1
|
Chen R, Zhou G, Yang J, Yuan R, Sun Y, Liang Y, Wu R, Wen Y, Wang Y, Zhao Q, Du S, Yan Q, Cao S, Huang X. A novel neutralizing antibody recognizing a conserved conformational epitope in PDCoV S1 protein and its therapeutic efficacy in piglets. J Virol 2025; 99:e0202524. [PMID: 39840987 PMCID: PMC11853068 DOI: 10.1128/jvi.02025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.537 and 8.487 µg/mL, respectively. A phage-display peptide library was used to determine the epitope recognized by mAb 4A6, and two mimotopes, QYPVSYA (P1) and FPHWPTI (P2), were identified. KLH-P1 reacted with PDCoV-positive sera but failed to induce PDCoV-specific IgG and neutralizing antibodies in mice, suggesting P1 does not fully mimic the conformational epitope. Molecular docking and alanine scanning mutagenesis revealed that S461, P462, T463, E465, and Y467 on the S protein are essential for mAb 4A6 binding. Antibody therapy experiments in PDCoV-infected piglets showed that administering mAb 4A6 once or twice could delay the onset of diarrhea symptoms, reduce the severity of diarrhea, and decrease virus shedding. Taken together, our findings demonstrate that mAb 4A6 holds promise as a treatment against PDCoV, and the amino acids recognized by mAb 4A6 will be valuable for developing novel epitope-based vaccines or antiviral drugs. IMPORTANCE Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that poses a potential threat to public health. Developing effective antiviral therapies is crucial for its prevention and control. Here, we demonstrated that mAb 4A6 shows promise as a treatment against PDCoV. Antibody therapy experiments conducted on PDCoV-infected piglets revealed that administering mAb 4A6 once or twice could delay the onset of diarrhea symptoms, reduce the severity of diarrhea, and decrease virus shedding. Furthermore, we characterized the conformational epitope (S461, P462, T463, E465, and Y467) recognized by mAb 4A6 through an integrated approach involving phage display peptide library, molecular docking, and alanine scanning mutagenesis. More importantly, mAb 4A6 exhibits a broad-spectrum neutralizing activity against different PDCoV strains. These findings indicate that mAb 4A6 has promising therapeutic value for PDCoV-infected piglets, and the identification of mAb 4A6 recognized epitope may provide a new idea for the identification of conformational epitopes.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Swine
- Epitopes/immunology
- Epitopes/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Swine Diseases/virology
- Swine Diseases/immunology
- Swine Diseases/therapy
- Swine Diseases/drug therapy
- Mice
- Molecular Docking Simulation
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Deltacoronavirus/immunology
- Peptide Library
- Protein Conformation
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guiping Zhou
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junpeng Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, China
| | - Ying Sun
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| |
Collapse
|
2
|
Zhang L, Yang X, Shi H, Zhang J, Feng T, Liu D, Zhang X, Chen J, Shi D, Feng L. Identification of two novel B-cell epitopes located on the spike protein of swine acute diarrhea syndrome coronavirus. Int J Biol Macromol 2024; 278:135049. [PMID: 39182883 DOI: 10.1016/j.ijbiomac.2024.135049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging alpha-coronavirus that causes diarrhea in piglets and results in serious economic losses. During SADS-CoV infection, the spike protein (S) serves as a crucial structural component of the virion, interacting with receptors and eliciting the production of neutralizing antibodies. Due to the potential risk of zoonotic transmission of SADS-CoV, the identification and screening of epitopes on the S glycoproteins will be crucial for development of sensitive and specific diagnostic tools. In this study, we immunized BALB/c mice with recombinant SADS-CoV S trimer protein and generated two S1-specific monoclonal antibodies (mAbs): 8D6 and 6E9, which recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 8D6 was mapped to 311NPDQRD316, the minimal fragment recognized by mAb 6E9 was mapped to 492ARFVDRL498. Homology analysis of the regions corresponding to 13 typical strains of different SADS-CoV subtypes showed high conservation of these two epitopes. These findings contribute to a deeper understanding of the structure of the SADS-CoV S protein, which is valuable for vaccine design and holds potential for developing diagnostic methods to detect SADS-CoV.
Collapse
Affiliation(s)
- Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
3
|
Wu H, Sun X, Li C, Xie S, Chen Z. Preparation and Epitope Identification of Monoclonal Antibodies against the NS6 Protein of Porcine Deltacoronavirus (PDCoV). Int J Mol Sci 2024; 25:7645. [PMID: 39062886 PMCID: PMC11276995 DOI: 10.3390/ijms25147645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric pathogen that causes substantial economic losses in the swine industry worldwide. The PDCoV NS6 protein is an accessory protein that plays a pivotal role in the viral life cycle and immune evasion. However, the functions of NS6 and its role in PDCoV pathogenesis remain largely unknown. In this study, we prepared a monoclonal antibody (mAb) 5-A11 that specifically recognizes the PDCoV NS6 protein. The mAb 5-A11 exhibited high specificity for PDCoV, with no cross-reactivity with several major porcine pathogenic viruses. Furthermore, the epitope recognized by mAb 5-A11 was precisely mapped to residues 70EYGSIYGKDFI80 of the NS6 protein using Western blot analysis. Notably, this epitope is highly conserved among different PDCoV isolates. Substantial variations were observed when comparing this epitope with the corresponding regions in the NS6 proteins of other δ coronaviruses, suggesting potential differences in the structure, function, and antigenicity of their NS6 proteins. Our findings provide valuable tools and insights for further elucidating the functions of the NS6 protein and its role in PDCoV pathogenesis, as well as for developing diagnostic and therapeutic strategies against PDCoV infection.
Collapse
Affiliation(s)
- Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Sihan Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Liu Q, Wu J, Gao N, Zhang X, Gao M, Zhang X, Guo L, Wu Y, Shi D, Shi H, Chen J, Feng L. A novel antigenic epitope identified on the accessory protein NS6 of porcine deltacoronavirus. Virus Res 2024; 341:199329. [PMID: 38262568 PMCID: PMC10840108 DOI: 10.1016/j.virusres.2024.199329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel enteric coronavirus that can cause vomiting, watery diarrhea in pigs and the death of piglets. The open reading frame (ORF) 5 is one of the accessory genes in PDCoV genome and encodes an accessory protein NS6. To date, the function of NS6 is still unclear. In this study, the recombinant NS6 was successfully expressed in prokaryotic expression system and purified. To prepare monoclonal antibody (mAb), six-week-old female BALB/c mice were primed subcutaneously with purified NS6. A novel mouse mAb against NS6 was obtained and designated as 3D5. The isotype of 3D5 is IgG2b with kappa (κ) light chain. 3D5 can specifically recognizes the natural NS6 in swine testis (ST) cells infected with PDCoV and expressed NS6 in human embryonic kidney 293T (HEK 293T) cells transfected with mammalian vector. The minimal linear B cell epitope recognised by 3D5 on NS6 was 25VPELIDPLVK34 determined by peptide scanning and named EP-3D5. The sequence of EP-3D5 is completely conserved among PDCoV strains. Moreover, six to nine residues of EP-3D5 were identified to be conserved in non-PDCoV strains. These results provide valuable insights into the antigenic structure and function of NS6 in virus pathogenesis, and aid for the development of PDCoV epitope-associated diagnostics and vaccine design.
Collapse
Affiliation(s)
- Qiuge Liu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianxiao Wu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Na Gao
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaorong Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingze Gao
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Longjun Guo
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yang Wu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
5
|
Zhao Y, Yuan J, Xiao D, Zhang L, Li C, Hu J, Chen R, Song D, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Wen X, Cao S, Huang X. HSP90AB1 is a host factor that promotes porcine deltacoronavirus replication. J Biol Chem 2024; 300:105536. [PMID: 38092149 PMCID: PMC10789647 DOI: 10.1016/j.jbc.2023.105536] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus. It causes mortality in neonatal piglets and is of growing concern because of its broad host range, including humans. To date, the mechanism of PDCoV infection remains poorly understood. Here, based on a genome-wide CRISPR screen of PDCoV-infected cells, we found that HSP90AB1 (heat shock protein 90 alpha family class B1) promotes PDCoV infection. Knockdown or KO of HSP90AB1 in LLC-PK cells resulted in a significantly suppressed PDCoV infection. Infected cells treated with HSP90 inhibitors 17-AAG and VER-82576 also showed a significantly suppressed PDCoV infection, although KW-2478, which does not affect the ATPase activity of HSP90AB1, had no effect on PDCoV infection. We found that HSP90AB1 interacts with the N, NS7, and NSP10 proteins of PDCoV. We further evaluated the interaction between N and HSP90AB1 and found that the C-tail domain of the N protein is the HSP90AB1-interacting domain. Further studies showed that HSP90AB1 protects N protein from degradation via the proteasome pathway. In summary, our results reveal a key role for HSP90AB1 in the mechanism of PDCoV infection and contribute to provide new host targets for PDCoV antiviral research.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory Animal Center, Zunyi Medical University, Zunyi, China
| | - Jianlin Yuan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jingfei Hu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Sichuan Science-Observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Sichuan Science-Observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
6
|
Wen Y, Chen R, Yang J, Yu E, Liu W, Liao Y, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Cao S, Huang X. Identification of potential SLA-I-specific T-cell epitopes within the structural proteins of porcine deltacoronavirus. Int J Biol Macromol 2023; 251:126327. [PMID: 37579907 DOI: 10.1016/j.ijbiomac.2023.126327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that mainly threatens newborn piglets and poses a potential broad cross-species transmission risk. The antigenic epitopes of PDCoV are currently unidentified, and no information about T cell epitopes is available. Here, T-cell epitopes of PDCoV structural proteins were predicted using computational methods. 17 epitope peptides were synthesized and then screened using ELIspot, intracellular cytokine staining (ICS), and RT-qPCR detection of IFN-γ mRNA to evaluate their ability to elicit interferon-gamma (IFN-γ) responses in peripheral blood mononuclear cells (PBMCs) from PDCoV-challenged pigs. Five peptides (M1, M2, M3, N6, and S4) elicited high levels of IFN-γ and were investigated further as potential T-cell epitope candidates. All five peptides were cytotoxic T lymphocyte (CTL) epitopes, and two peptides (M3, N6) were recognized simultaneously by CD8 + and CD4 + T cells. A multi-epitope peptide combining the five epitopes (designated "5T") was synthesized and its immune response and protection efficacy was evaluated in a piglet model. ELISpot assay results indicated that 5T induces robust epitope-specific cellular immune responses. Four epitopes (M1, M2, N6, S4) elicited IFN-γ responses in 5T-vaccinated piglets. No obvious protection efficacy was detected in piglets vaccinated with 5T alone. Our results provide valuable information concerning PDCoV-related antigenic epitopes and will be useful in the design of epitope-based vaccines.
Collapse
Affiliation(s)
- Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junpeng Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Weizhe Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|
7
|
Wu H, Li C, Sun X, Cheng Y, Chen Z. Identification of a Monoclonal Antibody against Porcine Deltacoronavirus Membrane Protein. Int J Mol Sci 2023; 24:13934. [PMID: 37762237 PMCID: PMC10530725 DOI: 10.3390/ijms241813934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging virus that poses a significant threat to the global swine industry. Its membrane (M) protein is crucial for virion assembly and virus-host interactions. We selected the hydrophilic region of M protein for prokaryotic expression, purification, and recombinant protein production. Utilizing hybridoma technology, we prepared the monoclonal antibody (mAb) 24-A6 against M protein. The mAb 24-A6 was shown to be suitable for use in immunofluorescence assays, western blotting, and immunoprecipitation, with specificity for PDCoV and no cross-reactivity with other five porcine viruses. The M protein was observed to be expressed as early as 3 h after PDCoV infection, increasing its expression over the duration of infection. Notably, the antigenic epitope of the M protein identified as 103SPESRL108 recognized by mAb 24-A6 was found within a conserved structural domain (SWWSFNPETNNL) of the coronavirus M protein, indicating a crucial overlap between a functionally important viral assembly region and a region recognized by the immune system. Our findings provide valuable insights into mAb 24-A6 targeting the antigenic epitope of M protein and may contribute to the development of diagnostic tools for PDCoV infection and fundamental research into the function of PDCoV M protein.
Collapse
Affiliation(s)
- Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yue Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Chen R, Wen Y, Yu E, Yang J, Liang Y, Song D, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Cao S, Huang X. Identification of an immunodominant neutralizing epitope of porcine Deltacoronavirus spike protein. Int J Biol Macromol 2023:125190. [PMID: 37276902 DOI: 10.1016/j.ijbiomac.2023.125190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that, because of its broad host range, poses a potential threat to public health. Here, to identify the neutralizing B-cell epitopes within the S1-CTD protein, we generated three anti-PDCoV monoclonal antibodies (mAbs). Of these, the antibody designated 4E-3 effectively neutralized PDCoV with an IC50 of 3.155 μg/mL. mAb 4E-3 and one other, mAb 2A-12, recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 4E-3 was mapped to 280FYSDPKSAV288 and designated S280-288, the minimal fragment recognized by mAb 2A-12 was mapped to 506TENNRFTT513, and designated S506-513. Subsequently, alanine (A)-scanning mutagenesis indicated that Asp283, Lys285, and Val288 were the critical residues recognized by mAb 4E-3. The S280-288 epitope induces PDCoV specific neutralizing antibodies in mice, demonstrating that it is a neutralizing epitope. Of note, the S280-288 coupled to Keyhole Limpet Hemocyanin (KLH) produces PDCoV neutralizing antibodies in vitro and in vivo, in challenged piglets it potentiates interferon-γ responses and provides partial protection against disease. This is the first report about the PDCoV S protein neutralizing epitope, which will contribute to research of PDCoV-related pathogenic mechanism, vaccine design and antiviral drug development.
Collapse
Affiliation(s)
- Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junpeng Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| |
Collapse
|
9
|
Liu G, Wang K, Yang Z, Tang X, Chang YF, Dai K, Tang X, Hu B, Zhang Y, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Wen X, Wen Y. Identification of a Novel Linear B-Cell Epitope of HbpA Protein from Glaesserella parasuis Using Monoclonal Antibody. Int J Mol Sci 2023; 24:8638. [PMID: 37239984 PMCID: PMC10218323 DOI: 10.3390/ijms24108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glaesserella parasuis (G. parasuis.) is the etiological pathogen of Glässer's disease, which causes high economic losses to the pig industry. The heme-binding protein A precursor (HbpA) was a putative virulence-associated factor proposed to be potential subunit vaccine candidate in G. parasuis. In this study, three monoclonal antibodies (mAb) 5D11, 2H81, and 4F2 against recombinant HbpA (rHbpA) of G. parasuis SH0165 (serotype 5) were generated by fusing SP2/0-Ag14 murine myeloma cells and spleen cells from BALB/c mice immunized with the rHbpA. Indirect enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence assay (IFA) demonstrated that the antibody designated 5D11 showed a strong binding affinity with the HbpA protein and was chosen for subsequent experiments. The subtypes of the 5D11 were IgG1/κ chains. Western blot analysis showed that mAb 5D11 could react with all 15 serotype reference strains of G. parasuis. None of the other bacteria tested reacted with 5D11. In addition, a linear B-cell epitope recognized by 5D11 was identified by serial truncations of HbpA protein and then a series of truncated peptides were synthesized to define the minimal region that was required for mAb 5D11 binding. The 5D11 epitope was located on amino acids 324-LPQYEFNLEKAKALLA-339 by testing the 5D11 monoclonal for reactivity with 14 truncations. The minimal epitope 325-PQYEFNLEKAKALLA-339 (designated EP-5D11) was pinpointed by testing the mAb 5D11 for reactivity with a series of synthetic peptides of this region. The epitope was highly conserved among G. parasuis strains, confirmed by alignment analysis. These results indicated that mAb 5D11 and EP-5D11 might potentially be used to develop serological diagnostic tools for G. parasuis. Three-dimensional structural analysis revealed that amino acids of EP-5D11 were in close proximity and may be exposed on the surface of the HbpA protein.
Collapse
Affiliation(s)
- Geyan Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Kang Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xiaoyu Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, New York, NY 14850, USA;
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xinwei Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Bangdi Hu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.L.); (K.W.); (Z.Y.); (X.T.); (K.D.); (X.T.); (B.H.); (Y.Z.); (S.C.); (X.H.); (Q.Y.); (R.W.); (Q.Z.); (S.D.); (X.W.)
| |
Collapse
|
10
|
He W, Shi X, Guan H, Zou Y, Zhang S, Jiang Z, Su S. Identification of a novel linear B-cell epitope in porcine deltacoronavirus nucleocapsid protein. Appl Microbiol Biotechnol 2023; 107:651-661. [PMID: 36602561 PMCID: PMC9813470 DOI: 10.1007/s00253-022-12348-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that caused diarrhea and/or vomiting in neonatal piglets worldwide. Coronaviruses nucleocapsid (N) protein is the most conserved structural protein for viral replication and possesses good antigenicity. In this study, three monoclonal antibodies (mAbs), 3B4, 4D3, and 4E3 identified as subclass IgG2aκ were prepared using the lymphocytic hybridoma technology against PDCoV N protein. Furthermore, the B-cell epitope recognized by mAb 4D3 was mapped by dozens of overlapping truncated recombinant proteins based on the western blotting. The polypeptide 28QFRGNGVPLNSAIKPVE44 (EP-4D3) in the N-terminal of PDCoV N protein was identified as the minimal linear epitope for binding mAb 4D3. And the EP-4D3 epitope's amino acid sequence homology study revealed that PDCoV strains are substantially conserved, with the exception of the Alanine43 substitution Valine43 in the China lineage, the Early China lineage, and the Thailand, Vietnam, and Laos lineage. The epitope sequences shared high similarity (94.1%) with porcine coronavirus HKU15-155 (PorCoV HKU15), Asian leopard cats coronavirus (ALCCoV), sparrow coronavirus HKU17 (SpCoV HKU17), and sparrow deltacoronavirus. In contrast, the epitope sequences shared a very low homology (11.8 to 29.4%) with other porcine CoVs (PEDV, TGEV, PRCV, SADS-CoV, PHEV). Overall, the study will enrich the biological function of PDCoV N protein and provide foundational data for further development of diagnostic applications. KEY POINTS: • Three monoclonal antibodies against PDCoV N protein were prepared. • Discovery of a novel B-cell liner epitope (28QFRGNGVPLNSAIKPVE44) of PDCoV N protein. • The epitope EP-4D3 was conserved among PDCoV strains.
Collapse
Affiliation(s)
- Wei He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Xinze Shi
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifei Guan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuntong Zou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengkun Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiwen Jiang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Sanya Institute of Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
11
|
Zhao Y, Chen R, Xiao D, Zhang L, Song D, Wen Y, Wu R, Zhao Q, Du S, Wen X, Cao S, Huang X. A Comparative Transcriptomic Analysis Reveals That HSP90AB1 Is Involved in the Immune and Inflammatory Responses to Porcine Deltacoronavirus Infection. Int J Mol Sci 2022; 23:ijms23063280. [PMID: 35328701 PMCID: PMC8953809 DOI: 10.3390/ijms23063280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
PDCoV is an emerging enteropathogenic coronavirus that mainly causes acute diarrhea in piglets, seriously affecting pig breeding industries worldwide. To date, the molecular mechanisms of PDCoV-induced immune and inflammatory responses or host responses in LLC-PK cells in vitro are not well understood. HSP90 plays important roles in various viral infections. In this study, HSP90AB1 knockout cells (HSP90AB1KO) were constructed and a comparative transcriptomic analysis between PDCoV-infected HSP90AB1WT and HSP90AB1KO cells was conducted using RNA sequencing to explore the effect of HSP90AB1 on PDCoV infection. A total of 1295 and 3746 differentially expressed genes (DEGs) were identified in PDCoV-infected HSP90AB1WT and HSP90AB1KO cells, respectively. Moreover, most of the significantly enriched pathways were related to immune and inflammatory response-associated pathways upon PDCoV infection. The DEGs enriched in NF-κB pathways were specifically detected in HSP90AB1WT cells, and NF-κB inhibitors JSH-23, SC75741 and QNZ treatment reduced PDCoV infection. Further research revealed most cytokines associated with immune and inflammatory responses were upregulated during PDCoV infection. Knockout of HSP90AB1 altered the upregulated levels of some cytokines. Taken together, our findings provide new insights into the host response to PDCoV infection from the transcriptome perspective, which will contribute to illustrating the molecular basis of the interaction between PDCoV and HSP90AB1.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (R.C.); (D.X.); (L.Z.); (D.S.); (Y.W.); (R.W.); (Q.Z.); (S.D.); (X.W.); (S.C.)
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-180-4845-1618
| |
Collapse
|
12
|
Li S, Xiao D, Zhao Y, Zhang L, Chen R, Liu W, Wen Y, Liao Y, Wen Y, Wu R, Han X, Zhao Q, Du S, Yan Q, Wen X, Cao S, Huang X. Porcine Deltacoronavirus (PDCoV) Entry into PK-15 Cells by Caveolae-Mediated Endocytosis. Viruses 2022; 14:496. [PMID: 35336903 PMCID: PMC8950576 DOI: 10.3390/v14030496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 01/07/2023] Open
Abstract
(1) Background: Porcine deltacoronavirus (PDCoV) is a newly emerged enteric virus affecting pig breeding industries worldwide, and its pathogenic mechanism remains unclear. (2) Methods: In this study, we preliminarily identified the endocytic pathway of PDCoV in PK-15 cells, using six chemical inhibitors (targeting clathrin-mediated endocytosis, caveolae-mediated endocytosis, macropinocytosis pathway and endosomal acidification), overexpression of dominant-negative (DN) mutants to treat PK-15 cells and proteins knockdown. (3) Results: The results revealed that PDCoV entry was not affected after treatment with chlorpromazine (CPZ), 5-(N-ethyl-N-isopropyl) amiloride (EIPA)or ammonium chloride (NH4Cl), indicating that the entry of PDCoV into PK-15 cells were clathrin-, micropinocytosis-, PH-independent endocytosis. Conversely, PDCoV infection was sensitive to nystatin, dynasore and methyl-β-cyclodextrin (MβCD) with reduced PDCoV internalization, indicating that entry of PDCoV into PK-15 cells was caveolae-mediated endocytosis that required dynamin and cholesterol; indirect immunofluorescence and shRNA interference further validated these results. (4) Conclusions: In conclusion, PDCoV entry into PK-15 cells depends on caveolae-mediated endocytosis, which requires cholesterol and dynamin. Our finding is the first initial identification of the endocytic pathway of PDCoV in PK-15 cells, providing a theoretical basis for an in-depth understanding of the pathogenic mechanism of PDCoV and the design of new antiviral targets.
Collapse
Affiliation(s)
- Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Weizhe Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Xinfeng Han
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (S.L.); (D.X.); (Y.Z.); (L.Z.); (R.C.); (W.L.); (Y.W.); (Y.L.); (Y.W.); (R.W.); (X.H.); (Q.Z.); (S.D.); (Q.Y.); (X.W.); (S.C.)
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
- National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Zhao Y, Xiao D, Zhang L, Song D, Chen R, Li S, Liao Y, Wen Y, Liu W, Yu E, Wen Y, Wu R, Zhao Q, Du S, Wen X, Cao S, Huang X. HSP90 inhibitors 17-AAG and VER-82576 inhibit porcine deltacoronavirus replication in vitro. Vet Microbiol 2021; 265:109316. [PMID: 34954542 DOI: 10.1016/j.vetmic.2021.109316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is highly pathogenic to piglets, and no specific drugs or vaccines are available for the prevention and treatment of PDCoV infection, the need for antiviral therapies is pressing. HSP90 inhibitors have potent inhibitory effects against the replication of numerous viruses, hence we evaluated three HSP90 inhibitors, 17-AAG, VER-82576, and KW-2478, for their effects on PDCoV infection in vitro. We evaluated their effectivenesses at suppressing PDCoV by qRT-PCR, western blot, and TCID50 assay, and found that 17-AAG and VER-82576 inhibited PDCoV at the early stage of replication, while KW-2478 showed no significant antiviral activity at any stage of infection. These results indicated that the PDCoV-inhibitory effects of 17-AAG and VER-82576 might be exerted by targeting host cell factor HSP90AB1 but not HSP90AA1. Further study showed that HSP90AB1 mRNA and protein levels were not significantly different in 17-AAG and VER-82576-treated cells versus control cells. 17-AAG and VER-82576 were also evaluated for their effects on the expressions of TNF-α, IL-6, and IL-12, which are PDCoV-induced proinflammatory cytokines. We found that both 17-AAG and VER-82576 inhibited the expressions of TNF-α, IL-6, and IL-12 to varying degrees, but in a dose dependent manner. From our data we can conclude that the HSP90 inhibitors 17-AAG and VER-82576 are promising candidates for the treatment of PDCoV infection.
Collapse
Affiliation(s)
- Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Weizhe Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
14
|
Wei S, Shi D, Wu H, Sun H, Chen J, Feng L, Su M, Sun D. Identification of a novel B cell epitope on the nucleocapsid protein of porcine deltacoronavirus. Virus Res 2021; 302:198497. [PMID: 34217778 PMCID: PMC8481650 DOI: 10.1016/j.virusres.2021.198497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes vomiting, diarrhea, dehydration, and even death of piglets, resulting in significant losses to the pig industry worldwide. However, the epitopes of PDCoV remain largely unknown. In this study, a monoclonal antibody (mAb) against the PDCoV nucleocapsid (N) protein, termed 9G1, was prepared using the lymphocyte hybridoma technique, and was identified as a type IgG1 with a κ light chain and reacted with the native N protein of PDCoV. Furthermore, the epitope recognized by the 9G1 mAb was subjected to western blot and an ELISA using truncated recombinant proteins and synthetic polypeptides of the PDCoV N protein. The results indicate that 9G1 mAb recognized the epitope, G59TPIPPSYAFYY70 (EP-9G1), a novel linear B cell epitope of the PDCoV N protein. A comparison analysis revealed that the EP-9G1 epitope was highly conserved among PDCoV strains, in which four residues (G59-F68YY70) were observed among different coronavirus genera. These data demonstrate that the EP-9G1 epitope identified in this study provides some basic information for further characterization of the antigenic structure of the PDCoV N protein and has potential use for developing diagnostic reagents for PDCoV.
Collapse
Affiliation(s)
- Shan Wei
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haoyang Wu
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Haibo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
15
|
Phylogenetic Classification of Global Porcine Deltacoronavirus (PDCoV) Reference Strains and Molecular Characterization of PDCoV in Taiwan. Viruses 2021; 13:v13071337. [PMID: 34372544 PMCID: PMC8310012 DOI: 10.3390/v13071337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), a highly transmissible intestinal pathogen, causes mild to severe clinical symptoms, such as anorexia, vomiting and watery diarrhea, in piglets and/or sows. Since the first report of PDCoV infection in Hong Kong in 2012, the virus has readily disseminated to North America and several countries in Asia. However, to date, no unified phylogenetic classification system has been developed. To fill this gap, we classified historical PDCoV reference strains into two major genogroups (G-I and G-II) and three subgroups (G-II-a, G-II-b and G-II-c). In addition, no genetic research on the whole PDCoV genome or spike gene has been conducted on isolates from Taiwan so far. To delineate the genetic characteristics of Taiwanese PDCoV, we performed whole-genome sequencing to decode the viral sequence. The PDCoV/104-553/TW-2015 strain is closely related to the G-II-b group, which is mainly composed of PDCoV variants from China. Additionally, various mutations in the Taiwanese PDCoV (104-553/TW-2015) strain might be linked to the probability of recombination with other genogroups of PDCoVs or other porcine coronaviruses. These results represent a pioneering phylogenetic characterization of the whole genome of a PDCoV strain isolated in Taiwan in 2015 and will potentially facilitate the development of applicable preventive strategies against this problematic virus.
Collapse
|
16
|
Turlewicz-Podbielska H, Pomorska-Mól M. Porcine Coronaviruses: Overview of the State of the Art. Virol Sin 2021; 36:833-851. [PMID: 33723809 PMCID: PMC7959302 DOI: 10.1007/s12250-021-00364-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Like RNA viruses in general, coronaviruses (CoV) exhibit high mutation rates which, in combination with their strong tendency to recombine, enable them to overcome the host species barrier and adapt to new hosts. It is currently known that six CoV are able to infect pigs. Four of them belong to the genus Alphacoronavirus [transmissible gastroenteritis coronavirus (TEGV), porcine respiratory coronavirus (PRCV), porcine epidemic diarrhea virus (PEDV), swine acute diarrhea syndrome coronavirus (SADS-CoV)], one of them to the genus Betacoronavirus [porcine hemagglutinating encephalomyelitis virus (PHEV)] and the last one to the genus Deltacoronavirus (PDCoV). PHEV was one of the first identified swine CoV and is still widespread, causing subclinical infections in pigs in several countries. PRCV, a spike deletion mutant of TGEV associated with respiratory tract infection, appeared in the 1980s. PRCV is considered non-pathogenic since its infection course is mild or subclinical. Since its appearance, pig populations have become immune to both PRCV and TGEV, leading to a significant reduction in the clinical and economic importance of TGEV. TGEV, PEDV and PDCoV are enteropathogenic CoV and cause clinically indistinguishable acute gastroenteritis in all age groups of pigs. PDCoV and SADS-CoV have emerged in 2014 (US) and in 2017 (China), respectively. Rapid diagnosis is crucial for controlling CoV infections and preventing them from spreading. Since vaccines are available only for some porcine CoV, prevention should focus mainly on a high level of biosecurity. In view of the diversity of CoV and the potential risk factors associated with zoonotic emergence, updating the knowledge concerning this area is essential.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, ul. Wołyńska 35, 60-637, Poznan, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, ul. Wołyńska 35, 60-637, Poznan, Poland.
| |
Collapse
|
17
|
Dubey AK, Singh A, Prakash S, Kumar M, Singh AK. Race to arsenal COVID-19 therapeutics: Current alarming status and future directions. Chem Biol Interact 2020; 332:109298. [PMID: 33121920 PMCID: PMC7588316 DOI: 10.1016/j.cbi.2020.109298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
The on-going pandemic of COVID-19 wreaked by a viral infection of SARS-CoV-2, has generated a catastrophic plight across the globe. Interestingly, one of the hallmarks of COVID-19 is the so-called 'cytokine storm' due to attack of SARS-Cov-2 in the lungs. Considering, mesenchymal stem cells (MSCs) therapy could contribute against SARS-CoV-2 viruses attack because of their immune modulatory and anti-inflammatory ability linked to their stemness, to the arsenal of treatments for COVID-19. Another novel therapeutic strategies include the blockade of rampant generation of pro-inflammatory mediators like acute respiratory distress syndrome (ARDS), degradation of viral protein capsids by PROTACs, composed of Ubiquitin-proteasome framework, and ubiquitination-independent pathway directing the SARS-CoV-2 nucleocapsid protein (nCoV N) and proteasome activator (PA28γ), etc. This review is consequently an endeavour to highlight the several aspects of COVID-19 with incorporation of important treatment strategies discovered to date and putting the real effort on the future directions to put them into the perspective.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, 600036, India
| | - Aakansha Singh
- CSIR-Central Drug Research Institute, Lucknow, 226014, India
| | - Shardendu Prakash
- Department of Pharmacy, Sardar Patel College of Pharmacy, Gorakhpur, 273013, India
| | - Manoj Kumar
- Department of Microbiology, SGPGIMS, Lucknow, 226014, India
| | - Ashok K Singh
- Pennsylvania State University, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
18
|
Asghari A, Naseri M, Safari H, Saboory E, Parsamanesh N. The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA Cell Biol 2020; 39:1741-1753. [PMID: 32716648 DOI: 10.1089/dna.2020.5703] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
On December 31, 2019, a novel coronavirus, being the third highly infective CoV and named as coronavirus disease 2019 (COVID-19) in the city of Wuhan, was announced by the World Health Organization. COVID-19 has a 2% mortality rate, is known as the third extremely infective CoV infection, and has a mortality rate less than MERS-CoV and SARS-CoV. The CoV family comprises a chief number of positive single-stranded ss (+) RNA viruses that are recognized in mammals. The 2019-nCoV patients showed that the angiotensin-converting enzyme II (ACE2) was the same for SARS-CoV. Structural proteins have an essential role in virus released and budding to various host cells. Notably, evidence indicated human-to-human transmission, along with several exported patients of virus infection worldwide. Nowadays, no licensed antivirals drugs or vaccines for being utilized against these coronavirus infections are recognized. There is an urgent requirement for an extensive research of CoV infections to disclose the route of extension, pathogenesis, and diagnosis and then to recognize the therapeutic targets to facilitate disease control and surveillance. In this article, we present an overview of the common biological criteria of CoVs and explain pathogenesis with a focus on the therapeutic approach to suggest potential goals for treating and monitoring this emerging zoonotic disease.
Collapse
Affiliation(s)
- Arghavan Asghari
- Student Research Committee and Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamidreza Safari
- Department of Immunology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
19
|
Zhang H, Tu J, Cao C, Yang T, Gao L. Proteasome activator PA28γ-dependent degradation of coronavirus disease (COVID-19) nucleocapsid protein. Biochem Biophys Res Commun 2020; 529:251-256. [PMID: 32703419 PMCID: PMC7296323 DOI: 10.1016/j.bbrc.2020.06.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
The nucleocapsid protein is significant in the formation of viral RNA of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accounting for the largest proportion of viral structural proteins. Here, we report for the first time that the 11S proteasomal activator PA28γ regulates the intracellular abundance of the SARS-CoV-2 N protein (nCoV N). Furthermore, we have identified proteasome activator PA28γ as a nCoV N binding protein by co-immunoprecipitation assay. As a result of their interaction, nCoV N could be degraded by PA28γ-20S in vitro degradation assay. This was also demonstrated by blocking de novo protein synthesis with cycloheximide. The stability of nCoV N in PA28γ-knockout cells was greater than in PA28γ-wildtype cells. Notably, immunofluorescence staining revealed that knockout of the PA28γ gene in cells led to the transport of nCoV N from the nucleus to the cytoplasm. Overexpression of PA28γ enhanced proteolysis of nCoV N compared to that in PA28γ-N151Y cells containing a dominant-negative PA28γ mutation, which reduced this process. These results suggest that PA28γ binding is important in regulating 20S proteasome activity, which in turn regulates levels of the critical nCoV N nucleocapsid protein of SARS-CoV-2, furthering our understanding of the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Haiyang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jialu Tu
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chulei Cao
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ting Yang
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Liangcai Gao
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|