1
|
Amna T, Shamshi Hassan M, Algethami JS, Aljuaid A, Alfarsi A, Alnefaie R, Sheikh FA, Khil MS. Characterization of Gold-Enhanced Titania: Boosting Cell Proliferation and Combating Bacterial Infestation. Tissue Eng Regen Med 2024; 21:711-721. [PMID: 38520636 PMCID: PMC11187044 DOI: 10.1007/s13770-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability. METHODS Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit-8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability. RESULTS The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern. CONCLUSION Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for developing forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.
Collapse
Affiliation(s)
- Touseef Amna
- Department of Biology, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia.
| | - M Shamshi Hassan
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia.
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, 11001, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, 11001, Najran, Saudi Arabia
| | - Alya Aljuaid
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Anas Alfarsi
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia
| | - Rasha Alnefaie
- Department of Biology, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Myung-Seob Khil
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
2
|
Liu C, Zhang J, Zhao X, Xu M, Liu H, Zhou H. Stability, biomechanics and biocompatibility analysis following different preparation strategies of hierarchical zeolite coatings on titanium alloy surfaces. Front Bioeng Biotechnol 2023; 11:1337709. [PMID: 38188487 PMCID: PMC10766723 DOI: 10.3389/fbioe.2023.1337709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Traditional titanium alloy implant surfaces are inherently smooth and often lack effective osteoinductive properties. To overcome these limitations, coating technologies are frequently employed to enhance the efficiency of bone integration at the implant-host bone interface. Hierarchical zeolites, characterized by their chemical stability, can be applied to 3D-printed porous titanium alloy (pTi) surfaces as coating. The resulting novel implants with a "microporous-mesoporous-macroporous" spatial gradient structure can influence the behavior of adjacent cells; thereby, promoting the integration of bone at the implant interface. Consequently, a thorough exploration of various preparation methods is warranted for hierarchical zeolite coatings with respect to biocompatibility, coating stability, and osteogenesis. In this study, we employed three methods: in situ crystal growth, secondary growth, and layer-by-layer assembly, to construct hierarchical zeolite coatings on pTi, resulting in the development of a gradient structure. The findings of this investigation unequivocally demonstrated that the LBL-coating method consistently produced coatings characterized by superior uniformity, heightened surface roughness, and increased hydrophilicity, as well as increased biomechanical properties. These advantages considerably amplified cell adhesion, spreading, osteogenic differentiation, and mineralization of MC3T3-E1 cells, presenting superior biological functionality when compared to alternative coating methods. The outcomes of this research provide a solid theoretical basis for the clinical translation of hierarchical zeolite coatings in surface modifications for orthopedic implants.
Collapse
Affiliation(s)
- Chang Liu
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xin Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Mingwei Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hongming Zhou
- School of Materials Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
3
|
Tatullo M, Zavan B, Piattelli A. Critical Overview on Regenerative Medicine: New Insights into the Role of Stem Cells and Innovative Biomaterials. Int J Mol Sci 2023; 24:ijms24097936. [PMID: 37175642 PMCID: PMC10177993 DOI: 10.3390/ijms24097936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Regenerative medicine represents a novel and intriguing field of medicine [...].
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70124 Bari, Italy
- University of Dundee, Dundee DD1 4HR, UK
- MIRROR-Medical Institute for Regeneration and Repairing and Organ Replacement, Interdepartmental Center, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
4
|
TiO 2/HA and Titanate/HA Double-Layer Coatings on Ti6Al4V Surface and Their Influence on In Vitro Cell Growth and Osteogenic Potential. J Funct Biomater 2022; 13:jfb13040271. [PMID: 36547531 PMCID: PMC9787412 DOI: 10.3390/jfb13040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved is to provide implants with appropriate biointegration properties, enabling the permanent link between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface of the layer in simulated body fluid. We investigated the effects of the obtained systems on the viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties. Based on the obtained results, we can conclude that both investigated systems reflect the physiological environment of bone tissue and create a biocompatible surface supporting cell growth. However, the nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.
Collapse
|
5
|
Ehlert M, Radtke A, Bartmański M, Piszczek P. Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6925. [PMID: 36234265 PMCID: PMC9572782 DOI: 10.3390/ma15196925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are discussed. Despite excellent biocompatibility with natural bone tissue of materials based on hydroxyapatite (HA), their poor adhesion to the substrate caused the limited use in the implants' construction. In our works, we have focused on the comparison of the structure, physicochemical, and mechanical properties of coating systems produced at different conditions. For this purpose, scanning electron microscopy images, chemical composition, X-ray diffraction patterns, infrared spectroscopy, wettability, and mechanical properties are analyzed. Our investigations proved that the intermediate titanium oxide coatings presence significantly increases the adhesion between the hydroxyapatite layer and the Ti6Al4V substrate, thus solving the temporary delamination problems of the HA layer.
Collapse
Affiliation(s)
- Michalina Ehlert
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| | - Michał Bartmański
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Nano-Implant Ltd., Gagarina 7/47, 87-100 Toruń, Poland
| |
Collapse
|
6
|
The Effect of the Topmost Layer and the Type of Bone Morphogenetic Protein-2 Immobilization on the Mesenchymal Stem Cell Response. Int J Mol Sci 2022; 23:ijms23169287. [PMID: 36012551 PMCID: PMC9408842 DOI: 10.3390/ijms23169287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) plays a key role in the stem cell response, not only via its influence on osteogenesis, but also on cellular adhesion, migration, and proliferation. However, when applied clinically, its supra-physiological levels cause many adverse effects. Therefore, there is a need to concomitantly retain the biological activity of BMP-2 and reduce its doses. Currently, the most promising strategies involve site-specific and site-directed immobilization of rhBMP-2. This work investigated the covalent and electrostatic binding of rhBMP-2 to ultrathin-multilayers with chondroitin sulfate (CS) or diazoresin (DR) as the topmost layer. Angle-resolved X-ray photoelectron spectroscopy was used to study the exposed chemical groups. The rhBMP-2 binding efficiency and protein state were studied with time-of-flight secondary ion mass spectrometry. Quartz crystal microbalance, atomic force microscopy, and enzyme-linked immunosorbent assay were used to analyze protein–substrate interactions. The effect of the topmost layer was tested on initial cell adhesion and short-term osteogenesis marker expression. The results show the highest expression of selected osteomarkers in cells cultured on the DR-ended layer, while the cellular flattening was rather poor compared to the CS-ended system. rhBMP-2 adhesion was observed only on negatively charged layers. Cell flattening became more prominent in the presence of the protein, even though the osteogenic gene expression decreased.
Collapse
|
7
|
Assessment of Titanate Nanolayers in Terms of Their Physicochemical and Biological Properties. MATERIALS 2021; 14:ma14040806. [PMID: 33567667 PMCID: PMC7915217 DOI: 10.3390/ma14040806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/02/2023]
Abstract
The surface modification of titanium substrates and its alloys in order to improve their osseointegration properties is one of widely studied issues related to the design and production of modern orthopedic and dental implants. In this paper, we discuss the results concerning Ti6Al4V substrate surface modification by (a) alkaline treatment with a 7 M NaOH solution, and (b) production of a porous coating (anodic oxidation with the use of potential U = 5 V) and then treating its surface in the abovementioned alkaline solution. We compared the apatite-forming ability of unmodified and surface-modified titanium alloy in simulated body fluid (SBF) for 1–4 weeks. Analysis of the X-ray diffraction patterns of synthesized coatings allowed their structure characterization before and after immersing in SBF. The obtained nanolayers were studied using Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and scanning electron microscopy (SEM) images. Elemental analysis was carried out using X-ray energy dispersion spectroscopy (SEM EDX). Wettability and biointegration activity (on the basis of the degree of integration of MG-63 osteoblast-like cells, L929 fibroblasts, and adipose-derived mesenchymal stem cells cultured in vitro on the sample surface) were also evaluated. The obtained results proved that the surfaces of Ti6Al4V and Ti6Al4V covered by TiO2 nanoporous coatings, which were modified by titanate layers, promote apatite formation in the environment of body fluids and possess optimal biointegration properties for fibroblasts and osteoblasts.
Collapse
|
8
|
Jankowski M, Dompe C, Sibiak R, Wąsiatycz G, Mozdziak P, Jaśkowski JM, Antosik P, Kempisty B, Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells 2020; 9:cells9081783. [PMID: 32726947 PMCID: PMC7463427 DOI: 10.3390/cells9081783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) exhibiting mesenchymal stem cell (MSC) characteristics, have been extensively studied in recent years. Because they have been shown to differentiate into lineages such as osteogenic, chondrogenic, neurogenic or myogenic, the focus of most of the current research concerns either their potential to replace bone marrow as a readily available and abundant source of MSCs, or to employ them in regenerative and reconstructive medicine. There is close to consensus regarding the methodology used for ASC isolation and culture, whereas a number of molecular analyses implicates them in potential therapies of a number of pathologies. When it comes to clinical application, there is a range of examples of animal trials and clinical studies employing ASCs, further emphasizing the advancement of studies leading to their more widespread use. Nevertheless, in vitro studies will most likely continue to play a significant role in ASC studies, both providing the molecular knowledge of their ex vivo properties and possibly serving as an important step in purification and application of those cells in a clinical setting. Therefore, it is important to consider current methods of ASC isolation, culture, and processing. Furthermore, molecular analyses and cell surface properties of ASCs are essential for animal studies, clinical studies, and therapeutic applications of the MSC properties.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Claudia Dompe
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK
| | - Rafał Sibiak
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 20 Jihlavská St., 601 77 Brno, Czech Republic
- Correspondence:
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
9
|
The Photocatalytic Activity of Titania Coatings Produced by Electrochemical and Chemical Oxidation of Ti6Al4V Substrate, Estimated According to ISO 10678:2010The Photocatalytic Activity of Titania Coatings Produced by Electrochemical and Chemical Oxidation of Ti6Al4V Substrate, Estimated According to ISO 10678:2010. MATERIALS 2020; 13:ma13112649. [PMID: 32532021 PMCID: PMC7321569 DOI: 10.3390/ma13112649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The last twenty years have been a period of intense investigations of materials based on titanium dioxide, which have unique properties and functionalities, and which can be used in various areas of medicine. As a part of this issue, the results of our works for the assessment of the photocatalytic activity of titanium dioxide nanocoatings of different nanoarchitecture (nanoporous, nanotubular, nanosponge-like and nanofibrous examples), which were earlier checked in terms of their biocompatibility and usability for the modification of medical devices' surfaces, are presented. The studied materials were produced on the surface of Ti6Al4V substrates using electrochemical and chemical oxidation methods. The activity of produced titania materials was studied on the base of the methylene blue (MB) degradation effect, in accordance to ISO 10678:2010. In our works, we have focused on the analysis of the correlation between the photocatalytic activity of nanoarchitecturally different TiO2 coatings, their morphology and structure. The obtained results prove that all studied coatings, both amorphous and amorphous containing crystalline domains, revealed photocatalytic activity in the photoinduced degradation of the organic pollution standard. This activity may be an additional advantage of medical device coatings, being adequate for use in sterilization processes applying UVA light.
Collapse
|
10
|
Ehlert M, Radtke A, Jędrzejewski T, Roszek K, Bartmański M, Piszczek P. In Vitro Studies on Nanoporous, Nanotubular and Nanosponge-Like Titania Coatings, with the Use of Adipose-Derived Stem Cells. MATERIALS 2020; 13:ma13071574. [PMID: 32235354 PMCID: PMC7177883 DOI: 10.3390/ma13071574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
In vitro biological research on a group of amorphous titania coatings of different nanoarchitectures (nanoporous, nanotubular, and nanosponge-like) produced on the surface of Ti6Al4V alloy samples have been carried out, aimed at assessing their ability to interact with adipose-derived mesenchymal stem cells (ADSCs) and affect their activity. The attention has been drawn to the influence of surface coating architecture and its physicochemical properties on the ADSCs proliferation. Moreover, in vitro co-cultures: (1) fibroblasts cell line L929/ADSCs and (2) osteoblasts cell line MG-63/ADSCs on nanoporous, nanotubular and nanosponge-like TiO2 coatings have been studied. This allowed for evaluating the impact of the surface properties, especially roughness and wettability, on the creation of the beneficial microenvironment for co-cultures and/or enhancing differentiation potential of stem cells. Obtained results showed that the nanoporous surface is favorable for ADSCs, has great biointegrative properties, and supports the growth of co-cultures with MG-63 osteoblasts and L929 fibroblasts. Additionally, the number of osteoblasts seeded and cultured with ADSCs on TNT5 surface raised after 72-h culture almost twice when compared with the unmodified scaffold and by 30% when compared with MG-63 cells growing alone. The alkaline phosphatase activity of MG-63 osteoblasts co-cultured with ADSCs increased, that indirectly confirmed our assumptions that TNT-modified scaffolds create the osteogenic niche and enhance osteogenic potential of ADSCs.
Collapse
Affiliation(s)
- Michalina Ehlert
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
- Correspondence: (A.R.); (P.P.); Tel.: +48-600321294 (A.R.); Tel.: +48-607883357 (P.P.)
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Michał Bartmański
- Faculty of Mechanical Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
- Correspondence: (A.R.); (P.P.); Tel.: +48-600321294 (A.R.); Tel.: +48-607883357 (P.P.)
| |
Collapse
|