1
|
Li S, Ahmed W, Jiang T, Yang D, Yang L, Hu X, Zhao M, Peng X, Yang Y, Zhang W, Li M, Zhao Z. Amino acid metabolism pathways as key regulators of nitrogen distribution in tobacco: insights from transcriptome and WGCNA analyses. BMC PLANT BIOLOGY 2025; 25:393. [PMID: 40148814 PMCID: PMC11948770 DOI: 10.1186/s12870-025-06390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND AND AIM Nitrogen (N) is crucial for plant growth and is distributed across various N morphologies within plant organs. However, the mechanisms controlling the distribution of these N morphologies are not fully understood. This study investigated key amino acid (AA) biosynthesis pathways regulating N distribution and their impact on plant physiology and growth. METHODS We examined N distribution in the leaves, stems, and roots of two tobacco cultivars (Hongda and K326) under different N treatments at 75, and 100 days after transplanting (DAT). Transcriptome analysis was performed at 75 and 100 DAT to explore N distribution and AA metabolism pathways. Weighted gene co-expression network analysis (WGCNA) identified pathways regulating N distribution, and the Mantel test assessed the impact of N treatments, growth stages, and cultivars on N distribution. RESULTS Statistically significant differences in N distribution were observed across environmental conditions, growth stages, cultivars, and plant organs (p < 0.05). WGCNA identified phenylalanine metabolism (ko00360), alanine, aspartate, and glutamate metabolism (ko00250), and glycine, serine, and threonine metabolism (ko00260) pathways regulating the distribution of Nin-SDS (sodium dodecyl sulfate insoluble N), NW (water soluble N), and NS (sodium dodecyl sulfate soluble N), respectively. Increased N application promoted Nin-SDS accumulation, while earlier growth stages and cultivar Hongda favored NW distribution. NS distribution was inhibited under high N conditions. Gene expression in these pathways correlated with N distribution, biomass, and N accumulation. CONCLUSION This study elucidates the mechanisms regulating N distribution in tobacco, emphasizing the role of AA metabolism pathways. These findings are essential for improving N utilization and optimizing N management practices, ultimately enhancing crop productivity and supporting sustainable agricultural practices.
Collapse
Affiliation(s)
- Shichen Li
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Waqar Ahmed
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Tao Jiang
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Dehai Yang
- Production Department, Yunnan Hongta Group Dali Cigarette Factory, Dali, Yunnan, 671000, China
| | - Linyuan Yang
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Xiaodong Hu
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
- Yunnan Tobacco Monopoly Bureau, Kunming, Yunnan, 650000, China
| | - Meiwei Zhao
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
- College of Agronomy and Life Sciences, Kunming University, Kunming, Yunnan, 650000, China
| | - Xiaoci Peng
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
- Yunnan Tobacco Monopoly Bureau, Kunming, Yunnan, 650000, China
| | - Yingfen Yang
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan, 675000, China
| | - Wei Zhang
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Mingmin Li
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Zhengxiong Zhao
- Yunnan Agricultural University, Kunming, Yunnan, 650000, China.
| |
Collapse
|
2
|
Han M, Si Y, Sun S, Hu J, Han Y, Liu X, Zhai Y, Su T, Cao F. Metabolism Plasticity on Account of Aspartate aminotransferase 10 Promotes Poplar Growth under Altered Nitrogen Regimes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6468-6485. [PMID: 40045927 DOI: 10.1021/acs.jafc.4c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Improving poplar productivity across a wide spectrum of nitrogen conditions is a primary objective in poplar breeding. In this research, we engineered transgenic poplars to overexpress the aspartate aminotransferase 10 (AspAT10) gene. The results showed that these transgenic plantlets significantly outperformed the wild-type control in terms of growth under both nitrogen-poor and nitrogen-rich conditions, exhibiting increased biomass, height, and root development. This improvement was linked to changes in internal nitrogen pools (including NO3-, NH4+, and total free amino acids) and sugar content. In line with the metabolic results, notable alterations in genes related to nitrogen and carbon metabolism as well as hormone signaling pathways were identified. Our findings highlight the versatile role of AspAT10 in regulating poplar's adaptation to variable nitrogen availability, attributed to the reversible nature of its catalytic reaction, which allows for the flexible reprogramming of nitrogen and carbon metabolism to align nitrogen supply with plant demand.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yujia Si
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shuyue Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jinghan Hu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yirong Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoning Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yujie Zhai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Liu Q, Hou S, Zhang Y, Zhou D, Guo L, Zhao S, Ding C. Dielectric Barrier Discharge Cold Plasma Improves Storage Stability in Paddy Rice by Activating the Phenylpropanoid Biosynthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25066-25077. [PMID: 39480226 DOI: 10.1021/acs.jafc.4c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A nonthermal pretreatment using dielectric barrier discharge cold plasma (DBD-CP) was developed to improve the stress resistance of paddy rice during postharvest storage. The physicochemical properties, bioactive characteristics, and secondary metabolites of paddy rice were assessed after applying an optimized DBD-CP procedure, with enzyme activities and gene expression monitored over a 60 day storage period at 35 °C. A 17.06% reduction in the total color change index was noted in the DBD-CP group. Bioactive compounds, particularly gallic acid, were significantly increased, enhancing the defense mechanisms against high-temperature stress. Nontargeted metabolomics analysis indicated an upregulation of phenylpropanoid metabolism in DBD-CP-treated rice compared to controls, with notable increases in secondary metabolites such as coumaric acid, caffeic acid, and sinapic acid, suggesting potential biomarkers for stress resistance. Further verification showed significant enhancements in key enzymes of phenylpropanoid metabolism, including phenylalanine ammonia lyase (PAL), cinnamic acid-4-hydroxylase (C4H), plant coumaric acid-3-hydroxylase (C3H), and cinnamyl alcohol dehydrogenase (CAD), with increases ranging from 1.71 to 2.28 times. Gene expression levels of OsPAL7, OsC4H4, and OsCAD2 aligned with these enzymatic changes post-DBD-CP treatment. In conclusion, DBD-CP treatment can modulate phenylpropanoid metabolism in paddy rice, thereby enhancing bioactive compound levels to reduce stress damage during high-temperature storage.
Collapse
Affiliation(s)
- Qiang Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu210023, China
| | - Shuai Hou
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu210023, China
| | - Yijia Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu210023, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
| | - Liping Guo
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu210023, China
| | - Siqi Zhao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu210023, China
| | - Chao Ding
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu210023, China
| |
Collapse
|
4
|
Wei Q, Yin Y, Tong Q, Gong Z, Shi Y. Multi-omics analysis of excessive nitrogen fertilizer application: Assessing environmental damage and solutions in potato farming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116916. [PMID: 39181078 DOI: 10.1016/j.ecoenv.2024.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Potatoes (Solanum tuberosum L.) are the third largest food crop globally and are pivotal for global food security. Widespread N fertilizer waste in potato cultivation has caused diverse environmental issues. This study employed microbial metagenomic sequencing to analyze the causes behind the declining N use efficiency (NUE) and escalating greenhouse gas emissions resulting from excessive N fertilizer application. Addressing N fertilizer inefficiency through breeding has emerged as a viable solution for mitigating overuse in potato cultivation. In this study, transcriptome and metabolome analyses were applied to identify N fertilizer-responsive genes. Metagenomic sequencing revealed that excessive N fertilizer application triggered alterations in the population dynamics of 11 major bacterial phyla, consequently affecting soil microbial functions, particularly N metabolism pathways and bacterial secretion systems. Notably, the enzyme levels associated with NO3- increased, and those associated with NO and N2O increased. Furthermore, excessive N fertilizer application enhanced soil virulence factors and increased potato susceptibility to diseases. Transcriptome and metabolome sequencing revealed significant impacts of excessive N fertilizer use on lipid and amino acid metabolism pathways. Weighted gene co‑expression network analysis (WGCNA) was adopted to identify two genes associated with N fertilizer response: PGSC0003DMG400021157 and PGSC0003DMG400009544.
Collapse
Affiliation(s)
- Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Harbin, China
| | - Yanbin Yin
- College of Agriculture, Northeast Agricultural University, Harbin, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, China
| | - Qingsong Tong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China.
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Harbin, China.
| |
Collapse
|
5
|
Farooq MS, Majeed A, Ghazy AH, Fatima H, Uzair M, Ahmed S, Murtaza M, Fiaz S, Khan MR, Al-Doss AA, Attia KA. Partial replacement of inorganic fertilizer with organic inputs for enhanced nitrogen use efficiency, grain yield, and decreased nitrogen losses under rice-based systems of mid-latitudes. BMC PLANT BIOLOGY 2024; 24:919. [PMID: 39354385 PMCID: PMC11443697 DOI: 10.1186/s12870-024-05629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
In the rice-based system of mid-latitudes, mineral nitrogen (N) fertilizer serves as the largest source of the N cycle due to an insufficient supply of N from organic sources causing higher N losses due to varying soil and environmental factors. However, aiming to improve soil organic matter (OM) and nutrients availability using the best environmentally, socially, and economically sustainable cultural and agronomic management practices are necessary. This study aimed to enhance nitrogen use efficiency (NUE) and grain yield in rice-based systems of mid-latitudes by partially replacing inorganic N fertilizer with organic inputs. A randomized complete block design (RCBD) was employed to evaluate the effects of sole mineral N fertilizer (urea) and its combinations with organic sources-farmyard manure (FYM) and poultry compost-on different elite green super rice (GSR) genotypes and were named as NUYT-1, NUYT-2, NUYT-3, NUYT-4, NUYT-5, and NUYT-6. The study was conducted during the 2022 and 2023 rice growing seasons at the Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Islamabad, one of the mid-latitudes of Pakistan. The key objective was to determine the most effective N management strategy for optimizing plant growth, N content in soil and plants, and overall crop productivity. The results revealed that the combined application of poultry compost and mineral urea significantly enhanced soil and leaf N content (1.36 g kg- 1 and 3.06 mg cm- 2, respectively) and plant morphophysiological traits compared to sole urea application. Maximum shoot dry weight (SDW) and root dry weight (RDW) were observed in compost-applied treatment with the values of 77.62 g hill- 1 and 8.36 g hill- 1, respectively. The two-year mean data indicated that applying 150 kg N ha⁻1, with half provided by organic sources (10 tons ha⁻1 FYM or poultry compost) and the remainder by mineral urea, resulted in the highest N uptake, utilization, and plant productivity. Thus, integrated management of organic carbon sources and inorganic fertilizers may sustain the productivity of rice-based systems more eco-efficiently. Further research is recommended to explore root and shoot morphophysiological, molecular, and biochemical responses under varying N regimes, aiming to develop N-efficient rice varieties through advanced breeding programs.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad, 44000, Pakistan.
- Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Abid Majeed
- Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad, 44000, Pakistan
| | - Abdel-Halim Ghazy
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hira Fatima
- Department of Agronomy, Faculty of Agriculture and Environment (FA&E), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 44000, Pakistan
| | - Shafiq Ahmed
- Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad, 44000, Pakistan
| | - Maryam Murtaza
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Road, Islamabad, 44000, Pakistan
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan
| | - Muhammad Ramzan Khan
- Department of Agronomy, Faculty of Agriculture and Environment (FA&E), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdullah A Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Wang Z, Wang R, Yuan H, Fan F, Li S, Cheng M, Tian Z. Comprehensive identification and analysis of DUF640 genes associated with rice growth. Gene 2024; 914:148404. [PMID: 38521113 DOI: 10.1016/j.gene.2024.148404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Protein domains with conserved amino acid sequences and uncharacterized functions are called domains of unknown function (DUF). The DUF640 gene family plays a crucial role in plant growth, particularly in light regulation, floral organ development, and fruit development. However, there exists a lack of systematic understanding of the evolutionary relationships and functional differentiation of DUF640 within the Oryza genus. In this study, 61 DUF640 genes were identified in the Oryza genus. The expression of DUF640s is induced by multiple hormonal stressors including abscisic acid (ABA), cytokinin (CK), ethylene (ETH), and indole-3-acetic acid (IAA). Specifically, OiDUF640-10 expression significantly increased after ETH treatment. Transgenic experiments showed that overexpressing OiDUF640-10 lines were sensitive to ETH, and seedling length was obstructed. Evolutionary analysis revealed differentiation of the OiDUF640-10 gene in O. sativa ssp. indica and japonica varieties, likely driven by natural selection during the domestication of cultivated rice. These results indicate that OiDUF640-10 plays a vital role in the regulation of rice seedling length.
Collapse
Affiliation(s)
- Zhikai Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Life Science, Yangtze University, Jingzhou, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Zhihong Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Life Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
7
|
Zhao X, Ge W, Miao Z. Integrative metabolomic and transcriptomic analyses reveals the accumulation patterns of key metabolites associated with flavonoids and terpenoids of Gynostemma pentaphyllum (Thunb.) Makino. Sci Rep 2024; 14:8644. [PMID: 38622163 PMCID: PMC11018608 DOI: 10.1038/s41598-024-57716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a medicinal and edible plant with multiple functions of liver protection, anti-tumor, anti-inflammation, balancing blood sugar and blood lipids. The nutritional value of the G. pentaphyllum plant is mainly due to its rich variety of biologically active substances, such as flavonoids, terpenes and polysaccharides. In this study, we performed a comprehensive analysis combining metabolomics and root, stem and leaf transcriptomic data of G. pentaphyllum. We used transcriptomics and metabolomics data to construct a dynamic regulatory network diagram of G. pentaphyllum flavonoids and terpenoids, and screened the transcription factors involved in flavonoids and terpenoids, including basic helix-loop-helix (bHLH), myb-related, WRKY, AP2/ERF. Transcriptome analysis results showed that among the DEGs related to the synthesis of flavonoids and terpenoids, dihydroflavonol 4-reductase (DFR) and geranylgeranyl diphosphate synthases (GGPPS) were core genes. This study presents a dynamic image of gene expression in different tissues of G. pentaphyllum, elucidating the key genes and metabolites of flavonoids and terpenoids. This study is beneficial to a deeper understanding of the medicinal plants of G. pentaphyllum, and also provides a scientific basis for further regulatory mechanisms of plant natural product synthesis pathways and drug development.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Weiwei Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Zhi Miao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
8
|
Tao M, Zhang C, Zhang Z, Zuo Z, Zhao H, Lv T, Li Y, Yu H, Liu C, Yu D. Species-specific functional trait responses of canopy-forming and rosette-forming macrophytes to nitrogen loading: Implications for water-sediment interactions. ENVIRONMENT INTERNATIONAL 2024; 185:108557. [PMID: 38458117 DOI: 10.1016/j.envint.2024.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Globally intensified lake eutrophication, attributed to excessive anthropogenic nitrogen loading, emerges as a significant driver of submerged vegetation degradation. Consequently, the impact of nitrogen on the decline of submerged macrophytes has received increasing attention. However, a functional trait-based approach to exploring the response of submerged macrophytes to nitrogen loading and its environmental feedback mechanism was unclear. Our study utilized two different growth forms of submerged macrophytes (canopy-forming Myriophyllum spicatum, and rosette-forming Vallisneria natans) to established "submerged macrophytes-water-sediment" microcosms. We assessed the influence of nitrogen loading, across four targeted total nitrogen concentrations (original control, 2, 5, 10 mg/L), on plant traits, water parameters, sediment properties, enzyme activities, and microbial characteristics. Our findings revealed that high nitrogen (10 mg/L) adversely impacted the relative growth rate of fresh biomass and total chlorophyll content in canopy-forming M. spicatum, while the chlorophyll a/b and free amino acid content increased. On the contrary, the growth and photosynthetic traits of resource-conservative V. natans were not affected by nitrogen loading. Functional traits (growth, photosynthetic, and stoichiometric) of M. spicatum but not V. natans exhibited significant correlations with environmental variables. Nitrogen loading significantly increased the concentration of nitrogen components in overlying water and pore water. The presence of submerged macrophytes significantly reduced the ammonia nitrogen and total nitrogen both in overlying water and pore water, and decreased total organic carbon in pore water. Nitrogen loading significantly inhibited sediment extracellular enzyme activities, but the planting of submerged macrophytes mitigated their negative effects. Furthermore, rhizosphere bacterial interactions were less compact compared to bare control, while eukaryotic communities exhibited increased complexity and connectivity. Path modeling indicated that submerged macrophytes mitigated the direct effects of nitrogen loading on overlying water and amplified the indirect effects on pore water, while also attenuating the direct negative effects of pore water on extracellular enzymes. The findings indicated that the restoration of submerged vegetation can mitigate eutrophication resulting from increased nitrogen loading through species-specific changes in functional traits and direct or indirect feedback mechanisms in the water-sediment system.
Collapse
Affiliation(s)
- Min Tao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhiqiang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Haocun Zhao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
9
|
Wang J, Han Y, Zhou C, Xu T, Qu Z, Ma B, Yuan M, Wang L, Liu Y, Li Q, Ding X, Qian C, Ma B. Effects of depth of straw returning on maize yield potential and greenhouse gas emissions. FRONTIERS IN PLANT SCIENCE 2024; 15:1344647. [PMID: 38450409 PMCID: PMC10915011 DOI: 10.3389/fpls.2024.1344647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Appropriate straw incorporation has ample agronomic and environmental benefits, but most studies are limited to straw mulching or application on the soil surface. To determine the effect of depth of straw incorporation on the crop yield, soil organic carbon (SOC), total nitrogen (TN) and greenhouse gas emission, a total of 4 treatments were set up in this study, which comprised no straw returning (CK), straw returning at 15 cm (S15), straw returning at 25 cm (S25) and straw returning at 40 cm (S40). The results showed that straw incorporation significantly increased SOC, TN and C:N ratio. Compared with CK treatments, substantial increases in the grain yield (by 4.17~5.49% for S15 and 6.64~10.06% for S25) were observed under S15 and S25 treatments. S15 and S25 could significantly improve the carbon and nitrogen status of the 0-40 cm soil layer, thereby increased maize yield. The results showed that the maize yield was closely related to the soil carbon and nitrogen index of the 0-40 cm soil layer. In order to further evaluate the environmental benefits of straw returning, this study measured the global warming potential (GWP) and greenhouse gas emission intensity (GHGI). Compared with CK treatments, the GWP of S15, S25 and S40 treatments was increased by 9.35~20.37%, 4.27~7.67% and 0.72~6.14%, respectively, among which the S15 treatment contributed the most to the GWP of farmland. GHGI is an evaluation index of low-carbon agriculture at this stage, which takes into account both crop yield and global warming potential. In this study, GHGI showed a different trend from GWP. Compared with CK treatments, the S25 treatments had no significant difference in 2020, and decreased significantly in 2021 and 2022. This is due to the combined effect of maize yield and cumulative greenhouse gas emissions, indicating that the appropriate straw returning method can not only reduce the intensity of greenhouse gas emissions but also improve soil productivity and enhance the carbon sequestration effect of farmland soil, which is an ideal soil improvement and fertilization measure.
Collapse
Affiliation(s)
- Junqiang Wang
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yehui Han
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Chao Zhou
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Ting Xu
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhongcheng Qu
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Bo Ma
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Ming Yuan
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Lianxia Wang
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yang Liu
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Qingchao Li
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Xinying Ding
- Animal Husbandry and Veterinary Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Chunrong Qian
- Institute of Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Baoxin Ma
- Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| |
Collapse
|
10
|
Wang Y, Li P, Zhu Y, Shang Y, Wu Z, Tao Y, Wang H, Li D, Zhang C. Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:371. [PMID: 38337903 PMCID: PMC10856819 DOI: 10.3390/plants13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Dongxi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| |
Collapse
|
11
|
Zou Y, Zhang Y, Cui J, Gao J, Guo L, Zhang Q. Nitrogen fertilization application strategies improve yield of the rice cultivars with different yield types by regulating phytohormones. Sci Rep 2023; 13:21803. [PMID: 38071312 PMCID: PMC10710506 DOI: 10.1038/s41598-023-48491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the most important food crop worldwide, and its sustainable development is essential to ensure global food security. Panicle morphological and physiological characteristics plays an important role in rice yield formation. However, under different nitrogen (N) fertilization strategies, it is not clear whether the morphological and physiological state of panicles at panicle development stage affects the formation of yield. To understand how the panicle differentiation and development, and grain yield are affected by the N fertilization strategies, and clarify the relationship between related traits and yield in the process of panicle development in different cultivars. In this study consisted of no N fertilizer and four N fertilization strategies, a panicle weight type (PWT) rice cultivar, Dongfu 114 (DF114) and a panicle number type (PNT) rice cultivar, Longdao 11 (LD11) were grown in the field. The results showed that N fertilization strategies could improve the nitrogen use efficiency and yield of rice, but the response of different rice varieties to N fertilizer strategies was different. Different from the DF114, the further increase of panicle N fertilizer ratio could not further improve the yield of LD11, and the highest grain yield of DF114 and LD11 was obtained under N4 and N3 conditions, respectively. In addition, this study found that N fertilizer strategies can affect the content of phytohormones in rice at the panicle differentiation stage, and then regulate the differentiation and development of rice panicles to affect yield. It is of great significance to optimize the application mode of N fertilizer according to the characteristics of varieties to improve rice yield and ensure food security.
Collapse
Affiliation(s)
- Yue Zou
- Agronomy College Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Germplasm Innovation and Physiological Ecology of Grain Crops in Cold Region, Ministry of Education, Harbin, 150030, China
| | - Yuchen Zhang
- Agronomy College Jilin Agricultural University, Changchun, 130118, China
| | - Jiehao Cui
- Agronomy College Jilin Agricultural University, Changchun, 130118, China
| | - Jiacong Gao
- Agronomy College Jilin Agricultural University, Changchun, 130118, China
| | - Liying Guo
- Agronomy College Jilin Agricultural University, Changchun, 130118, China.
| | - Qiang Zhang
- Agronomy College Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Germplasm Innovation and Physiological Ecology of Grain Crops in Cold Region, Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
12
|
Lai YH, Peng MY, Rao RY, Chen WS, Huang WT, Ye X, Yang LT, Chen LS. An Integrated Analysis of Metabolome, Transcriptome, and Physiology Revealed the Molecular and Physiological Response of Citrus sinensis Roots to Prolonged Nitrogen Deficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:2680. [PMID: 37514294 PMCID: PMC10383776 DOI: 10.3390/plants12142680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Citrus sinensis seedlings were supplied with a nutrient solution containing 15 (control) or 0 (nitrogen (N) deficiency) mM N for 10 weeks. Extensive metabolic and gene reprogramming occurred in 0 mM N-treated roots (RN0) to cope with N deficiency, including: (a) enhancing the ability to keep phosphate homeostasis by elevating the abundances of metabolites containing phosphorus and the compartmentation of phosphate in plastids, and/or downregulating low-phosphate-inducible genes; (b) improving the ability to keep N homeostasis by lowering the levels of metabolites containing N but not phosphorus, upregulating N compound degradation, the root/shoot ratio, and the expression of genes involved in N uptake, and resulting in transitions from N-rich alkaloids to carbon (C)-rich phenylpropanoids and phenolic compounds (excluding indole alkaloids) and from N-rich amino acids to C-rich carbohydrates and organic acids; (c) upregulating the ability to maintain energy homeostasis by increasing energy production (tricarboxylic acid cycle, glycolysis/gluconeogenesis, oxidative phosphorylation, and ATP biosynthetic process) and decreasing energy utilization for amino acid and protein biosynthesis and new root building; (d) elevating the transmembrane transport of metabolites, thus enhancing the remobilization and recycling of useful compounds; and (e) activating protein processing in the endoplasmic reticulum. RN0 had a higher ability to detoxify reactive oxygen species and aldehydes, thus protecting RN0 against oxidative injury and delaying root senescence.
Collapse
Affiliation(s)
- Yin-Hua Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Yi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong-Yu Rao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Shu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Tao Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Ye
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Liao Y, Zhao S, Zhang W, Zhao P, Lu B, Moody ML, Tan N, Chen L. Chromosome-level genome and high nitrogen stress response of the widespread and ecologically important wetland plant Typha angustifolia. FRONTIERS IN PLANT SCIENCE 2023; 14:1138498. [PMID: 37265642 PMCID: PMC10230045 DOI: 10.3389/fpls.2023.1138498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Typha angustifolia L., known as narrowleaf cattail, is widely distributed in Eurasia but has been introduced to North America. Typha angustifolia is a semi-aquatic, wetland obligate plant that is widely distributed in Eurasia and North America. It is ecologically important for nutrient cycling in wetlands where it occurs and is used in phytoremediation and traditional medicine. In order to construct a high-quality genome for Typha angustifolia and investigate genes in response to high nitrogen stress, we carried out complete genome sequencing and high-nitrogen-stress experiments. We generated a chromosomal-level genome of T. angustifolia, which had 15 pseudochromosomes, a size of 207 Mb, and a contig N50 length of 13.57 Mb. Genome duplication analyses detected no recent whole-genome duplication (WGD) event for T. angustifolia. An analysis of gene family expansion and contraction showed that T. angustifolia gained 1,310 genes and lost 1,426 genes. High-nitrogen-stress experiments showed that a high nitrogen level had a significant inhibitory effect on root growth and differential gene expression analyses using 24 samples found 128 differentially expressed genes (DEGs) between the nitrogen-treated and control groups. DEGs in the roots and leaves were enriched in alanines, aspartate, and glutamate metabolism, nitrogen metabolism, photosynthesis, phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase pathways, among others. This study provides genomic data for a medicinal and ecologically important herb and lays a theoretical foundation for plant-assisted water pollution remediation.
Collapse
Affiliation(s)
- Yang Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuying Zhao
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Wenda Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Puguang Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Michael L. Moody
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ninghua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyun Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Li P, Du R, Li Z, Chen Z, Li J, Du H. An integrated nitrogen utilization gene network and transcriptome analysis reveal candidate genes in response to nitrogen deficiency in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1187552. [PMID: 37229128 PMCID: PMC10203523 DOI: 10.3389/fpls.2023.1187552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is an essential factor for crop yield. Here, we characterized 605 genes from 25 gene families that form the complex gene networks of N utilization pathway in Brassica napus. We found unequal gene distribution between the An- and Cn-sub-genomes, and that genes derived from Brassica rapa were more retained. Transcriptome analysis indicated that N utilization pathway gene activity shifted in a spatio-temporal manner in B. napus. A low N (LN) stress RNA-seq of B. napus seedling leaves and roots was generated, which proved that most N utilization related genes were sensitive to LN stress, thereby forming co-expression network modules. Nine candidate genes in N utilization pathway were confirmed to be significantly induced under N deficiency conditions in B. napus roots, indicating their potential roles in LN stress response process. Analyses of 22 representative species confirmed that the N utilization gene networks were widely present in plants ranging from Chlorophyta to angiosperms with a rapid expansion trend. Consistent with B. napus, the genes in this pathway commonly showed a wide and conserved expression profile in response to N stress in other plants. The network, genes, and gene-regulatory modules identified here represent resources that may enhance the N utilization efficiency or the LN tolerance of B. napus.
Collapse
Affiliation(s)
- Pengfeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Runjie Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhaopeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Wang Y, Sun Z, Wang Q, Xie J, Yu L. Transcriptomics and metabolomics revealed that phosphate improves the cold tolerance of alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1100601. [PMID: 36968379 PMCID: PMC10034057 DOI: 10.3389/fpls.2023.1100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Alfalfa (Medicago sativa L.) is a highly nutritious leguminous forage that plays an essential role in animal husbandry. In the middle and high latitudes of the northern hemisphere, there are problems with its low rates of overwintering and production. The application of phosphate (P) is an important measure to improve the cold resistance and production of alfalfa, but little is known about the mechanism of P in improving the cold resistance of alfalfa. METHODS This study integrated the transcriptome and metabolome to explain the mechanism of alfalfa in response to low-temperature stress under two applications of P (50 and 200 mg kg-1) and a control of none applied. RESULTS The application of P fertilizer improved the root structure and increased the content of soluble sugar and soluble protein in the root crown. In addition, there were 49 differentially expressed genes (DEGs) with 23 upregulated and 24 metabolites with 12 upregulated when 50 mg kg-1 of P was applied. In contrast, there were 224 DEGs with 173 upregulated and 12 metabolites with 6 upregulated in the plants treated with 200 mg kg-1 of P compared with the Control Check (CK). These genes and metabolites were significantly enriched in the biosynthesis of other secondary metabolites and the metabolic pathways of carbohydrates and amino acids. The integration of the transcriptome and metabolome indicated that P affected the biosynthesis of N-acetyl-L-phenylalanine, L-serine, lactose, and isocitrate during the period of increasing cold. It could also affect the expression of related genes that regulate cold tolerance in alfalfa. DISCUSSION Our findings could contribute to a deeper understanding of the mechanism that alfalfa uses to tolerate cold and lay a theoretical foundation for breeding alfalfa that is highly efficient at utilizing phosphorus.
Collapse
Affiliation(s)
- Yuntao Wang
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Zhen Sun
- College of Grassland, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiqi Wang
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Jihong Xie
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Linqing Yu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
16
|
Wang X, Chai X, Gao B, Deng C, Günther CS, Wu T, Zhang X, Xu X, Han Z, Wang Y. Multi-omics analysis reveals the mechanism of bHLH130 responding to low-nitrogen stress of apple rootstock. PLANT PHYSIOLOGY 2023; 191:1305-1323. [PMID: 36417197 PMCID: PMC9922409 DOI: 10.1093/plphys/kiac519] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen is critical for plant growth and development. With the increase of nitrogen fertilizer application, nitrogen use efficiency decreases, resulting in wasted resources. In apple (Malus domestica) rootstocks, the potential molecular mechanism for improving nitrogen uptake efficiency to alleviate low-nitrogen stress remains unclear. We utilized multi-omics approaches to investigate the mechanism of nitrogen uptake in two apple rootstocks with different responses to nitrogen stress, Malus hupehensis and Malus sieversii. Under low-nitrogen stress, Malus sieversii showed higher efficiency in nitrogen uptake. Multi-omics analysis revealed substantial differences in the expression of genes involved in flavonoid and lignin synthesis pathways between the two materials, which were related to the corresponding metabolites. We discovered that basic helix-loop-helix 130 (bHLH130) transcription factor was highly negatively associated with the flavonoid biosynthetic pathway. bHLH130 may directly bind to the chalcone synthase gene (CHS) promoter and inhibit its expression. Overexpressing CHS increased flavonoid accumulation and nitrogen uptake. Inhibiting bHLH130 increased flavonoid biosynthesis while decreasing lignin accumulation, thus improving nitrogen uptake efficiency. These findings revealed the molecular mechanism by which bHLH130 regulates flavonoid and lignin biosyntheses in apple rootstocks under low-nitrogen stress.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xiaofen Chai
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Beibei Gao
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, 3216 Hamilton, New Zealand
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| |
Collapse
|
17
|
Zhang X, Ding Y, Ma Q, Li F, Tao R, Li T, Zhu M, Ding J, Li C, Guo W, Zhu X. Comparative transcriptomic and metabolomic analysis revealed molecular mechanism of two wheat near-isogenic lines response to nitrogen application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:47-57. [PMID: 36599275 DOI: 10.1016/j.plaphy.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential nutrient element required for plant growth, and the development of wheat varieties with high nitrogen use efficiency (NUE) is an urgent need for sustainable crop production. However, the molecular mechanism of NUE between diverse wheat varieties in response to N application remains unclear. To reveal the possible molecular mechanisms underlying this complex phenomenon, we investigated the transcriptional and metabolic changes of flag leaves of two wheat near-isogenic lines (NILs) differing in NUE under two N fertilizer treatments. Comparative transcriptome analysis indicated that the expression levels of the genes responsible for carbon and nitrogen metabolism were significantly higher in high-NUE wheat. The metabolome comparison revealed that the activity of the tricarboxylic acid (TCA) cycle was enhanced in high-NUE wheat, while reduced in low-NUE wheat after the N fertilizer application. Additionally, amino acid metabolism increased in both wheat NILs but more increased in high-NUE wheat. In summary, more upregulated transcripts and metabolites were identified in high-NUE wheat, and this study provides valuable new insights for improving NUE in wheat.
Collapse
Affiliation(s)
- Xinbo Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Xuzhou Vocational College of Bioengineering, Xuzhou, 221006, China.
| | - Yonggang Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Fujian Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Rongrong Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Sun C, Wang R, Tang G, Cai S, Shi H, Liu F, Xie H, Zhu J, Xiong Q. Integrated 16S and metabolomics revealed the mechanism of drought resistance and nitrogen uptake in rice at the heading stage under different nitrogen levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1120584. [PMID: 37089655 PMCID: PMC10114610 DOI: 10.3389/fpls.2023.1120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
The normal methods of agricultural production worldwide have been strongly affected by the frequent occurrence of drought. Rice rhizosphere microorganisms have been significantly affected by drought stress. To provide a hypothetical basis for improving the drought resistance and N utilization efficiency of rice, the study adopted a barrel planting method at the heading stage, treating rice with no drought or drought stress and three different nitrogen (N) levels. Untargeted metabolomics and 16S rRNA gene sequencing technology were used to study the changes in microorganisms in roots and the differential metabolites (DMs) in rhizosphere soil. The results showed that under the same N application rate, the dry matter mass, N content and N accumulation in rice plants increased to different degrees under drought stress. The root soluble protein, nitrate reductase and soil urease activities were improved over those of the no-drought treatment. Proteobacteria, Bacteroidota, Nitrospirota and Zixibacteria were the dominant flora related to N absorption. A total of 184 DMs (98 upregulated and 86 downregulated) were identified between low N with no drought (LN) and normal N with no drought (NN); 139 DMs (83 upregulated and 56 downregulated) were identified between high N with no drought (HN) and NN; 166 DMs (103 upregulated and 63 downregulated) were identified between low N with drought stress (LND) and normal N with drought stress (NND); and 124 DMs (71 upregulated and 53 downregulated) were identified between high N with drought stress (HND) and NND. Fatty acyl was the metabolite with the highest proportion. KEGG analysis showed that energy metabolism pathways, such as D-alanine metabolism and the phosphotransferase system (PTS), were enriched. We conclude that N-metabolism enzymes with higher activity and higher bacterial diversity have a significant effect on drought tolerance and nitrogen uptake in rice.
Collapse
Affiliation(s)
- Changhui Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Runnan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Guoping Tang
- Jiangxi Academy of Agricultural Sciences Rice Research Institute, Nanchang, China
| | - Shuo Cai
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Hong Shi
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Fangping Liu
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Hengwang Xie
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
| | - Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qiangqiang Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangxi Irrigation Experiment Central Station, Nanchang, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Qiangqiang Xiong,
| |
Collapse
|
19
|
Wang W, Zhang D, Chu C. OsDREB1C, an integrator for photosynthesis, nitrogen use efficiency, and early flowering. SCIENCE CHINA. LIFE SCIENCES 2023; 66:191-193. [PMID: 36066810 DOI: 10.1007/s11427-022-2183-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Wei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Feng YX, Yang L, Lin YJ, Song Y, Yu XZ. Merging the occurrence possibility into gene co-expression network deciphers the importance of exogenous 2-oxoglutarate in improving the growth of rice seedlings under thiocyanate stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1086098. [PMID: 36909427 PMCID: PMC9995760 DOI: 10.3389/fpls.2023.1086098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 05/09/2023]
Abstract
Thiocyanate (SCN-) can find its way into cultivated fields, which might hamper the harmony in carbon and nitrogen metabolism (CNM) of plants, ebbing their quality and productivity. In the current study, we investigated the role of the exogenous application of 2-oxoglutarate (2-OG) in maintaining homeostasis of CNM in rice seedlings under SCN- stress. Results showed that SCN- exposure significantly repressed the gene expression and activities of CNM-related enzymes (e.g., phosphoenolpyruvate carboxylase, NADP-dependent isocitrate dehydrogenases, and isocitrate dehydrogenases) in rice seedlings, thereby reducing their relative growth rate (RGR). Exogenous application of 2-OG effectively mitigated the toxic effects of SCN- on rice seedlings, judged by the aforementioned parameters. The co-expression network analysis showed that genes activated in CNM pathways were categorized into four modules (Modules 1-4). In order to identify the key module activated in CNM in rice seedlings exposed to SCN-, the results from real-time quantitative PCR (RT-qPCR) tests were used to calculate the possibility of the occurrence of genes grouped in four different modules. Notably, Module 3 showed the highest occurrence probability, which is mainly related to N metabolism and 2-OG synthesis. We can conclude that exogenous application of 2-OG can modify the imbalance of CNM caused by SCN- exposure through regulating N metabolism and 2-OG synthesis in rice seedlings.
Collapse
|
21
|
Kaysar MS, Sarker UK, Monira S, Hossain MA, Somaddar U, Saha G, Hossain SSF, Mokarroma N, Chaki AK, Bhuiya MSU, Uddin MR. Optimum Nitrogen Application Acclimatizes Root Morpho-Physiological Traits and Yield Potential in Rice under Subtropical Conditions. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122051. [PMID: 36556416 PMCID: PMC9786123 DOI: 10.3390/life12122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Nitrogen (N) is a highly essential macronutrient for plant root growth and grain yield (GY). To assess the relationship among N, root traits, and the yield of boro (dry season irrigated) rice, a pot experiment was performed in the Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh, during the boro rice season of 2020-2021. Three boro rice varieties, namely BRRI dhan29, Hira-2, and Binadhan-10, were planted at four N doses: 0 kg ha-1 (N0), 70 kg ha-1 (N70), 140 kg ha-1 (N140), and 210 kg ha-1 (N210). The experiment was conducted following a completely randomized design with three replicates. The varieties were evaluated for root number (RN), root length (RL), root volume (RV), root porosity (RP), leaf area index (LAI), total dry matter (TDM), and yield. The results indicated that the Binadhan-10, Hira-2, and BRRI dhan29 varieties produced better root characteristics under at the N140 and N210 levels. A substantial positive association was noticed between the grain yield and the root traits, except for root porosity. Based on the root traits and growth dynamics, Binadhan-10 performed the best at the N140 level and produced the highest grain yield (26.96 g pot-1), followed by Hira-2 (26.35 g pot-1) and BRRI dhan29 (25.90 g pot-1).
Collapse
Affiliation(s)
- Md. Salahuddin Kaysar
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Uttam Kumer Sarker
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sirajam Monira
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Uzzal Somaddar
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Gopal Saha
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | | | - Nadira Mokarroma
- Plant Physiology Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Apurbo Kumar Chaki
- On Farm Research Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Md. Romij Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence:
| |
Collapse
|
22
|
Li J, Li W, Xu L, Wang M, Zhou W, Li S, Tan W, Wang Q, Xing W, Liu D. Acclimation of sugar beet in morphological, physiological and BvAMT1.2 expression under low and high nitrogen supply. PLoS One 2022; 17:e0278327. [PMID: 36445927 PMCID: PMC9707788 DOI: 10.1371/journal.pone.0278327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the response and tolerance mechanisms of nitrogen (N) stress is essential for the taproot plant of sugar beet. Hence, in this study, low (0.5 and 3 mmol/L; N0.5 and N3), moderate (5 mmol/L; N5; control) and high (10 and 12 mmol/L; N10 and N12) N were imposed to sugar beet to comparatively investigate the growth and physiological changes, and expression pattern of the gene involving ammonia transporting at different seedling stages. The results showed that, different from N5 which could induce maximum biomass of beet seedlings, low N was more likely to inhibit the growth of beet seedlings than high N treatments. Morphological differences and adverse factors increased significantly with extension of stress time, but sugar beet seedlings displayed a variety of physical responses to different N concentrations to adapt to N abnormal. At 14 d, the chlorophyll content, leaf and root surface area, total dry weight and nitrogen content of seedlings treated with N0.5 decreased 15.83%, 53.65%, 73.94%, 78.08% and 24.88% respectively, compared with N12; however, the root shoot ratio increased significantly as well as superoxide dismutase (SOD), peroxidase (POD), glutamine synthetase (GS) activity and malondialdehyde (MDA) and proline content, especially in root. The expression of BvAMT1.2 was also regulated in an N concentration-dependent manner, and was mainly involved in the tolerance of beet leaves to N stress, which significantly positively correlated to GS activity on the basis of its high affinity to N. It can be deduced that the stored nutrients under low N could only maintain relatively stable root growth, and faced difficulty in being transported to the shoots. Sugar beet was relatively resilient to N0.5 stress according to the mean affiliation function analysis. These results provide a theoretical basis for the extensive cultivation of sugar beet in N-stressed soil.
Collapse
Affiliation(s)
- Jiajia Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wangsheng Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Lingqing Xu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Man Wang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wanting Zhou
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Siqi Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wenbo Tan
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Qiuhong Wang
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
- * E-mail: (WX); (DL)
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
- * E-mail: (WX); (DL)
| |
Collapse
|
23
|
Wu Q, Yang L, Liang H, Yin L, Chen D, Shen P. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome. BMC PLANT BIOLOGY 2022; 22:524. [PMID: 36372886 PMCID: PMC9661748 DOI: 10.1186/s12870-022-03867-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorus (P) is one of the most essential macronutrients for crops. The growth and yield of peanut (Arachis hypogaea L.) are always limited by P deficiency. However, the transcriptional and metabolic regulatory mechanisms were less studied. In this study, valuable phenotype, transcriptome and metabolome data were analyzed to illustrate the regulatory mechanisms of peanut under P deficiency stress. RESULT In present study, two treatments of P level in deficiency with no P application (-P) and in sufficiency with 0.6 mM P application (+ P) were used to investigate the response of peanut on morphology, physiology, transcriptome, microRNAs (miRNAs), and metabolome characterizations. The growth and development of plants were significantly inhibited under -P treatment. A total of 6088 differentially expressed genes (DEGs) were identified including several transcription factor family genes, phosphate transporter genes, hormone metabolism related genes and antioxidant enzyme related genes that highly related to P deficiency stress. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that 117 genes were annotated in the phenylpropanoid biosynthesis pathway under P deficiency stress. A total of 6 miRNAs have been identified significantly differential expression between + P and -P group by high-throughput sequencing of miRNAs, including two up-regulated miRNAs (ahy-miR160-5p and ahy-miR3518) and four down-regulated miRNAs (ahy-miR408-5p, ahy-miR408-3p, ahy-miR398, and ahy-miR3515). Further, the predicted 22 target genes for 6 miRNAs and cis-elements in 2000 bp promoter region of miRNA genes were analyzed. A total of 439 differentially accumulated metabolites (DAMs) showed obviously differences in two experimental conditions. CONCLUSIONS According to the result of transcripome and metabolome analyses, we can draw a conclusion that by increasing the content of lignin, amino acids, and levan combining with decreasing the content of LPC, cell reduced permeability, maintained stability, raised the antioxidant capacity, and increased the P uptake in struggling for survival under P deficiency stress.
Collapse
Affiliation(s)
- Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liang Yin
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Dianxu Chen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| |
Collapse
|
24
|
Zhang K, Li S, Xu Y, Zhou Y, Ran S, Zhao H, Huang W, Xu R, Zhong F. Effect of Nickel Ions on the Physiological and Transcriptional Responses to Carbon and Nitrogen Metabolism in Tomato Roots under Low Nitrogen Levels. Int J Mol Sci 2022; 23:ijms231911398. [PMID: 36232700 PMCID: PMC9569439 DOI: 10.3390/ijms231911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Nickel (Ni) is an essential trace element for plant growth and a component of the plant body that has many different functions in plants. Although it has been confirmed that nickel ions (Ni2+) havea certain regulatory effect on nitrogen (N) metabolism, there are not enough data to prove whether exogenous Ni2+ can increase the carbon (C) and N metabolism in the roots of tomato seedlingsunder low-nitrogen (LN) conditions. Therefore, through the present experiment, we revealed the key mechanism of Ni2+-mediated tomato root tolerance to LN levels. Tomato plants were cultured at two different N levels (7.66 and 0.383 mmol L−1) and two different Ni2+ levels (0 and 0.1 mg L−1 NiSO4 6H2O) under hydroponic conditions. After nine days, we collected roots for physiological, biochemical, and transcriptome sequencing analyses and found that the activities of N assimilation-related enzymes decreased at LN levels. In contrast, Ni2+ significantly increased the activities of N assimilation-related enzymes and increased the contents of nitrate (NO3−), ammonium (NH4+), and total amino acids. Through root transcriptomic analysis, 3738 differentially expressed genes (DEGs) were identified. DEGs related to C and N metabolism were downregulated after LN application. However, after Ni2+ treatment, PK, PDHB, GAPDH, NR, NiR, GS, GOGAT, and other DEGs related to C and N metabolism were significantly upregulated. In conclusion, our results suggest that Ni2+ can regulate the C and N metabolism pathways in tomato roots to alleviate the impact of LN levels.
Collapse
Affiliation(s)
- Kun Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqi Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengxiang Ran
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Ru Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
25
|
Ma B, Wang J, Han Y, Zhou C, Xu T, Qu Z, Wang L, Ma B, Yuan M, Wang L, Ding X, Qian C. The response of grain yield and ear differentiation related traits to nitrogen levels in maize varieties with different nitrogen efficiency. Sci Rep 2022; 12:14620. [PMID: 36028556 PMCID: PMC9418237 DOI: 10.1038/s41598-022-18835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Maize (Zea mays L.) is one of the most widely distributed and important crops in China. Maize ear differentiation plays an important role grain yield formation. However, it is unclear if ear and root morphophysiology status affects yield formation by altering ear differentiation and development under different nitrogen (N) conditions. The aim of this study is to understand how the ear differentiation and development are affected by ear and root morphophysiology traits, as affected by the N rate. The experiment consisted of two N rates: high nitrogen (180 kg ha-1), and low nitrogen (60 kg ha-1). Two N-efficient varieties (NEVs) and two N-inefficient varieties (NIVs) were grown in the field. The results showed higher nitrogen accumulation and grain yield in NEVs than in NIVs, which was mainly attributed to the increased N uptake by the larger root system under both N conditions. Under high N conditions, among ear differentiation-related traits, only FR was significantly positively correlated with grain yield, and NEVs ensure FR through higher N concentration and ZR content in ear at the fertilization stage. Under low N conditions, NEVs obtained higher FP, SR and FR through higher N concentration and IAA in ear at the early stage of ear differentiation, maintained lower AR and BTL by higher RA, R-ZR and E-ZR at the late stage of ear growth. These results suggest that NEVs have a more complex mechanism for obtaining higher grain yield under low N conditions than N sufficiency, and that phytohormones play an important role in this process.
Collapse
Affiliation(s)
- Baoxin Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Junqiang Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yehui Han
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Chao Zhou
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Ting Xu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhongcheng Qu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Lida Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Ming Yuan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Lianxia Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Xinying Ding
- Animal Husbandry and Veterinary Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Chunrong Qian
- Institute of Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
26
|
Wei S, Li X, Lu Z, Zhang H, Ye X, Zhou Y, Li J, Yan Y, Pei H, Duan F, Wang D, Chen S, Wang P, Zhang C, Shang L, Zhou Y, Yan P, Zhao M, Huang J, Bock R, Qian Q, Zhou W. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 2022; 377:eabi8455. [PMID: 35862527 DOI: 10.1126/science.abi8455] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Complex biological processes such as plant growth and development are often under the control of transcription factors that regulate the expression of large sets of genes and activate subordinate transcription factors in a cascade-like fashion. Here, by screening candidate photosynthesis-related transcription factors in rice, we identified a DREB (Dehydration Responsive Element Binding) family member, OsDREB1C, in which expression is induced by both light and low nitrogen status. We show that OsDREB1C drives functionally diverse transcriptional programs determining photosynthetic capacity, nitrogen utilization, and flowering time. Field trials with OsDREB1C-overexpressing rice revealed yield increases of 41.3 to 68.3% and, in addition, shortened growth duration, improved nitrogen use efficiency, and promoted efficient resource allocation, thus providing a strategy toward achieving much-needed increases in agricultural productivity.
Collapse
Affiliation(s)
- Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiangyuan Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujie Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanyan Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Song Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao Zhang
- Lingnan Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lianguang Shang
- Lingnan Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Yan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ming Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, 14476 Potsdam-Golm, Germany
| | - Qian Qian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Li D, Liu J, Zong J, Guo H, Li J, Wang J, Wang H, Li L, Chen J. Integration of the metabolome and transcriptome reveals the mechanism of resistance to low nitrogen supply in wild bermudagrass (Cynodon dactylon (L.) Pers.) roots. BMC PLANT BIOLOGY 2021; 21:480. [PMID: 34674655 PMCID: PMC8532362 DOI: 10.1186/s12870-021-03259-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Nitrogen (N) is an essential macronutrient that significantly affects turf quality. Commercial cultivars of bermudagrass (Cynodon dactylon (L.) Pers.) require large amounts of nitrogenous fertilizer. Wild bermudagrass germplasm from natural habitats with poor nutrition and diverse N distributions is an important source for low-N-tolerant cultivated bermudagrass breeding. However, the mechanisms underlying the differences in N utilization among wild germplasm resources of bermudagrass are not clear. RESULTS To clarify the low N tolerance mechanism in wild bermudagrass germplasm, the growth, physiology, metabolome and transcriptome of two wild accessions, C291 (low-N-tolerant) and C716 (low-N-sensitive), were investigated. The results showed that root growth was less inhibited in low-N-tolerant C291 than in low-N-sensitive C716 under low N conditions; the root dry weight, soluble protein content and free amino acid content of C291 did not differ from those of the control, while those of C716 were significantly decreased. Down-regulation of N acquisition, primary N assimilation and amino acid biosynthesis was less pronounced in C291 than in C716 under low N conditions; glycolysis and the tricarboxylic acid (TCA) cycle pathway were also down-regulated, accompanied by a decrease in the biosynthesis of amino acids; strikingly, processes such as translation, biosynthesis of the structural constituent of ribosome, and the expression of individual aminoacyl-tRNA synthetase genes, most of genes associated with ribosomes related to protein synthesis were all up-regulated in C291, but down-regulated in C716. CONCLUSIONS Overall, low-N-tolerant wild bermudagrass tolerated low N nutrition by reducing N primary assimilation and amino acid biosynthesis, while promoting the root protein synthesis process and thereby maintaining root N status and normal growth.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu Province, China.
| |
Collapse
|
28
|
Feng J, Chen Y, Feng Q, Ran Z, Shen J. Novel Gene Signatures Predicting Primary Non-response to Infliximab in Ulcerative Colitis: Development and Validation Combining Random Forest With Artificial Neural Network. Front Med (Lausanne) 2021; 8:678424. [PMID: 34650991 PMCID: PMC8505970 DOI: 10.3389/fmed.2021.678424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background: While infliximab has revolutionized the treatment of ulcerative colitis, primary non-response is difficult to predict, which limits effective disease management. The study aimed to establish a novel genetic model to predict primary non-response to infliximab in patients with ulcerative colitis. Methods: Publicly available mucosal expression profiles of infliximab-treated ulcerative colitis patients (GSE16879, GSE12251) were utilized to identify potential predictive gene panels. The random forest algorithm and artificial neural network were applied to further screen for predictive signatures and establish a model to predict primary non-response to infliximab. Results: A total of 28 downregulated and 2 upregulated differentially expressed genes were identified as predictors. The novel model was successfully established on the basis of the molecular prognostic score system, with a significantly predictive value (AUC = 0.93), and was validated with an independent dataset GSE23597 (AUC = 0.81). Conclusion: Machine learning was used to construct a predictive model based on the molecular prognostic score system. The novel model can predict primary non-response to infliximab in patients with ulcerative colitis, which aids in clinical-decision making.
Collapse
Affiliation(s)
- Jing Feng
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Shanghai, China.,Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yueying Chen
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Shanghai, China.,Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Feng
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihua Ran
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Shanghai, China.,Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Shen
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Shanghai, China.,Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
29
|
Chen C, Chu Y, Huang Q, Zhang W, Ding C, Zhang J, Li B, Zhang T, Li Z, Su X. Morphological, physiological, and transcriptional responses to low nitrogen stress in Populus deltoides Marsh. clones with contrasting nitrogen use efficiency. BMC Genomics 2021; 22:697. [PMID: 34579659 PMCID: PMC8474845 DOI: 10.1186/s12864-021-07991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nitrogen (N) is one of the main factors limiting the wood yield in poplar cultivation. Understanding the molecular mechanism of N utilization could play a guiding role in improving the nitrogen use efficiency (NUE) of poplar. Results In this study, three N-efficient genotypes (A1-A3) and three N-inefficient genotypes (C1-C3) of Populus deltoides were cultured under low N stress (5 μM NH4NO3) and normal N supply (750 μM NH4NO3). The dry matter mass, leaf morphology, and chlorophyll content of both genotypes decreased under N starvation. The low nitrogen adaptation coefficients of the leaves and stems biomass of group A were significantly higher than those of group C (p < 0.05). Interestingly, N starvation induced fine root growth in group A, but not in group C. Next, a detailed time-course analysis of enzyme activities and gene expression in leaves identified 2062 specifically differentially expressed genes (DEGs) in group A and 1118 in group C. Moreover, the sensitivity to N starvation of group A was weak, and DEGs related to hormone signal transduction and stimulus response played an important role in the low N response this group. Weighted gene co-expression network analysis identified genes related to membranes, catalytic activity, enzymatic activity, and response to stresses that might be critical for poplar’s adaption to N starvation and these genes participated in the negative regulation of various biological processes. Finally, ten influential hub genes and twelve transcription factors were identified in the response to N starvation. Among them, four hub genes were related to programmed cell death and the defense response, and PodelWRKY18, with high connectivity, was involved in plant signal transduction. The expression of hub genes increased gradually with the extension of low N stress time, and the expression changes in group A were more obvious than those in group C. Conclusions Under N starvation, group A showed stronger adaptability and better NUE than group C in terms of morphology and physiology. The discovery of hub genes and transcription factors might provide new information for the analysis of the molecular mechanism of NUE and its improvement in poplar. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07991-7.
Collapse
Affiliation(s)
- Cun Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Bo Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Zhenghong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. .,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
30
|
Xin W, Liu H, Zhao H, Wang J, Zheng H, Jia Y, Yang L, Wang X, Li J, Li X, Lei L, Zou D. The Response of Grain Yield and Root Morphological and Physiological Traits to Nitrogen Levels in Paddy Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:713814. [PMID: 34531885 PMCID: PMC8439581 DOI: 10.3389/fpls.2021.713814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Rice (Oryza sativa L.) is an important crop in China. Although it is known that its yield is restricted by nitrogen (N) supply, the response of the root system to N supply specifically has not been systematically explored. This study aimed to investigate the effect of N uptake on grain yield to clarify the relationships between root morphophysiological traits and N uptake, and to understand relation between phytohormones and root morphophysiological traits. Two N-efficient absorption cultivars (NEAs) and two N-inefficient absorption cultivars (NIAs) were grown in the field, and three N conditions, deficient N (60 kg ha-1), intermediate N (180 kg ha-1), and sufficient N (240 kg ha-1), were applied during the growing season. The results showed higher dry matter and grain yield in NEAs than in NIAs, which was mainly attributed to increased N uptake in the mid- and late growth stages under all N conditions. And NEAs have different root regulation methods to obtain higher N accumulation and yield under different N supply conditions. Under lower N conditions, compared with NIAs, NEAs shown greater total root length, root oxidation activity, and root active absorbing surface area and smaller root diameter owing to higher indole-3-acetic acid and cytokinin content and lower 1-aminocyclopropane-1-carboxylic acid content in the early growth stages to respond to low N stress faster, laying a morphophysiological basis for its high N-uptake capacity in the mid- and late growth stages. Under higher N conditions, NEAs had higher root oxidation activity and root active absorbing surface area for N uptake and yield formation owing to higher abscisic acid and cytokinin content in the mid- and late growth stages, which improved the seed setting rate, thereby increasing the rice grain yield. These results suggest that NEAs can optimize the morphophysiological characteristics of roots through phytohormone regulation to adapt to different nutrient conditions, thereby promoting N accumulation and yield formation in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Sun X, Zheng Y, Tian L, Miao Y, Zeng T, Jiang Y, Pei J, Ahmad B, Huang L. Metabolome profiling and molecular docking analysis revealed the metabolic differences and potential pharmacological mechanisms of the inflorescence and succulent stem of Cistanche deserticola. RSC Adv 2021; 11:27226-27245. [PMID: 35480642 PMCID: PMC9037670 DOI: 10.1039/d0ra07488h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cistanche deserticola is an endangered plant used for medicine and food. Our purpose is to explore the differences in metabolism between inflorescences in non-medicinal parts and succulent stems in medicinal parts in order to strengthen the application and development of the non-medicinal parts of C. deserticola. We performed metabolomics analysis through LC-ESI-MS/MS on the inflorescences and succulent stems of three ecotypes (saline-alkali land, grassland and sandy land) of C. deserticola. A total of 391 common metabolites in six groups were identified, of which isorhamnetin O-hexoside (inflorescence) and rosinidin O-hexoside (succulent stems) can be used as chemical markers to distinguish succulent stems and inflorescences. Comparing the metabolic differences of three ecotypes, we found that most of the different metabolites related to salt-alkali stress were flavonoids. In particular, we mapped the biosynthetic pathway of phenylethanoid glycosides (PhGs) and showed the metabolic differences in the six groups. To better understand the pharmacodynamic mechanisms and targets of C. deserticola, we screened 88 chemical components and 15 potential disease targets through molecular docking. The active ingredients of C. deserticola have a remarkable docking effect on the targets of aging diseases such as osteoporosis, vascular disease and atherosclerosis. To explore the use value of inflorescence, we analyzed the molecular docking of the unique flavonoid metabolites in inflorescence with inflammation targets. The results showed that chrysoeriol and cynaroside had higher scores for inflammation targets. This study provides a scientific basis for the discovery and industrialization of the resource value of the non-medicinal parts of C. deserticola, and the realization of the sustainable development of C. deserticola. It also provides a novel strategy for exploring indications of Chinese herb. Flow chart for exploring the metabolic and pharmacological characteristics of different parts of Cistanche deserticola.![]()
Collapse
Affiliation(s)
- Xiao Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Yan Zheng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197.,Jiangxi University of Traditional Chinese Medicine Nanchang 330000 Jiangxi China
| | - Lixia Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Yujing Miao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Tiexin Zeng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197.,Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Yuan Jiang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| | - Jin Pei
- Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Bashir Ahmad
- Center for Biotechnology & Microbiology, University of Peshawar 25000 Peshawar Pakistan
| | - Linfang Huang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 China .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education Beijing 100193 China +86-10-62899700 +86-10-57833197
| |
Collapse
|
32
|
Torres-Rodríguez JV, Salazar-Vidal MN, Chávez Montes RA, Massange-Sánchez JA, Gillmor CS, Sawers RJH. Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.). BMC PLANT BIOLOGY 2021; 21:259. [PMID: 34090337 PMCID: PMC8178920 DOI: 10.1186/s12870-021-02997-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrogen (N) and phosphorus (P) are macronutrients essential for crop growth and productivity. In cultivated fields, N and P levels are rarely sufficient, contributing to the gap between realized and potential production. Fertilizer application increases nutrient availability, but is not available to all farmers, nor are current rates of application sustainable or environmentally desirable. Transcriptomic studies of cereal crops have revealed dramatic responses to either low N or low P single stress treatments. In the field, however, levels of both N and P may be suboptimal. The interaction between N and P starvation responses remains to be fully characterized. RESULTS We characterized growth and root and leaf transcriptomes of young maize plants under nutrient replete, low N, low P or combined low NP conditions. We identified 1555 genes to respond to our nutrient treatments, in one or both tissues. A large group of genes, including many classical P starvation response genes, were regulated antagonistically between low N and P conditions. An additional experiment over a range of N availability indicated that a mild reduction in N levels was sufficient to repress the low P induction of P starvation genes. Although expression of P transporter genes was repressed under low N or low NP, we confirmed earlier reports of P hyper accumulation under N limitation. CONCLUSIONS Transcriptional responses to low N or P were distinct, with few genes responding in a similar way to the two single stress treatments. In combined NP stress, the low N response dominated, and the P starvation response was largely suppressed. A mild reduction in N availability was sufficient to repress the induction of P starvation associated genes. We conclude that activation of the transcriptional response to P starvation in maize is contingent on N availability.
Collapse
Affiliation(s)
- J Vladimir Torres-Rodríguez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
| | - M Nancy Salazar-Vidal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
- Department of Evolution and Ecology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Ricardo A Chávez Montes
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Julio A Massange-Sánchez
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ) Subsede Zapopan, Guadalajara, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, C.P, 36824, Guanajuato, Mexico.
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
33
|
Xin W, Wang J, Li J, Zhao H, Liu H, Zheng H, Yang L, Wang C, Yang F, Chen J, Zou D. Candidate Gene Analysis for Nitrogen Absorption and Utilization in Japonica Rice at the Seedling Stage Based on a Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2021; 12:670861. [PMID: 34149769 PMCID: PMC8212024 DOI: 10.3389/fpls.2021.670861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Over-application of nitrogen (N) fertilizer in fields has had a negative impact on both environment and human health. Domesticated rice varieties with high N use efficiency (NUE) reduce fertilizer requirements, enabling sustainable agriculture. Genome-wide association study (GWAS) analysis of N absorption and utilization traits under low and high N conditions was performed to obtain 12 quantitative trait loci (QTLs) based on genotypic data including 151,202 single-nucleotide polymorphisms (SNPs) developed by re-sequencing 267 japonica rice varieties. Eighteen candidate genes were obtained by integrating GWAS and transcriptome analyses; among them, the functions of OsNRT2.4, OsAMT1.2, and OsAlaAT genes in N transport and assimilation have been identified, and OsJAZ12 and OsJAZ13 also play important roles in rice adaptation to abiotic stresses. A NUE-related candidate gene, OsNAC68, was identified by quantitative real-time PCR (qRT-PCR) analyses. OsNAC68 encodes a NAC transcription factor and has been shown to be a positive regulator of the drought stress response in rice. Overexpression of OsNAC68 significantly increased rice NUE and grain yield under deficient N conditions, but the difference was not significant under sufficient N conditions. NUE and grain yield significantly decreased under both N supply conditions in the osbnac68 mutant. This study provides crucial insights into the genetic basis of N absorption and utilization in rice, and a NUE-related gene, OsNAC68, was cloned to provide important resources for rice breeding with high NUE and grain yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
34
|
Takehisa H, Sato Y. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production. BREEDING SCIENCE 2021; 71:76-88. [PMID: 33762878 PMCID: PMC7973498 DOI: 10.1270/jsbbs.20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in plant development and physiological processes. This review summarizes studies that have used transcriptome profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium, and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that could have potential application to crop breeding and cultivation.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
35
|
Xin W, Zhang L, Gao J, Zhang W, Yi J, Zhen X, Bi C, He D, Liu S, Zhao X. Adaptation Mechanism of Roots to Low and High Nitrogen Revealed by Proteomic Analysis. RICE (NEW YORK, N.Y.) 2021; 14:5. [PMID: 33411084 PMCID: PMC7790981 DOI: 10.1186/s12284-020-00443-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/06/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Nitrogen-based nutrients are the main factors affecting rice growth and development. Root systems play an important role in helping plants to obtain nutrients from the soil. Root morphology and physiology are often closely related to above-ground plant organs performance. Therefore, it is important to understand the regulatory effects of nitrogen (N) on rice root growth to improve nitrogen use efficiency. RESULTS In this study, changes in the rice root traits under low N (13.33 ppm), normal N (40 ppm) and high N (120 ppm) conditions were performed through root morphology analysis. These results show that, compared with normal N conditions, root growth is promoted under low N conditions, and inhibited under high N conditions. To understand the molecular mechanism underlying the rice root response to low and high N conditions, comparative proteomics analysis was performed using a tandem mass tag (TMT)-based approach, and differentially abundant proteins (DAPs) were further characterized. Compared with normal N conditions, a total of 291 and 211 DAPs were identified under low and high N conditions, respectively. The abundance of proteins involved in cell differentiation, cell wall modification, phenylpropanoid biosynthesis, and protein synthesis was differentially altered, which was an important reason for changes in root morphology. Furthermore, although both low and high N can cause nitrogen stress, rice roots revealed obvious differences in adaptation to low and high N. CONCLUSIONS These results provide insights into global changes in the response of rice roots to nitrogen availability and may facilitate the development of rice cultivars with high nitrogen use efficiency through root-based genetic improvements.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Lina Zhang
- Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Jiping Gao
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenzhong Zhang
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jun Yi
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoxi Zhen
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Congyuan Bi
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Dawei He
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Shiming Liu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinyu Zhao
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
36
|
Mao J, Huang L, Chen M, Zeng W, Feng Z, Huang S, Liu T. Integrated Analysis of the Transcriptome and Metabolome Reveals Genes Involved in Terpenoid and Flavonoid Biosynthesis in the Loblolly Pine ( Pinus taeda L.). FRONTIERS IN PLANT SCIENCE 2021; 12:729161. [PMID: 34659295 PMCID: PMC8519504 DOI: 10.3389/fpls.2021.729161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 05/08/2023]
Abstract
Loblolly pine (Pinus taeda L.) is an important tree for afforestation with substantial economic and ecological value. Many metabolites with pharmacological activities are present in the tissues of P. taeda. However, the biosynthesis regulatory mechanisms of these metabolites are poorly understood. In the present study, transcriptome and metabolome analyses were performed on five tissues of P. taeda. A total of 40.4 million clean reads were obtained and assembled into 108,663 unigenes. These were compared with five databases, revealing 39,576 annotated unigenes. A total of 13,491 differentially expressed genes (DEGs) were observed in 10 comparison groups. Of these, 487 unigenes exhibited significantly different expressions in specific tissues of P. taeda. The DEGs were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis. We identified 343 and 173 candidate unigenes related to the biosynthesis of terpenoids and flavonoids, respectively. These included 62 R2R3-MYB, 30 MYB, 15 WRKY, seven bHLH, seven ERF, six ZIP, five AP2, and one WD40 genes that acted as regulators in flavonoid and/or terpenoid biosynthesis. Additionally, metabolomics analysis detected 528 metabolites, among which 168 were flavonoids. A total of 493 differentially accumulated metabolites (DAMs) were obtained in 10 comparison groups. The 3,7-Di-O-methyl quercetin was differentially accumulated in all the comparison groups. The combined transcriptome and metabolome analyses revealed 219 DEGs that were significantly correlated with 45 DAMs. Our study provides valuable genomic and metabolome information for understanding P. taeda at the molecular level, providing a foundation for the further development of P. taeda-related pharmaceutical industry.
Collapse
Affiliation(s)
- Jipeng Mao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Taishan Hongling Seed Orchart, Jiangmen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Linwang Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Manyu Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Weishan Zeng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhiheng Feng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shaowei Huang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tianyi Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Tianyi Liu
| |
Collapse
|
37
|
Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M. Breeding and biotechnological interventions for trait improvement: status and prospects. PLANTA 2020; 252:54. [PMID: 32948920 PMCID: PMC7500504 DOI: 10.1007/s00425-020-03465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 05/06/2023]
Abstract
Present review describes the molecular tools and strategies deployed in the trait discovery and improvement of major crops. The prospects and challenges associated with these approaches are discussed. Crop improvement relies on modulating the genes and genomic regions underlying key traits, either directly or indirectly. Direct approaches include overexpression, RNA interference, genome editing, etc., while breeding majorly constitutes the indirect approach. With the advent of latest tools and technologies, these strategies could hasten the improvement of crop species. Next-generation sequencing, high-throughput genotyping, precision editing, use of space technology for accelerated growth, etc. had provided a new dimension to crop improvement programmes that work towards delivering better varieties to cope up with the challenges. Also, studies have widened from understanding the response of plants to single stress to combined stress, which provides insights into the molecular mechanisms regulating tolerance to more than one stress at a given point of time. Altogether, next-generation genetics and genomics had made tremendous progress in delivering improved varieties; however, the scope still exists to expand its horizon to other species that remain underutilized. In this context, the present review systematically analyses the different genomics approaches that are deployed for trait discovery and improvement in major species that could serve as a roadmap for executing similar strategies in other crop species. The application, pros, and cons, and scope for improvement of each approach have been discussed with examples, and altogether, the review provides comprehensive coverage on the advances in genomics to meet the ever-growing demands for agricultural produce.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|