1
|
Wang H, Moussa MG, Huang W, Han D, Dang B, Hao H, Zhang L, Xu Z, Jia W. Exogenous hydrogen sulfide increased Nicotiana tabacum L. resistance against drought by the improved photosynthesis and antioxidant system. Sci Rep 2024; 14:25534. [PMID: 39462014 PMCID: PMC11513105 DOI: 10.1038/s41598-024-76284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Drought stress is an abiotic stressor that impacts photosynthesis, plant growth, and development, leading to decreased crop yields. Sodium hydrosulfide (NaHS), an exogenous additive, has demonstrated potential regulatory effects on plant responses to polyethylene glycol-induced drought stress in tobacco seedlings. Compared to the control, drought stress induced by 15 g/L PEG-6000 significantly reduced several parameters in tobacco seedlings: shoot dry weight (22.83%), net photosynthesis (37.55%), stomatal conductance (33.56%), maximum quantum yield of PSII (Fv/Fm) (11.31%), photochemical quantum yield of PSII (ΦPSII) (25.51%), and photochemical quenching (qP) (18.17%). However, applying NaHS, an H2S donor, mitigated these effects, ultimately enhancing photosynthetic performance in tobacco seedlings. Furthermore, optimal NaHS concentration (0.4 mM) effectively increased leaf stomatal aperture, relative water content (RWC) and root activity, as well as facilitated the absorption of N, K, Mg and S. It also enhanced the accumulation of soluble sugar and proline content to maintain osmotic pressure balance under drought stress. Compared to drought alone, pretreatment with NaHS also bolstered the antioxidant defense system in leaves, leading to 22.93% decrease in hydrogen peroxide (H2O2) content, a 22.19% decrease in malondialdehyde (MDA) content and increased activities of ascorbate peroxidase (APX) by 28.13%, superoxide dismutase (SOD) by 17.07%, peroxidase (POD) by 46.99%, and catalase (CAT) by 65.27%. Consequently, NaHS protected chloroplast structure and attenuated chlorophyll degradation, thus mitigating severe oxidative damage. Moreover, NaHS elevated endogenous H2S levels, influencing abscisic acid (ABA) synthesis and the expression of receptor-related genes, collaboratively participating in the response to drought stress. Overall, our findings provide valuable insights into exogenous NaHS's role in enhancing tobacco drought tolerance. These results lay the foundation for further research utilizing H2S-based treatments to improve crop resilience to water deficit conditions.
Collapse
Affiliation(s)
- Hang Wang
- College of Tobacco Science, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Mohamed G Moussa
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Wuxing Huang
- College of Tobacco Science, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Dan Han
- College of Tobacco Science, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Haohao Hao
- Zhumadian Branch of Henan Provincial Tobacco Company, Zhumadian, 463000, Henan, China
| | - Li Zhang
- China Tobacco Jiangsu Industry Co., LTD, Nanjing, 210009, Jiangsu, China
| | - Zicheng Xu
- College of Tobacco Science, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Wei Jia
- College of Tobacco Science, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
2
|
Younis AA, Mansour MMF. Hydrogen sulfide-mitigated salinity stress impact in sunflower seedlings was associated with improved photosynthesis performance and osmoregulation. BMC PLANT BIOLOGY 2024; 24:422. [PMID: 38760671 PMCID: PMC11102186 DOI: 10.1186/s12870-024-05071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.
Collapse
|
3
|
Li J, Chen S, Yin Y, Shan Q, Zheng C, Chen Y. Genome-Wide Analysis of bHLH Family Genes and Identification of Members Associated with Cold/Drought-Induced Photoinhibition in Kandelia obovata. Int J Mol Sci 2023; 24:15942. [PMID: 37958925 PMCID: PMC10647802 DOI: 10.3390/ijms242115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Plant basic helix-loop-helix (bHLH) transcription factors play pivotal roles in responding to stress, including cold and drought. However, it remains unclear how bHLH family genes respond to these stresses in Kandelia obovata. In this study, we identified 75 bHLH members in K. obovata, classified into 11 subfamilies and unevenly distributed across its 18 chromosomes. Collineation analysis revealed that segmental duplication primarily drove the expansion of KobHLH genes. The KobHLH promoters were enriched with elements associated with light response. Through RNA-seq, we identified several cold/drought-associated KobHLH genes. This correlated with decreased net photosynthetic rates (Pn) in the leaves of cold/drought-treated plants. Weighted gene co-expression network analysis (WGCNA) confirmed that 11 KobHLH genes were closely linked to photoinhibition in photosystem II (PS II). Among them, four Phytochrome Interacting Factors (PIFs) involved in chlorophyll metabolism were significantly down-regulated. Subcellular localization showed that KobHLH52 and KobHLH30 were located in the nucleus. Overall, we have comprehensively analyzed the KobHLH family and identified several members associated with photoinhibition under cold or drought stress, which may be helpfulfor further cold/drought-tolerance enhancement and molecular breeding through genetic engineering in K. obovata.
Collapse
Affiliation(s)
- Junjian Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siyi Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaxin Yin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qiaobo Shan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chunfang Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yan Chen
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
4
|
Liu H, Chong P, Liu Z, Bao X, Tan B. Exogenous hydrogen sulfide improves salt stress tolerance of Reaumuria soongorica seedlings by regulating active oxygen metabolism. PeerJ 2023; 11:e15881. [PMID: 37641597 PMCID: PMC10460565 DOI: 10.7717/peerj.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023] Open
Abstract
Hydrogen sulfide (H2S), as an endogenous gas signaling molecule, plays an important role in plant growth regulation and resistance to abiotic stress. This study aims to investigate the mechanism of exogenous H2S on the growth and development of Reaumuria soongorica seedlings under salt stress and to determine the optimal concentration for foliar application. To investigate the regulatory effects of exogenous H2S (donor sodium hydrosulfide, NaHS) at concentrations ranging from 0 to 1 mM on reactive oxygen species (ROS), antioxidant system, and osmoregulation in R. soongorica seedlings under 300 mM NaCl stress. The growth of R. soongorica seedlings was inhibited by salt stress, which resulted in a decrease in the leaf relative water content (LRWC), specific leaf area (SLA), and soluble sugar content in leaves, elevated activity levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and accumulated superoxide anion (O2-), proline, malondialdehyde (MDA), and soluble protein content in leaves; and increased L-cysteine desulfhydrase (LCD) activity and endogenous H2S content. This indicated that a high level of ROS was produced in the leaves of R. soongorica seedlings and seriously affected the growth and development of R. soongorica seedlings. The exogenous application of different concentrations of NaHS reduced the content of O 2-, proline and MDA, increased the activity of antioxidant enzymes and the content of osmoregulators (soluble sugars and soluble proteins), while the LCD enzyme activity and the content of endogenous H2S were further increased with the continuous application of exogenous H2S. The inhibitory effects of salt stress on the growth rate of plant height and ground diameter, the LRWC, biomass, and SLA were effectively alleviated. A comprehensive analysis showed that the LRWC, POD, and proline could be used as the main indicators to evaluate the alleviating effect of exogenous H2S on R. soongorica seedlings under salt stress. The optimal concentration of exogenous H2S for R. soongorica seedlings under salt stress was 0.025 mM. This study provides an important theoretical foundation for understanding the salt tolerance mechanism of R. soongorica and for cultivating high-quality germplasm resources.
Collapse
Affiliation(s)
| | | | - Zehua Liu
- Gansu Agricultural University, Lanzhou, China
| | | | | |
Collapse
|
5
|
Luo S, Liu Z, Wan Z, He X, Lv J, Yu J, Zhang G. Foliar Spraying of NaHS Alleviates Cucumber Salt Stress by Maintaining N +/K + Balance and Activating Salt Tolerance Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:2450. [PMID: 37447010 DOI: 10.3390/plants12132450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Hydrogen sulfide (H2S) is involved in the regulation of plant salt stress as a potential signaling molecule. This work investigated the effect of H2S on cucumber growth, photosynthesis, antioxidation, ion balance, and other salt tolerance pathways. The plant height, stem diameter, leaf area and photosynthesis of cucumber seedlings were significantly inhibited by 50 mmol·L-1 NaCl. Moreover, NaCl treatment induced superoxide anion (O2·-) and Na+ accumulation and affected the absorption of other mineral ions. On the contrary, exogenous spraying of 200 μmol·L-1 sodium hydrosulfide (NaHS) maintained the growth of cucumber seedlings, increased photosynthesis, enhanced the ascorbate-glutathione cycle (AsA-GSH), and promoted the absorption of mineral ions under salt stress. Meanwhile, NaHS upregulated SOS1, SOS2, SOS3, NHX1, and AKT1 genes to maintain Na+/K+ balance and increased the relative expression of MAPK3, MAPK4, MAPK6, and MAPK9 genes to enhance salt tolerance. These positive effects of H2S could be reversed by 150 mmol·L-1 propargylglycine (PAG, a specific inhibitor of H2S biosynthesis). These results indicated that H2S could mitigate salt damage in cucumber, mainly by improving photosynthesis, enhancing the AsA-GSH cycle, reducing the Na+/K+ ratio, and inducing the SOS pathway and MAPK pathway.
Collapse
Affiliation(s)
- Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xianxia He
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Roychowdhury R, Das SP, Gupta A, Parihar P, Chandrasekhar K, Sarker U, Kumar A, Ramrao DP, Sudhakar C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses. Genes (Basel) 2023; 14:1281. [PMID: 37372461 PMCID: PMC10298225 DOI: 10.3390/genes14061281] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The present day's ongoing global warming and climate change adversely affect plants through imposing environmental (abiotic) stresses and disease pressure. The major abiotic factors such as drought, heat, cold, salinity, etc., hamper a plant's innate growth and development, resulting in reduced yield and quality, with the possibility of undesired traits. In the 21st century, the advent of high-throughput sequencing tools, state-of-the-art biotechnological techniques and bioinformatic analyzing pipelines led to the easy characterization of plant traits for abiotic stress response and tolerance mechanisms by applying the 'omics' toolbox. Panomics pipeline including genomics, transcriptomics, proteomics, metabolomics, epigenomics, proteogenomics, interactomics, ionomics, phenomics, etc., have become very handy nowadays. This is important to produce climate-smart future crops with a proper understanding of the molecular mechanisms of abiotic stress responses by the plant's genes, transcripts, proteins, epigenome, cellular metabolic circuits and resultant phenotype. Instead of mono-omics, two or more (hence 'multi-omics') integrated-omics approaches can decipher the plant's abiotic stress tolerance response very well. Multi-omics-characterized plants can be used as potent genetic resources to incorporate into the future breeding program. For the practical utility of crop improvement, multi-omics approaches for particular abiotic stress tolerance can be combined with genome-assisted breeding (GAB) by being pyramided with improved crop yield, food quality and associated agronomic traits and can open a new era of omics-assisted breeding. Thus, multi-omics pipelines together are able to decipher molecular processes, biomarkers, targets for genetic engineering, regulatory networks and precision agriculture solutions for a crop's variable abiotic stress tolerance to ensure food security under changing environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Soumya Prakash Das
- School of Bioscience, Seacom Skills University, Bolpur 731236, West Bengal, India
| | - Amber Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Parul Parihar
- Department of Biotechnology and Bioscience, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kottakota Chandrasekhar
- Department of Plant Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur 522034, Andhra Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Ajay Kumar
- Department of Botany, Maharshi Vishwamitra (M.V.) College, Buxar 802102, Bihar, India
| | - Devade Pandurang Ramrao
- Department of Biotechnology, Mizoram University, Pachhunga University College Campus, Aizawl 796001, Mizoram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
| |
Collapse
|
7
|
Zhang NN, Suo BY, Yao LL, Ding YX, Zhang JH, Wei GH, Shangguan ZP, Chen J. H 2 S works synergistically with rhizobia to modify photosynthetic carbon assimilation and metabolism in nitrogen-deficient soybeans. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37303272 DOI: 10.1111/pce.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2 S) performs a crucial role in plant development and abiotic stress responses by interacting with other signalling molecules. However, the synergistic involvement of H2 S and rhizobia in photosynthetic carbon (C) metabolism in soybean (Glycine max) under nitrogen (N) deficiency has been largely overlooked. Therefore, we scrutinised how H2 S drives photosynthetic C fixation, utilisation, and accumulation in soybean-rhizobia symbiotic systems. When soybeans encountered N deficiency, organ growth, grain output, and nodule N-fixation performance were considerably improved owing to H2 S and rhizobia. Furthermore, H2 S collaborated with rhizobia to actively govern assimilation product generation and transport, modulating C allocation, utilisation, and accumulation. Additionally, H2 S and rhizobia profoundly affected critical enzyme activities and coding gene expressions implicated in C fixation, transport, and metabolism. Furthermore, we observed substantial effects of H2 S and rhizobia on primary metabolism and C-N coupled metabolic networks in essential organs via C metabolic regulation. Consequently, H2 S synergy with rhizobia inspired complex primary metabolism and C-N coupled metabolic pathways by directing the expression of key enzymes and related coding genes involved in C metabolism, stimulating effective C fixation, transport, and distribution, and ultimately improving N fixation, growth, and grain yield in soybeans.
Collapse
Affiliation(s)
- Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Bing-Yu Suo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin-Lin Yao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Xin Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ge-Hong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Li H, Lv CT, Li YT, Gao GY, Meng YF, You YL, Tian Q, Liang KQ, Chen Y, Chen H, Xia C, Rui XY, Zheng HL, Wei MY. RNA-sequencing transcriptome analysis of Avicennia marina (Forsk.) Vierh. leaf epidermis defines tissue-specific transcriptional response to salinity treatment. Sci Rep 2023; 13:7614. [PMID: 37165000 PMCID: PMC10172313 DOI: 10.1038/s41598-023-34095-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Avicennia marina (Forsk.) Vierh. is a typical mangrove plant. Its epidermis contains salt glands, which can secrete excess salts onto the leaf surfaces, improving the salt tolerance of the plants. However, knowledge on the epidermis-specific transcriptional responses of A. marina to salinity treatment is lacking. Thus, physiological and transcriptomic techniques were applied to unravel the salt tolerance mechanism of A. marina. Our results showed that 400 mM NaCl significantly reduced the plant height, leaf area, leaf biomass and photosynthesis of A. marina. In addition, 1565 differentially expressed genes were identified, of which 634 and 931 were up- and down-regulated. Based on Kyoto Encyclopedia of Genes and Genomes metabolic pathway enrichment analysis, we demonstrated that decreased gene expression, especially that of OEE1, PQL2, FDX3, ATPC, GAPDH, PRK, FBP and RPE, could explain the inhibited photosynthesis caused by salt treatment. Furthermore, the ability of A. marina to cope with 400 mM NaCl treatment was dependent on appropriate hormone signalling and potential sulfur-containing metabolites, such as hydrogen sulfide and cysteine biosynthesis. Overall, the present study provides a theoretical basis for the adaption of A. marina to saline habitats and a reference for studying the salt tolerance mechanism of other mangrove plants.
Collapse
Affiliation(s)
- Huan Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao-Tian Lv
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yun-Tao Li
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Guo-Yv Gao
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Ya-Fei Meng
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yv-Le You
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Qi Tian
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Kun-Qi Liang
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Yu Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Hao Chen
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Chao Xia
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China
| | - Xiang-Yun Rui
- College of Food and Bio-Engineering, Bengbu University, Bengbu, Anhui, 233030, People's Republic of China.
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| | - Ming-Yue Wei
- School of Ecology, Resources and Environment, Dezhou University, DeZhou, Shandong, 253000, People's Republic of China.
| |
Collapse
|
9
|
Zhong YH, Guo ZJ, Wei MY, Wang JC, Song SW, Chi BJ, Zhang YC, Liu JW, Li J, Zhu XY, Tang HC, Song LY, Xu CQ, Zheng HL. Hydrogen sulfide upregulates the alternative respiratory pathway in mangrove plant Avicennia marina to attenuate waterlogging-induced oxidative stress and mitochondrial damage in a calcium-dependent manner. PLANT, CELL & ENVIRONMENT 2023; 46:1521-1539. [PMID: 36658747 DOI: 10.1111/pce.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2 S) is considered to mediate plant growth and development. However, whether H2 S regulates the adaptation of mangrove plant to intertidal flooding habitats is not well understood. In this study, sodium hydrosulfide (NaHS) was used as an H2 S donor to investigate the effect of H2 S on the responses of mangrove plant Avicennia marina to waterlogging. The results showed that 24-h waterlogging increased reactive oxygen species (ROS) and cell death in roots. Excessive mitochondrial ROS accumulation is highly oxidative and leads to mitochondrial structural and functional damage. However, the application of NaHS counteracted the oxidative damage caused by waterlogging. The mitochondrial ROS production was reduced by H2 S through increasing the expressions of the alternative oxidase genes and increasing the proportion of alternative respiratory pathway in the total mitochondrial respiration. Secondly, H2 S enhanced the capacity of the antioxidant system. Meanwhile, H2 S induced Ca2+ influx and activated the expression of intracellular Ca2+ -sensing-related genes. In addition, the alleviating effect of H2 S on waterlogging can be reversed by Ca2+ chelator and Ca2+ channel blockers. In conclusion, this study provides the first evidence to explain the role of H2 S in waterlogging adaptation in mangrove plants from the mitochondrial aspect.
Collapse
Affiliation(s)
- You-Hui Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Ming-Yue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
- School of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong, China
| | - Ji-Cheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Shi-Wei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Bing-Jie Chi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yu-Chen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jing-Wen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Han-Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Chao-Qun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
10
|
Wei MY, Li H, Zhang LD, Guo ZJ, Liu JY, Ding QS, Zhong YH, Li J, Ma DN, Zheng HL. Exogenous hydrogen sulfide mediates Na+ and K+ fluxes of salt gland in salt-secreting mangrove plant Avicennia marina. TREE PHYSIOLOGY 2022; 42:1812-1826. [PMID: 35412618 DOI: 10.1093/treephys/tpac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/03/2022] [Indexed: 05/26/2023]
Abstract
Hydrogen sulfide (H2S), is a crucial biological player in plants. Here, we primarily explored the interaction between sodium hydrosulfide (NaHS, a H2S donor) and the fluxes of Na+ and K+ from the salt glands of mangrove species Avicennia marina (Forsk.) Vierh. with non-invasive micro-test technology (NMT) and quantitative real-time PCR (qRT-PCR) approaches under salinity treatments. The results showed that under 400-mM NaCl treatment, the addition of 200-μM NaHS markedly increased the quantity of salt crystals in the adaxial epidermis of A. marina leaves, accompanied by an increase in the K+/Na+ ratio. Meanwhile, the endogenous content of H2S was dramatically elevated in this process. The NMT result revealed that the Na+ efflux was increased from salt glands, whereas K+ efflux was decreased with NaHS application. On the contrary, the effects of NaHS were reversed by H2S scavenger hypotaurine (HT), and DL-propargylglycine (PAG), an inhibitor of cystathionine-γ-lyase (CES, a H2S synthase). Moreover, enzymic assay revealed that NaHS increased the activities of plasma membrane and tonoplast H+-ATPase. qRT-PCR analysis revealed that NaHS significantly increased the genes transcript levels of tonoplast Na+/H+ antiporter (NHX1), plasma membrane Na+/H+ antiporter (SOS1), plasma membrane H+-ATPase (AHA1) and tonoplast H+-ATPase subunit c (VHA-c1), while suppressed above-mentioned gene expressions by the application of HT and PAG. Overall, H2S promotes Na+ secretion from the salt glands of A. marina by up-regulating the plasma membrane and tonoplast Na+/H+ antiporter and H+-ATPase.
Collapse
Affiliation(s)
- Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Huan Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
- College of Food and Bio-engineering, Bengbu University, Caoshan Road, Bengbu, Anhui 233030, P.R. China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Ji-Yun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Qian-Su Ding
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - You-Hui Zhong
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Dong-Na Ma
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
11
|
Yu C, Wang HP, Yu X. The associative induction of succinic acid and hydrogen sulfide for high-producing biomass, astaxanthin and lipids in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2022; 358:127397. [PMID: 35636672 DOI: 10.1016/j.biortech.2022.127397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
To obtain higher yield of natural astaxanthin, the present study aims to develop a viable and economic induction strategy for astaxanthin production comprising succinic acid (SA) combined with sodium hydrosulfide (NaHS). The biomass (1.33 g L-1), astaxanthin concentration (44.96 mg L-1), astaxanthin content (163.55 pg cell-1), and lipid content (55.34%) were achieved under 1.0 mM SA and 100 μM NaHS treatment. These results were concomitant with enhanced hydrogen sulfide (H2S) but diminished reactive oxide species (ROS). Further study discovered that endogenous H2S could improve astaxanthin and lipid coproduction under SA induction by mediating related gene transcript levels and ROS signalling. Additionally, the concentrations of biomass and astaxanthin increased to 2.14 g L-1 and 66.25 mg L-1, respectively, under the induction of SA and NaHS in a scaled-up bioreactor. Briefly, the work proposed a novel feasible strategy for high yields of biomass and astaxanthin by H. pluvialis.
Collapse
Affiliation(s)
- Chunli Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
12
|
Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H. Hydrogen sulfide: an emerging component against abiotic stress in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:540-558. [PMID: 34870354 DOI: 10.1111/plb.13368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 05/05/2023]
Abstract
As a result of climate change, abiotic stresses are the most common cause of crop losses worldwide. Abiotic stresses significantly impair plants' physiological, biochemical, molecular and cellular mechanisms, limiting crop productivity under adverse climate conditions. However, plants can implement essential mechanisms against abiotic stressors to maintain their growth and persistence under such stressful environments. In nature, plants have developed several adaptations and defence mechanisms to mitigate abiotic stress. Moreover, recent research has revealed that signalling molecules like hydrogen sulfide (H2 S) play a crucial role in mitigating the adverse effects of environmental stresses in plants by implementing several physiological and biochemical mechanisms. Mainly, H2 S helps to implement antioxidant defence systems, and interacts with other molecules like nitric oxide (NO), reactive oxygen species (ROS), phytohormones, etc. These molecules are well-known as the key players that moderate the adverse effects of abiotic stresses. Currently, little progress has been made in understanding the molecular basis of the protective role of H2 S; however, it is imperative to understand the molecular basis using the state-of-the-art CRISPR-Cas gene-editing tool. Subsequently, genetic engineering could provide a promising approach to unravelling the molecular basis of stress tolerance mediated by exogenous/endogenous H2 S. Here, we review recent advances in understanding the beneficial roles of H2 S in conferring multiple abiotic stress tolerance in plants. Further, we also discuss the interaction and crosstalk between H2 S and other signal molecules; as well as highlighting some genetic engineering-based current and future directions.
Collapse
Affiliation(s)
- A Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - J Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - M S Mubarik
- Department of Biotechnology, University of Narowal (UON), Narowal, 51600, Pakistan
| | - S Anwar
- Department of Agronomy, University of Florida, Gainesville, USA
| | - N Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Y Sharif
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - M B Hafeez
- College of Agronomy, Northwest A&F University, Yangling, China
| | - C Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, CSIC, Granada, Spain
| | - H Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| |
Collapse
|
13
|
Kaur H, Hussain SJ, Al-Huqail AA, Siddiqui MH, Al-Huqail AA, Khan MIR. Hydrogen sulphide and salicylic acid regulate antioxidant pathway and nutrient balance in mustard plants under cadmium stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:660-669. [PMID: 34516728 DOI: 10.1111/plb.13322] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a pervasive noxious heavy metal, is a key threat to agricultural system. It is rapidly translocated and has detrimental effects on plant growth and development. Hydrogen sulphide (H2 S) is emerging as a potential messenger molecule for modulating plant tolerance to Cd. Salicylic acid (SA), a phenolic signalling molecule, can alleviate Cd toxicity in plants. The present study investigated the mediatory role of H2 S (100 µM) and SA (0.5 mM), individually and in combination, in modulating antioxidant defence machinery and nutrient balance to impart Cd (50 µM) resistance to mustard. Accumulation of Cd resulted in oxidative stress (TBARS and H2 O2 ), mineral nutrient imbalance (N, P, K, Ca), decreased leaf gas exchange and PSII efficiency, ultimately reducing plant growth. Both H2 S and SA independently attenuated phytotoxic effects of Cd by triggering antioxidant systems, enhancing the nutrient pool, eventually leading to improved photosynthesis and biomass of mustard plants. The positive effects were more pronounced under combined application of H2 S and SA, indicating a synergistic relationship between these two signalling molecules in mitigating the detrimental effects of Cd on nutrient homeostasis and overall health of mustard, primarily by boosting antioxidant pathway. Our findings provide new insights into H2 S- and SA-induced protective mechanisms in mustard plants subjected to Cd stress and suggest their combined use as a feasible strategy to confer Cd tolerance.
Collapse
Affiliation(s)
- H Kaur
- Department of Botany, Akal University, Bathinda, India
| | - S J Hussain
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - A A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Al-Huqail
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - M I R Khan
- Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Physiological and Biochemical Responses of Kandelia obovata to Upwelling Stress. WATER 2022. [DOI: 10.3390/w14060899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mangroves growing in intertidal areas are faced with various stresses caused by coastal human activities and oceanic and atmospheric sources. Although the study of the physiological and biochemical characteristics of mangroves has been developing over the past four decades, the effect of upwelling on mangroves in plants stress resistance has seldom been investigated. Here, changes in the physiological and biochemical characteristics of the leaves of Kandelia obovata seedlings in response to upwelling were investigated (air temperature: 25 °C; water temperature: control 25 °C, 13 °C, and 5 °C; salinity: 10‰). The results revealed that upwelling treatment caused an increase in chlorophyll content but a decrease in photosynthetic fluorescence parameters. Hydrogen peroxide (H2O2) production and malondialdehyde activity (MDA) increased with the decrease in upwelling temperature. The proline content increased under upwelling stress, whereas the soluble sugar content decreased. Further, the activities of antioxidant enzymes, such as superoxide dismutase activity (SOD) and peroxidase activity (POD), showed an increasing trend during the treatment, while catalase activity (CAT) decreased. It was evidenced that upwelling stress triggered the physiological and biochemical responses of Kandelia obovata seedlings. This effect became more intense as the upwelling temperature decreased, and all these indicators showed different responses to upwelling stress. Through synthesizing more energy and regulating enzyme activity and osmotic pressure, the leaves of K. obovata formed a resistance mechanism to short-term upwelling.
Collapse
|
15
|
de Bont L, Mu X, Wei B, Han Y. Abiotic stress-triggered oxidative challenges: Where does H 2S act? J Genet Genomics 2022; 49:748-755. [PMID: 35276389 DOI: 10.1016/j.jgg.2022.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/08/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues.
Collapse
Affiliation(s)
- Linda de Bont
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Bo Wei
- School of Biology, Food and Environment, Hefei University, 230601, Hefei, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China.
| |
Collapse
|
16
|
The Absence of the AtSYT1 Function Elevates the Adverse Effect of Salt Stress on Photosynthesis in Arabidopsis. Int J Mol Sci 2022; 23:ijms23031751. [PMID: 35163669 PMCID: PMC8836111 DOI: 10.3390/ijms23031751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Arabidopsis thaliana SYNAPTOTAGMIN 1 (AtSYT1) was shown to be involved in responses to different environmental and biotic stresses. We investigated gas exchange and chlorophyll a fluorescence in Arabidopsis wild-type (WT, ecotype Col-0) and atsyt1 mutant plants irrigated for 48 h with 150 mM NaCl. We found that salt stress significantly decreases net photosynthetic assimilation, effective photochemical quantum yield of photosystem II (ΦPSII), stomatal conductance and transpiration rate in both genotypes. Salt stress has a more severe impact on atsyt1 plants with increasing effect at higher illumination. Dark respiration, photochemical quenching (qP), non-photochemical quenching and ΦPSII measured at 750 µmol m−2 s−1 photosynthetic photon flux density were significantly affected by salt in both genotypes. However, differences between mutant and WT plants were recorded only for qP and ΦPSII. Decreased photosynthetic efficiency in atsyt1 under salt stress was accompanied by reduced chlorophyll and carotenoid and increased flavonol content in atsyt1 leaves. No differences in the abundance of key proteins participating in photosynthesis (except PsaC and PsbQ) and chlorophyll biosynthesis were found regardless of genotype or salt treatment. Microscopic analysis showed that irrigating plants with salt caused a partial closure of the stomata, and this effect was more pronounced in the mutant than in WT plants. The localization pattern of AtSYT1 was also altered by salt stress.
Collapse
|
17
|
Nizam A, Meera SP, Kumar A. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 2022; 25:103547. [PMID: 34988398 PMCID: PMC8693430 DOI: 10.1016/j.isci.2021.103547] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangroves are halophytic plants belonging to diverse angiosperm families that are adapted to highly stressful intertidal zones between land and sea. They are special, unique, and one of the most productive ecosystems that play enormous ecological roles and provide a large number of benefits to the coastal communities. To thrive under highly stressful conditions, mangroves have innovated several key morphological, anatomical, and physio-biochemical adaptations. The evolution of the unique adaptive modifications might have resulted from a host of genetic and molecular changes and to date we know little about the nature of these genetic and molecular changes. Although slow, new information has accumulated over the last few decades on the genetic and molecular regulation of the mangrove adaptations, a comprehensive review on it is not yet available. This review provides up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits.
Collapse
Affiliation(s)
- Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Suraj Prasannakumari Meera
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Palayad, Kerala 670661, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| |
Collapse
|
18
|
Wang P, Fang H, Gao R, Liao W. Protein Persulfidation in Plants: Function and Mechanism. Antioxidants (Basel) 2021; 10:1631. [PMID: 34679765 PMCID: PMC8533255 DOI: 10.3390/antiox10101631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
As an endogenous gaseous transmitter, the function of hydrogen sulfide (H2S) has been extensively studied in plants. Once synthesized, H2S may be involved in almost all life processes of plants. Among them, a key route for H2S bioactivity occurs via protein persulfidation, in which process oxidizes cysteine thiol (R-SH) groups into persulfide (R-SSH) groups. This process is thought to underpin a myriad of cellular processes in plants linked to growth, development, stress responses, and phytohormone signaling. Multiple lines of emerging evidence suggest that this redox-based reversible post-translational modification can not only serve as a protective mechanism for H2S in oxidative stress, but also control a variety of biochemical processes through the allosteric effect of proteins. Here, we collate emerging evidence showing that H2S-mediated persulfidation modification involves some important biochemical processes such as growth and development, oxidative stress, phytohormone and autophagy. Additionally, the interaction between persulfidation and S-nitrosylation is also discussed. In this work, we provide beneficial clues for further exploration of the molecular mechanism and function of protein persulfidation in plants in the future.
Collapse
Affiliation(s)
| | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (P.W.); (H.F.); (R.G.)
| |
Collapse
|
19
|
Fei J, Wang YS, Cheng H, Su YB. An efficient protein extraction method applied to mangrove plant Kandelia obovata leaves for proteomic analysis. PLANT METHODS 2021; 17:100. [PMID: 34587982 PMCID: PMC8482605 DOI: 10.1186/s13007-021-00800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mangroves plants, an important wetland system in the intertidal shores, play a vital role in estuarine ecosystems. However, there is a lack of a very effective method for extracting protein from mangrove plants for proteomic analysis. Here, we evaluated the efficiency of three different protein extraction methods for proteomic analysis of total proteins obtained from mangrove plant Kandelia obovata leaves. RESULTS The protein yield of the phenol-based (Phe-B) method (4.47 mg/g) was significantly higher than the yields of the traditional phenol (Phe) method (2.38 mg/g) and trichloroacetic acid-acetone (TCA-A) method (1.15 mg/g). The Phe-B method produced better two-dimensional electrophoresis (2-DE) protein patterns with high reproducibility regarding the number, abundance and coverage of protein spots. The 2-DE gels showed that 847, 650 and 213 unique protein spots were separated from the total K. obovata leaf proteins extracted by the Phe-B, Phe and TCA-A methods, respectively. Fourteen pairs of protein spots were randomly selected from 2-DE gels of Phe- and Phe-B- extracted proteins for identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) technique, and the results of three pairs were consistent. Further, oxygen evolving enhancer protein and elongation factor Tu could be observed in the 2-DE gels of Phe and Phe-B methods, but could only be detected in the results of the Phe-B methods, showing that Phe-B method might be the optimized choice for proteomic analysis. CONCLUSION Our data provides an improved Phe-B method for protein extraction of K. obovata and other mangrove plant tissues which is rich in polysaccharides and polyphenols. This study might be expected to be used for proteomic analysis in other recalcitrant plants.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Yu-Bin Su
- College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
20
|
Li H, Ghoto K, Wei MY, Gao CH, Liu YL, Ma DN, Zheng HL. Unraveling hydrogen sulfide-promoted lateral root development and growth in mangrove plant Kandelia obovata: insight into regulatory mechanism by TMT-based quantitative proteomic approaches. TREE PHYSIOLOGY 2021; 41:1749-1766. [PMID: 33580961 DOI: 10.1093/treephys/tpab025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/31/2021] [Indexed: 05/26/2023]
Abstract
Mangroves are the main intertidal ecosystems with varieties of root types along the tropical and subtropical coastlines around the world. The typical characteristics of mangrove habitats, including the abundant organic matter and nutrients, as well as the strong reductive environment, are favor for the production of hydrogen sulfide (H2S). H2S, as a pivotal signaling molecule, has been evidenced in a wide variety of plant physiological and developmental processes. However, whether H2S functions in the mangrove root system establishment is not clear yet. Here, we reported the possible role of H2S in regulation of Kandelia obovata root development and growth by tandem mass tag (TMT)-based quantitative proteomic approaches coupled with bioinformatic methods. The results showed that H2S could induce the root morphogenesis of K. obovata in a dose-dependent manner. The proteomic results successfully identified 8075 proteins, and 697 were determined as differentially expressed proteins. Based on the functional enrichment analysis, we demonstrated that H2S could promote the lateral root development and growth by predominantly regulating the proteins associated with carbohydrate metabolism, sulfur metabolism, glutathione metabolism and other antioxidant associated proteins. In addition, transcriptional regulation and brassinosteroid signal transduction associated proteins also act as important roles in lateral root development. The protein-protein interaction analysis further unravels a complicated regulation network of carbohydrate metabolism, cellular redox homeostasis, protein metabolism, secondary metabolism, and amino acid metabolism in H2S-promoted root development and growth of K. obovata. Overall, our results revealed that H2S could contribute to the morphogenesis of the unique root system of mangrove plant K. obovata, and play a positive role in the adaption of mangrove plants to intertidal habitats.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Kabir Ghoto
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Ming-Yue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Chang-Hao Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yi-Ling Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
21
|
Abstract
Hydrogen sulfide (H2S) is predominantly considered as a gaseous transmitter or signaling molecule in plants. It has been known as a crucial player during various plant cellular and physiological processes and has been gaining unprecedented attention from researchers since decades. They regulate growth and plethora of plant developmental processes such as germination, senescence, defense, and maturation in plants. Owing to its gaseous state, they are effectively diffused towards different parts of the cell to counterbalance the antioxidant pools as well as providing sulfur to cells. H2S participates actively during abiotic stresses and enhances plant tolerance towards adverse conditions by regulation of the antioxidative defense system, oxidative stress signaling, metal transport, Na+/K+ homeostasis, etc. They also maintain H2S-Cys-cycle during abiotic stressed conditions followed by post-translational modifications of cysteine residues. Besides their role during abiotic stresses, crosstalk of H2S with other biomolecules such as NO and phytohormones (abscisic acid, salicylic acid, melatonin, ethylene, etc.) have also been explored in plant signaling. These processes also mediate protein post-translational modifications of cysteine residues. We have mainly highlighted all these biological functions along with proposing novel relevant issues that are required to be addressed further in the near future. Moreover, we have also proposed the possible mechanisms of H2S actions in mediating redox-dependent mechanisms in plant physiology.
Collapse
|
22
|
Wang W, Li T, Chen Q, Deng B, Deng L, Zeng K. Transcription Factor CsWRKY65 Participates in the Establishment of Disease Resistance of Citrus Fruits to Penicillium digitatum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5671-5682. [PMID: 33988021 DOI: 10.1021/acs.jafc.1c01411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Penicillium digitatum is the primary pathogen that causes serious yield losses worldwide. In our previous study, CsWRKY transcription factors (TFs) and some genes associated with immunity were identified in citrus fruits after P. digitatum infection, but little information is available in the literature on the mechanisms of TFs in citrus disease resistance. In this study, the possible mechanisms of CsWRKY65 participating in the establishment of disease resistance were investigated. Results show that CsWRKY65 was a transcriptional activator in the nucleus. The dual-luciferase transient assays and electrophoretic mobility shift assays showed that CsWRKY65 bound with CsRbohB, CsRbohD, CsCDPK33, and CsPR10 promoters to activate gene transcription. Besides, the transient overexpression of CsWRKY65 induced reactive oxygen species accumulation and increased PR gene expression in Nicotiana benthamiana leaves. The transient overexpression of CsWRKY65 in the citrus peel enhanced the disease resistance against P. digitatum. In conclusion, CsWRKY65 is likely to be involved in regulating the disease resistance to P. digitatum of citrus fruits by directly activating the expressions of CsRbohB, CsRbohD, CsCDPK33, and CsPR10. This study provides new information for the mechanism of citrus WRKY TFs participating in the establishment of disease resistance.
Collapse
Affiliation(s)
- Wenjun Wang
- College of Food Science, Southwest University, Chongqing 400715, P. R. China
| | - Ting Li
- College of Food Science, Southwest University, Chongqing 400715, P. R. China
| | - Qi Chen
- College of Food Science, Southwest University, Chongqing 400715, P. R. China
| | - Bing Deng
- College of Food Science, Southwest University, Chongqing 400715, P. R. China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing 400715, P. R. China
- Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, P. R. China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, Chongqing 401331, P. R. China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, P. R. China
- Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
23
|
Liu YL, Zheng HL. Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. Int J Mol Sci 2021; 22:ijms22031055. [PMID: 33494455 PMCID: PMC7865619 DOI: 10.3390/ijms22031055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The mangrove plant Acanthus ilicifolius and its relative, Acanthus mollis, have been previously proved to possess diverse pharmacological effects. Therefore, evaluating the differentially expressed proteins of these species under tidal flooding stress is essential to fully exploit and benefit from their medicinal values. The roots of A. ilicifolius and A. mollis were exposed to 6 h of flooding stress per day for 10 days. The dry weight, hydrogen peroxide (H2O2) content, anatomical characteristics, carbon and energy levels, and two-dimensional electrophoresis coupled with MALDI-TOF/TOF MS technology were used to reveal the divergent flooding resistant strategies. A. ilicifolius performed better under tidal flooding stress, which was reflected in the integrity of the morphological structure, more efficient use of carbon and energy, and a higher percentage of up-regulated proteins associated with carbon and energy metabolism. A. mollis could not survive in flooding conditions for a long time, as revealed by disrupting cell structures of the roots, less efficient use of carbon and energy, and a higher percentage of down-regulated proteins associated with carbon and energy metabolism. Energy provision and flux balance played a role in the flooding tolerance of A. ilicifolius and A. mollis.
Collapse
|
24
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
25
|
H 2S signaling in plants and applications in agriculture. J Adv Res 2020; 24:131-137. [PMID: 32292600 PMCID: PMC7150428 DOI: 10.1016/j.jare.2020.03.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Hydrogen sulfide (H2S) plays a signaling role in higher plants. It mediates persulfidation, a post-translational modification. It regulates physiological functions ranging from seed germination to fruit ripening. The beneficial effects of exogenous H2S are mainly caused by the stimulation of antioxidant systems.
The signaling properties of the gasotransmitter molecule hydrogen sulfide (H2S), which is endogenously generated in plant cells, are mainly observed during persulfidation, a protein post-translational modification (PTM) that affects redox-sensitive cysteine residues. There is growing experimental evidence that H2S in higher plants may function as a mechanism of response to environmental stress conditions. In addition, exogenous applications of H2S to plants appear to provide additional protection against stresses, such as salinity, drought, extreme temperatures and heavy metals, mainly through the induction of antioxidant systems, in order to palliate oxidative cellular damage. H2S also appears to be involved in regulating physiological functions, such as seed germination, stomatal movement and fruit ripening, as well as molecules that maintain post-harvest quality and rhizobium–legume symbiosis. These properties of H2S open up new challenges in plant research to better understand its functions as well as new opportunities for biotechnological treatments in agriculture in a changing environment.
Collapse
|