Swamy Vivekananda College of Pharmacy Elayampalayam, Namakkal Tamilnadu India
| |
Collapse
|
16
|
Amero P, Khatua S, Rodriguez-Aguayo C, Lopez-Berestein G. Aptamers: Novel Therapeutics and Potential Role in Neuro-Oncology. Cancers (Basel) 2020; 12:cancers12102889. [PMID: 33050158 PMCID: PMC7600320 DOI: 10.3390/cancers12102889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
A relatively new paradigm in cancer therapeutics is the use of cancer cell-specific aptamers, both as therapeutic agents and for targeted delivery of anticancer drugs. After the first therapeutic aptamer was described nearly 25 years ago, and the subsequent first aptamer drug approved, many efforts have been made to translate preclinical research into clinical oncology settings. Studies of aptamer-based technology have unveiled the vast potential of aptamers in therapeutic and diagnostic applications. Among pediatric solid cancers, brain tumors are the leading cause of death. Although a few aptamer-related translational studies have been performed in adult glioblastoma, the use of aptamers in pediatric neuro-oncology remains unexplored. This review will discuss the biology of aptamers, including mechanisms of targeting cell surface proteins, various modifications of aptamer structure to enhance therapeutic efficacy, the current state and challenges of aptamer use in neuro-oncology, and the potential therapeutic role of aptamers in pediatric brain tumors.
Collapse
Affiliation(s)
- Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (C.R.-A.); (G.L.-B.); Tel.: +1-713-563-6150 (C.R.-A.); +1-713-792-8140 (G.L.-B.)
| |
Collapse
|
17
|
The Role of RNA and DNA Aptamers in Glioblastoma Diagnosis and Therapy: A Systematic Review of the Literature. Cancers (Basel) 2020; 12:cancers12082173. [PMID: 32764266 PMCID: PMC7463716 DOI: 10.3390/cancers12082173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor of the central nervous system in adults. Despite advances in surgical and medical neuro-oncology, the median survival is about 15 months. For this reason, initial diagnosis, prognosis, and targeted therapy of GBM represent very attractive areas of study. Aptamers are short three-dimensional structures of single-stranded nucleic acids (RNA or DNA), identified by an in vitro process, named systematic evolution of ligands by exponential enrichment (SELEX), starting from a partially random oligonucleotide library. They bind to a molecular target with high affinity and specificity and can be easily modified to optimize binding affinity and selectivity. Thanks to their properties (low immunogenicity and toxicity, long stability, and low production variability), a large number of aptamers have been selected against GBM biomarkers and provide specific imaging agents and therapeutics to improve the diagnosis and treatment of GBM. However, the use of aptamers in GBM diagnosis and treatment still represents an underdeveloped topic, mainly due to limited literature in the research world. On these bases, we performed a systematic review aimed at summarizing current knowledge on the new promising DNA and RNA aptamer-based molecules for GBM diagnosis and treatment. Thirty-eight studies from 2000 were included and investigated. Seventeen involved the use of aptamers for GBM diagnosis and 21 for GBM therapy. Our findings showed that a number of DNA and RNA aptamers are promising diagnostic and therapeutic tools for GBM management.
Collapse
|
18
|
Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, Alam MT, Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem 2020; 204:112640. [PMID: 32739648 DOI: 10.1016/j.ejmech.2020.112640] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.
Collapse
Affiliation(s)
- Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kahksha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| |
Collapse
|
19
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P. Aptamers in Non-Small Cell Lung Cancer Treatment. Molecules 2020; 25:molecules25143138. [PMID: 32659994 PMCID: PMC7396979 DOI: 10.3390/molecules25143138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides which are capable of specifically binding to single molecules and cellular structures. Aptamers are also known as “chemical antibodies”. Compared to monoclonal antibodies, they are characterized by higher reaction specificity, lower molecular weight, lower production costs, and lower variability in the production stage. Aptamer research has been extended during the past twenty years, but only Macugen® has been accepted by the Food and Drug Administration (FDA) to date, and few aptamers have been examined in clinical trials. In vitro studies with aptamers have shown that they may take part in the regulation of cancer progression, angiogenesis, and metastasis processes. In this article, we focus on the potential use of aptamers in non-small cell lung cancer treatment.
Collapse
|
20
|
Wang T, Rahimizadeh K, Veedu RN. Development of a Novel DNA Oligonucleotide Targeting Low-Density Lipoprotein Receptor. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:190-198. [PMID: 31841991 PMCID: PMC6920325 DOI: 10.1016/j.omtn.2019.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
Low-density lipoprotein receptor (LDL-R) is a cell surface receptor protein expressed in a variety of solid cancers, including lung, colon, breast, brain, and liver, and therefore it opens up opportunities to deliver lysosome-sensitive anti-cancer agents, especially synthetic nucleic acid-based therapeutic molecules. In this study, we focused on developing novel nucleic acid molecules specific to LDL-R. For this purpose, we performed in vitro selection procedure via systematic evolution of ligands by exponential enrichment (SELEX) methodologies using mammalian cell-expressed human recombinant LDL-R protein as a target. After 10 rounds of selections, we identified a novel DNA oligonucleotide aptamer, RNV-L7, that can bind specifically to LDL-R protein with high affinity and specificity (KD = 19.6 nM). Furthermore, flow cytometry and fluorescence imaging assays demonstrated efficient binding to LDL-R overexpressed human cancer cells, including Huh-7 liver cancer cells and MDA-MB-231 breast cancer cells, with a binding affinity of ∼200 nM. Furthermore, we evaluated the functional potential of the developed LDL-R aptamer RNV-L7 by conjugating with a previously reported miR-21 targeting DNAzyme for inhibiting miR-21 expression. The results showed that the miR-21 DNAzyme-RNV-L7 aptamer chimera efficiently reduced the expression of miR-21 in Huh-7 liver cancer cells. As currently there are no reports on LDL-R aptamer development, we think that RNV-L7 could be beneficial toward the development of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
21
|
Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, Tran PH, Chen C, Veedu RN, Wang T. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020; 10:3684-3707. [PMID: 32206116 PMCID: PMC7069071 DOI: 10.7150/thno.41580] [Citation(s) in RCA: 618] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/08/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are small extracellular vesicles with diameters of 30-150 nm. In both physiological and pathological conditions, nearly all types of cells can release exosomes, which play important roles in cell communication and epigenetic regulation by transporting crucial protein and genetic materials such as miRNA, mRNA, and DNA. Consequently, exosome-based disease diagnosis and therapeutic methods have been intensively investigated. However, as in any natural science field, the in-depth investigation of exosomes relies heavily on technological advances. Historically, the two main technical hindrances that have restricted the basic and applied researches of exosomes include, first, how to simplify the extraction and improve the yield of exosomes and, second, how to effectively distinguish exosomes from other extracellular vesicles, especially functional microvesicles. Over the past few decades, although a standardized exosome isolation method has still not become available, a number of techniques have been established through exploration of the biochemical and physicochemical features of exosomes. In this work, by comprehensively analyzing the progresses in exosome separation strategies, we provide a panoramic view of current exosome isolation techniques, providing perspectives toward the development of novel approaches for high-efficient exosome isolation from various types of biological matrices. In addition, from the perspective of exosome-based diagnosis and therapeutics, we emphasize the issue of quantitative exosome and microvesicle separation.
Collapse
Affiliation(s)
- Dongbin Yang
- Department of Neurosurgery of Hebi People's Hospital; Hebi Neuroanatomical Laboratory, Hebi, 458030, China
| | - Weihong Zhang
- School of Nursing, Zhengzhou University, Zhengzhou, 450001, China
| | - Huanyun Zhang
- Department of Neurosurgery of Hebi People's Hospital; Hebi Neuroanatomical Laboratory, Hebi, 458030, China
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou, China, 450000
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Nature Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Lixia Ma
- School of Statistics, Henan University of Economics and Law, Zhengzhou 450046, China
| | - Leon M. Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Nan Liu
- General Practice Centre, Nanhai Hospital, Southern Medical University, 528244, Foshan, China
| | - Qingxia Zhao
- School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA
| | - Phuong H.L. Tran
- School of Medicine, and Centre for Molecular and Medical Research, Deakin University, 3216, Australia
| | - Changying Chen
- The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Tao Wang
- School of Nursing, Zhengzhou University, Zhengzhou, 450001, China
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| |
Collapse
|
22
|
Passariello M, Camorani S, Vetrei C, Ricci S, Cerchia L, De Lorenzo C. Ipilimumab and Its Derived EGFR Aptamer-Based Conjugate Induce Efficient NK Cell Activation against Cancer Cells. Cancers (Basel) 2020; 12:E331. [PMID: 32024070 PMCID: PMC7072174 DOI: 10.3390/cancers12020331] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 01/05/2023] Open
Abstract
The immune checkpoint CTLA-4 (cytotoxic T-lymphocyte-antigen 4), which inhibits the co-stimulatory CD28 signal on T cells, has been recently found expressed on other cell populations, such as tumor and natural killer (NK) cells. We tested for the first time the effects of ipilimumab, the human anti-CTLA4 mAb in clinical use, on these cells and found that it inhibits the growth of tumor cells expressing CTLA-4 also in the absence of lymphocytes, and efficiently activates NK cells, thus suggesting an important unexplored role of NK cells in ipilimumab-modulated immune responses. Interestingly, the epidermal growth factor receptor (EGFR) has been shown to play a key role in tumor cell escape from immune surveillance, and in cytotoxic T lymphocyte inhibition. Thus, we tested combinatorial treatments of ipilimumab with an anti-EGFR aptamer endowed with anti-tumor activity, and constructed for the first time a novel bispecific immunoconjugate, made up of these two compounds. The novel immunoconjugate binds to the target cells, induces the activation of lymphocytes, including NK cells, and inhibits the growth of tumor target cells more efficiently than the parental compounds, by strongly enhancing the cytotoxic activity of both human peripheral blood mononuclear cells and NK cells against tumor cells.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.P.); (C.V.); (S.R.)
- Ceinge – Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Cinzia Vetrei
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.P.); (C.V.); (S.R.)
- Ceinge – Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Stefania Ricci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.P.); (C.V.); (S.R.)
- Ceinge – Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (M.P.); (C.V.); (S.R.)
- Ceinge – Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|