1
|
Milic J, Vucurovic M, Jovic D, Stankovic V, Grego E, Jankovic S, Sapic R. Exploring the Potential of Precision Medicine in Neuropsychiatry: A Commentary on New Insights for Tailored Treatments Based on Genetic, Environmental, and Lifestyle Factors. Genes (Basel) 2025; 16:371. [PMID: 40282331 PMCID: PMC12027418 DOI: 10.3390/genes16040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Neuropsychiatric disorders are complex conditions with multifactorial etiologies, in which genetics play a pivotal role. Despite significant advancements in psychiatric research, traditional treatment options remain largely symptomatic, focusing on clinical signs without fully addressing the underlying biological causes. However, recent developments in precision medicine-an approach that tailors treatments based on genetic, environmental, and lifestyle factors-hold great promise for transforming the treatment of these disorders. By identifying specific genetic markers and understanding gene-environment interactions, precision medicine can offer more personalized and effective treatments, leading to better patient outcomes. Our primary aim was to explore how integrating genetic data with environmental factors could enhance the understanding and treatment of neuropsychiatric conditions such as schizophrenia, bipolar disorder, and depression. The secondary aim was to examine the potential of pharmacogenomics and gene therapy in improving therapeutic strategies. The results indicate that while significant progress has been made, challenges remain, including the complexity of genetic interactions and the need for more granular phenotypic data. In conclusion, precision medicine has the potential to revolutionize neuropsychiatric treatment by providing individualized care that considers genetic makeup, environmental influences, and lifestyle factors, paving the way for more effective therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Jelena Milic
- Institute of Public Health of Serbia “Dr Milan Jovanović Batut”, 11000 Belgrade, Serbia
- European Faculty “Kallos”, Ratariski Put 8a, 11000 Belgrade, Serbia
| | - Milica Vucurovic
- Institute of Public Health of Serbia “Dr Milan Jovanović Batut”, 11000 Belgrade, Serbia
| | - Dragana Jovic
- Institute of Public Health of Serbia “Dr Milan Jovanović Batut”, 11000 Belgrade, Serbia
| | - Veroslava Stankovic
- The College of Health Science, Academy of Applied Studies, 11000 Belgrade, Serbia
| | - Edita Grego
- Institute of Public Health of Serbia “Dr Milan Jovanović Batut”, 11000 Belgrade, Serbia
| | - Srdja Jankovic
- The University Children’s Hospital, 11000 Belgrade, Serbia
| | - Rosa Sapic
- Faculty of Health Studies, University of Bjeljina, 76300 Bjeljina, Bosnia and Herzegovina
| |
Collapse
|
2
|
Cătană CS, Marta MM, Ungureanu D, Crișan CA. MicroRNAs: A Novel Approach for Monitoring Treatment Response in Major Depressive Disorder? Noncoding RNA 2025; 11:21. [PMID: 40126345 PMCID: PMC11932203 DOI: 10.3390/ncrna11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders, with an increasing incidence each year and an important socioeconomic burden. Although new treatments are continuously being developed, there is no effective monitoring method to determine the suitability of treatment and ensure positive outcomes. Therefore, patients often struggle with ineffective antidepressants and their potential adverse effects, which halts any future progress in managing the disorder. Considering the potential of microRNAs (miRNAs) as biomarkers for various pathologies and the increasing evidence of the modulation of several genes involved in MDD, this minireview aimed to evaluate the literature data on the impact of miRNAs in MDD and their usefulness in monitoring treatment response. The correlations between antidepressants and the expression of several miRNAs support the existence of a common epigenetic mechanism of antidepressants and explain the epigenetic differences influencing treatment efficacy in MDD.
Collapse
Affiliation(s)
- Cristina-Sorina Cătană
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Cătălina-Angela Crișan
- Department of Psychiatry and Pediatric Psychiatry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
- First Psychiatric Clinic, Cluj County Emergency Hospital, 43 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Davyson E, Shen X, Huider F, Adams MJ, Borges K, McCartney DL, Barker LF, van Dongen J, Boomsma DI, Weihs A, Grabe HJ, Kühn L, Teumer A, Völzke H, Zhu T, Kaprio J, Ollikainen M, David FS, Meinert S, Stein F, Forstner AJ, Dannlowski U, Kircher T, Tapuc A, Czamara D, Binder EB, Brückl T, Kwong ASF, Yousefi P, Wong CCY, Arseneault L, Fisher HL, Mill J, Cox SR, Redmond P, Russ TC, van den Oord EJCG, Aberg KA, Penninx BWJH, Marioni RE, Wray NR, McIntosh AM. Insights from a methylome-wide association study of antidepressant exposure. Nat Commun 2025; 16:1908. [PMID: 39994233 PMCID: PMC11850842 DOI: 10.1038/s41467-024-55356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/09/2024] [Indexed: 02/26/2025] Open
Abstract
This study tests the association of whole-blood DNA methylation and antidepressant exposure in 16,531 individuals from Generation Scotland (GS), using self-report and prescription-derived measures. We identify 8 associations and a high concordance of results between self-report and prescription-derived measures. Sex-stratified analyses observe nominally significant increased effect estimates in females for four CpGs. There is observed enrichment for genes expressed in the Amygdala and annotated to synaptic vesicle membrane ontology. Two CpGs (cg15071067; DGUOK-AS1 and cg26277237; KANK1) show correlation between DNA methylation with the time in treatment. There is a significant overlap in the top 1% of CpGs with another independent methylome-wide association study of antidepressant exposure. Finally, a methylation profile score trained on this sample shows a significant association with antidepressant exposure in a meta-analysis of eight independent external datasets. In this large investigation of antidepressant exposure and DNA methylation, we demonstrate robust associations which warrant further investigation to inform on the design of more effective and tolerated treatments for depression.
Collapse
Affiliation(s)
- E Davyson
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - X Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - F Huider
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - K Borges
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - D L McCartney
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - L F Barker
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - J van Dongen
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Research Institute, Amsterdam, The Netherlands
| | - D I Boomsma
- Complex Trait Genetics, Center of Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development, Research Institute, Amsterdam, The Netherlands
| | - A Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489, Greifswald, Germany
| | - H J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489, Greifswald, Germany
| | - L Kühn
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
| | - A Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17489, Greifswald, Germany
| | - H Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17489, Greifswald, Germany
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, 17475, Greifswald, Germany
| | - T Zhu
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - J Kaprio
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - M Ollikainen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - F S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - S Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - F Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - A J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - U Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - T Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - A Tapuc
- Max Planck School of Cognition, Leipzig, Germany
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - D Czamara
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - E B Binder
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - T Brückl
- Max-Planck-Institute of Psychiatry, Department Genes and Environment, Munich, Germany
| | - A S F Kwong
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - P Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - C C Y Wong
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - L Arseneault
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - H L Fisher
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - J Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - S R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - P Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - T C Russ
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Neuroprogressive and Dementia Network, NHS Research Scotland, Scotland, UK
| | - E J C G van den Oord
- Center for Biomarker Research and Precision Medicine (BPM), Virginia Commonwealth University, Virginia, USA
| | - K A Aberg
- Center for Biomarker Research and Precision Medicine (BPM), Virginia Commonwealth University, Virginia, USA
| | - B W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R E Marioni
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - N R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - A M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Schiele MA, Crespo Salvador O, Lipovsek J, Schwarte K, Schlosser P, Zwanzger P, Arolt V, Baune BT, Köttgen A, Domschke K. Epigenome-Wide DNA Methylation in Unipolar Depression: Predictive Biomarker of Antidepressant Treatment Response? Int J Neuropsychopharmacol 2024; 27:pyae045. [PMID: 39367879 PMCID: PMC11558245 DOI: 10.1093/ijnp/pyae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Despite the well-documented efficacy of antidepressant agents for the treatment of major depressive disorder (MDD), initial treatment nonresponse rates are high. Recent years have seen an increase in research into predictive biomarkers toward improving diagnosis and individualized treatment. Among those, epigenetic mechanisms such as DNA methylation constitute promising candidate markers in predicting antidepressant treatment response in MDD. The present study sought to address epigenome-wide DNA methylation as a predictor of antidepressant treatment response in the largest sample to date of patients with MDD. METHODS Epigenome-wide DNA methylation was analyzed using the Infinium MethylationEPIC BeadChip in peripheral blood of n = 230 Caucasian patients with MDD receiving 6-week antidepressant treatment in a naturalistic in-patient setting as well as in a subsample of n = 107 patients primarily receiving continuous treatment with serotonin reuptake inhibitors or serotonin and norepinephrine reuptake inhibitors. Treatment response was assessed by means of the Hamilton Depression Scale. RESULTS No genome-wide significant hits were observed. Suggestive (P < 1E-5) epigenome-wide evidence was discerned for altered DNA methylation at 6 CpG sites (LOC102724467, LOC100506023, RSPO2, SAG, IL16, PRKCI) to predict response to naturalistic antidepressant treatment. In patients treated with serotonin reuptake inhibitors or serotonin and norepinephrine reuptake inhibitors, differential DNA methylation at 11 CpGs, for example, mapping to the TIMP2, VDAC1, or SORL1 genes, was suggestively associated with treatment response. CONCLUSIONS The present results provide preliminary evidence for altered DNA methylation patterns to be associated with antidepressant treatment response in MDD. Provided significant replication in independent and larger samples, the present findings might in the future aid in clinical decision-making toward more individualized and thus more efficacious treatments of MDD.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oscar Crespo Salvador
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Lipovsek
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Kathrin Schwarte
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Pascal Schlosser
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
- kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Bernhard T Baune
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center – University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Dahrendorff J, Currier G, Uddin M. Leveraging DNA methylation to predict treatment response in major depressive disorder: A critical review. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32985. [PMID: 38650309 DOI: 10.1002/ajmg.b.32985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.
Collapse
Affiliation(s)
- Jan Dahrendorff
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Glenn Currier
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
7
|
Hu Y, Chen J, Li J, Xu Z. Models for depression recognition and efficacy assessment based on clinical and sequencing data. Heliyon 2024; 10:e33973. [PMID: 39130405 PMCID: PMC11315137 DOI: 10.1016/j.heliyon.2024.e33973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Major depression is a complex psychiatric disorder that includes genetic, neurological, and cognitive factors. Early detection and intervention can prevent progression, and help select the best treatment. Traditional clinical diagnosis tends to be subjective and misdiagnosed. Based on this, this study leverages clinical scale assessments and sequencing data to construct disease prediction models. Firstly, data undergoes preprocessing involving normalization and other requisite procedures. Feature engineering is then applied to curate subsets of features, culminating in the construction of a model through the implementation of machine learning and deep learning algorithms. In this study, 18 features with significant differences between patients and healthy controls were selected. The depression recognition model was constructed by deep learning with an accuracy of 87.26 % and an AUC of 91.56 %, which can effectively distinguish patients with depression from healthy controls. In addition, 33 features selected by recursive feature elimination method were used to construct a prognostic effect model of patients after 2 weeks of treatment, with an accuracy of 75.94 % and an AUC of 83.33 %. The results show that the deep learning algorithm based on clinical and sequencing data has good accuracy and provides an objective and accurate method for the diagnosis and pharmacodynamic prediction of depression. Furthermore, the selected differential features can serve as candidate biomarkers to provide valuable clues for diagnosis and efficacy prediction.
Collapse
Affiliation(s)
- Yunyun Hu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, 210096, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, 210096, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, 210096, Nanjing, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, 210009, China
- Research and Education Centre of General Practice, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
8
|
Corrivetti G, Monaco F, Vignapiano A, Marenna A, Palm K, Fernández-Arroyo S, Frigola-Capell E, Leen V, Ibarrola O, Amil B, Caruson MM, Chiariotti L, Palacios-Ariza MA, Hoekstra PJ, Chiang HY, Floareș A, Fagiolini A, Fasano A. Optimizing and Predicting Antidepressant Efficacy in Patients with Major Depressive Disorder Using Multi-Omics Analysis and the Opade AI Prediction Tools. Brain Sci 2024; 14:658. [PMID: 39061399 PMCID: PMC11275115 DOI: 10.3390/brainsci14070658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
According to the World Health Organization (WHO), major depressive disorder (MDD) is the fourth leading cause of disability worldwide and the second most common disease after cardiovascular events. Approximately 280 million people live with MDD, with incidence varying by age and gender (female to male ratio of approximately 2:1). Although a variety of antidepressants are available for the different forms of MDD, there is still a high degree of individual variability in response and tolerability. Given the complexity and clinical heterogeneity of these disorders, a shift from "canonical treatment" to personalized medicine with improved patient stratification is needed. OPADE is a non-profit study that researches biomarkers in MDD to tailor personalized drug treatments, integrating genetics, epigenetics, microbiome, immune response, and clinical data for analysis. A total of 350 patients between 14 and 50 years will be recruited in 6 Countries (Italy, Colombia, Spain, The Netherlands, Turkey) for 24 months. Real-time electroencephalogram (EEG) and patient cognitive assessment will be correlated with biological sample analysis. A patient empowerment tool will be deployed to ensure patient commitment and to translate patient stories into data. The resulting data will be used to train the artificial intelligence/machine learning (AI/ML) predictive tool.
Collapse
Affiliation(s)
- Giulio Corrivetti
- Department of Mental Health, Azienda Sanitaria Locale Salerno, 84123 Salerno, Italy; (G.C.)
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy
| | - Francesco Monaco
- Department of Mental Health, Azienda Sanitaria Locale Salerno, 84123 Salerno, Italy; (G.C.)
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy
| | - Annarita Vignapiano
- Department of Mental Health, Azienda Sanitaria Locale Salerno, 84123 Salerno, Italy; (G.C.)
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy
| | - Alessandra Marenna
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy
| | | | - Salvador Fernández-Arroyo
- Centre for Omic Sciences, Joint Unit Eurecat Technological Centre of Catalonia-Rovira i Virgili University, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain;
| | - Eva Frigola-Capell
- Mental Health Research Group, Institut d’Investigació Biomèdica de Girona-CERCA, 17190 Girona, Spain;
- Mental Health and Addictions Network, Institut Assistència Sanitària (IAS), 17190 Girona, Spain
| | | | - Oihane Ibarrola
- Biokeralty Research Institute AIE, 01510 Vitoria-Gasteiz, Spain
| | - Burak Amil
- Department of Psychiatry, Faculty of Medicine, Istanbul Medipol University, 34214 Istanbul, Turkey
| | | | | | | | - Pieter J. Hoekstra
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Accare Child Study Center, 9723 HE Groningen, The Netherlands
| | | | | | - Andrea Fagiolini
- Department of Molecular and Developmental Medicine, Division of Psychiatry, University of Siena School of Medicine, 53100 Siena, Italy;
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02138, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
Santos M, Lima L, Carvalho S, Brandão A, Barroso F, Cruz A, Medeiros R. ABCB1 C1236T, G2677TA and C3435T Genetic Polymorphisms and Antidepressant Response Phenotypes: Results from a Portuguese Major Depressive Disorder Cohort. Int J Mol Sci 2024; 25:5112. [PMID: 38791151 PMCID: PMC11120659 DOI: 10.3390/ijms25105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
P-glycoprotein (P-GP) is a transporter molecule expressed on the apical surface of capillary endothelial cells of the Blood-Brain Barrier (BBB), whose activity heavily influences drug distribution, including antidepressants. This transporter is encoded by ABCB1 gene, and genetic variations within ABCB1 gene have been proposed to affect drug efflux and have been previously associated with depression. In this context, we aimed to evaluate the role of C1236T, G2677TA and C3435T ABCB1 genetic polymorphisms in antidepressant treatment phenotypes from a cohort of patients harboring Major Depressive Disorder. Patients enrolled in the study consisted of 80 individuals with Major Depressive Disorder, who took part in a 27-month follow-up study at HML, Portugal. To investigate the correlation between ABCB1 polymorphisms and antidepressant response phenotypes, DNA was extracted from peripheral blood, and C1236T, C3435T and G2677TA polymorphisms were genotyped with TaqMan® SNP Genotyping Assays. Despite the fact that the evaluated polymorphisms (C1236T, C3435T and G2677TA) were not associated with treatment resistant depression, or relapse, we observed that patients carrying TT genotype of the C3435T polymorphism remit earlier than the ones carrying CC or CT genotypes (10.2 weeks vs. 14.9 and 21.3, respectively, p = 0.028, Log-rank test). Since we found an association with C3435T and time to remission, and not to the absence of remission, we suggest that this polymorphism could have an impact on antidepressant drug distribution, and thus influence on the time to remission will occur, without influencing the risk of remission itself.
Collapse
Affiliation(s)
- Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (M.S.); (A.C.)
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Luis Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal;
| | - Serafim Carvalho
- Hospital de Magalhães Lemos, Centro Hospitalar Universitário de Santo António, 4149-003 Porto, Portugal;
- Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | - Andreia Brandão
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Agostinho Cruz
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (M.S.); (A.C.)
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
10
|
Davyson E, Shen X, Huider F, Adams M, Borges K, McCartney D, Barker L, Van Dongen J, Boomsma D, Weihs A, Grabe H, Kühn L, Teumer A, Völzke H, Zhu T, Kaprio J, Ollikainen M, David FS, Meinert S, Stein F, Forstner AJ, Dannlowski U, Kircher T, Tapuc A, Czamara D, Binder EB, Brückl T, Kwong A, Yousefi P, Wong C, Arseneault L, Fisher HL, Mill J, Cox S, Redmond P, Russ TC, van den Oord E, Aberg KA, Penninx B, Marioni RE, Wray NR, McIntosh AM. Antidepressant Exposure and DNA Methylation: Insights from a Methylome-Wide Association Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306640. [PMID: 38746357 PMCID: PMC11092700 DOI: 10.1101/2024.05.01.24306640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Importance Understanding antidepressant mechanisms could help design more effective and tolerated treatments. Objective Identify DNA methylation (DNAm) changes associated with antidepressant exposure. Design Case-control methylome-wide association studies (MWAS) of antidepressant exposure were performed from blood samples collected between 2006-2011 in Generation Scotland (GS). The summary statistics were tested for enrichment in specific tissues, gene ontologies and an independent MWAS in the Netherlands Study of Depression and Anxiety (NESDA). A methylation profile score (MPS) was derived and tested for its association with antidepressant exposure in eight independent cohorts, alongside prospective data from GS. Setting Cohorts; GS, NESDA, FTC, SHIP-Trend, FOR2107, LBC1936, MARS-UniDep, ALSPAC, E-Risk, and NTR. Participants Participants with DNAm data and self-report/prescription derived antidepressant exposure. Main Outcomes and Measures Whole-blood DNAm levels were assayed by the EPIC/450K Illumina array (9 studies, N exposed = 661, N unexposed = 9,575) alongside MBD-Seq in NESDA (N exposed = 398, N unexposed = 414). Antidepressant exposure was measured by self- report and/or antidepressant prescriptions. Results The self-report MWAS (N = 16,536, N exposed = 1,508, mean age = 48, 59% female) and the prescription-derived MWAS (N = 7,951, N exposed = 861, mean age = 47, 59% female), found hypermethylation at seven and four DNAm sites (p < 9.42x10 -8 ), respectively. The top locus was cg26277237 ( KANK1, p self-report = 9.3x10 -13 , p prescription = 6.1x10 -3 ). The self-report MWAS found a differentially methylated region, mapping to DGUOK-AS1 ( p adj = 5.0x10 -3 ) alongside significant enrichment for genes expressed in the amygdala, the "synaptic vesicle membrane" gene ontology and the top 1% of CpGs from the NESDA MWAS (OR = 1.39, p < 0.042). The MPS was associated with antidepressant exposure in meta-analysed data from external cohorts (N studies = 9, N = 10,236, N exposed = 661, f3 = 0.196, p < 1x10 -4 ). Conclusions and Relevance Antidepressant exposure is associated with changes in DNAm across different cohorts. Further investigation into these changes could inform on new targets for antidepressant treatments. 3 Key Points Question: Is antidepressant exposure associated with differential whole blood DNA methylation?Findings: In this methylome-wide association study of 16,536 adults across Scotland, antidepressant exposure was significantly associated with hypermethylation at CpGs mapping to KANK1 and DGUOK-AS1. A methylation profile score trained on this sample was significantly associated with antidepressant exposure (pooled f3 [95%CI]=0.196 [0.105, 0.288], p < 1x10 -4 ) in a meta-analysis of external datasets. Meaning: Antidepressant exposure is associated with hypermethylation at KANK1 and DGUOK-AS1 , which have roles in mitochondrial metabolism and neurite outgrowth. If replicated in future studies, targeting these genes could inform the design of more effective and better tolerated treatments for depression.
Collapse
|
11
|
Zwolińska W, Bilska K, Tarhonska K, Reszka E, Skibińska M, Pytlińska N, Słopień A, Dmitrzak-Węglarz M. Biomarkers of Depression among Adolescent Girls: BDNF and Epigenetics. Int J Mol Sci 2024; 25:3281. [PMID: 38542252 PMCID: PMC10970207 DOI: 10.3390/ijms25063281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Alterations in brain-derived neurotrophic factor (BDNF) expression have been suggested to mediate the influence of environmental factors on the emergence of depression through epigenetic modifications. However, research on this subject in the developmental population is lacking and the pathophysiology of adolescent depression remains unclear. We aimed to investigate the alterations in BDNF expression and global DNA methylation in depression among adolescent girls. Thirty female inpatients with the initial diagnosis of depression were assessed before and after the period of antidepressant treatment and compared with thirty age-matched healthy controls. The assessment involved BDNF and proBDNF serum levels, the BDNF gene exon IV promoter methylation, and global DNA methylation. The methylation level in the BDNF gene exon IV promoter was significantly lower in the studied group compared with the control and correlated negatively with the severity of depression. The test distinguished the studied group from the controls with a sensitivity of 37% and specificity of 90%. The differences were no longer present after the period of antidepressant treatment. No differences in the global DNA methylation, BDNF, and proBDNF levels were found. We concluded that decreased methylation in the BDNF exon IV promoter could be considered as a biomarker of a depression state among adolescent girls.
Collapse
Affiliation(s)
- Weronika Zwolińska
- Department of Child and Adolescent Psychiatry, Karol Jonscher Clinical Hospital, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland; (W.Z.); (N.P.); (A.S.)
| | - Karolina Bilska
- Department of Psychiatric Genetics, Medical Biology Center, Poznan University of Medical Sciences, Rokietnicka St. 8, 60-806 Poznan, Poland; (K.B.); (M.S.)
| | - Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348 Łódź, Poland; (K.T.); (E.R.)
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, 91-348 Łódź, Poland; (K.T.); (E.R.)
| | - Maria Skibińska
- Department of Psychiatric Genetics, Medical Biology Center, Poznan University of Medical Sciences, Rokietnicka St. 8, 60-806 Poznan, Poland; (K.B.); (M.S.)
| | - Natalia Pytlińska
- Department of Child and Adolescent Psychiatry, Karol Jonscher Clinical Hospital, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland; (W.Z.); (N.P.); (A.S.)
| | - Agnieszka Słopień
- Department of Child and Adolescent Psychiatry, Karol Jonscher Clinical Hospital, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland; (W.Z.); (N.P.); (A.S.)
| | - Monika Dmitrzak-Węglarz
- Department of Psychiatric Genetics, Medical Biology Center, Poznan University of Medical Sciences, Rokietnicka St. 8, 60-806 Poznan, Poland; (K.B.); (M.S.)
| |
Collapse
|
12
|
Dubath C, Porcu E, Delacrétaz A, Grosu C, Laaboub N, Piras M, von Gunten A, Conus P, Plessen KJ, Kutalik Z, Eap CB. DNA methylation may partly explain psychotropic drug-induced metabolic side effects: results from a prospective 1-month observational study. Clin Epigenetics 2024; 16:36. [PMID: 38419113 PMCID: PMC10903022 DOI: 10.1186/s13148-024-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Metabolic side effects of psychotropic medications are a major drawback to patients' successful treatment. Using an epigenome-wide approach, we aimed to investigate DNA methylation changes occurring secondary to psychotropic treatment and evaluate associations between 1-month metabolic changes and both baseline and 1-month changes in DNA methylation levels. Seventy-nine patients starting a weight gain inducing psychotropic treatment were selected from the PsyMetab study cohort. Epigenome-wide DNA methylation was measured at baseline and after 1 month of treatment, using the Illumina Methylation EPIC BeadChip. RESULTS A global methylation increase was noted after the first month of treatment, which was more pronounced (p < 2.2 × 10-16) in patients whose weight remained stable (< 2.5% weight increase). Epigenome-wide significant methylation changes (p < 9 × 10-8) were observed at 52 loci in the whole cohort. When restricting the analysis to patients who underwent important early weight gain (≥ 5% weight increase), one locus (cg12209987) showed a significant increase in methylation levels (p = 3.8 × 10-8), which was also associated with increased weight gain in the whole cohort (p = 0.004). Epigenome-wide association analyses failed to identify a significant link between metabolic changes and methylation data. Nevertheless, among the strongest associations, a potential causal effect of the baseline methylation level of cg11622362 on glycemia was revealed by a two-sample Mendelian randomization analysis (n = 3841 for instrument-exposure association; n = 314,916 for instrument-outcome association). CONCLUSION These findings provide new insights into the mechanisms of psychotropic drug-induced weight gain, revealing important epigenetic alterations upon treatment, some of which may play a mediatory role.
Collapse
Affiliation(s)
- Céline Dubath
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland.
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Delacrétaz
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Kerstin Jessica Plessen
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Chin Bin Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
13
|
Zelada MI, Garrido V, Liberona A, Jones N, Zúñiga K, Silva H, Nieto RR. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Major Depressive Disorder (MDD): A Systematic Review. Int J Mol Sci 2023; 24:14810. [PMID: 37834258 PMCID: PMC10572866 DOI: 10.3390/ijms241914810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been studied as a biomarker of major depressive disorder (MDD). Besides diagnostic biomarkers, clinically useful biomarkers can inform response to treatment. We aimed to review all studies that sought to relate BDNF baseline levels, or BDNF polymorphisms, with response to treatment in MDD. In order to achieve this, we performed a systematic review of studies that explored the relation of BDNF with both pharmacological and non-pharmacological treatment. Finally, we reviewed the evidence that relates peripheral levels of BDNF and BDNF polymorphisms with the development and management of treatment-resistant depression.
Collapse
Affiliation(s)
- Mario Ignacio Zelada
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Verónica Garrido
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Andrés Liberona
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Natalia Jones
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Karen Zúñiga
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Hernán Silva
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo R. Nieto
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
14
|
Maleknia M, Ahmadirad N, Golab F, Katebi Y, Haj Mohamad Ebrahim Ketabforoush A. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors. Epigenet Insights 2023; 16:25168657231199893. [PMID: 37720354 PMCID: PMC10504848 DOI: 10.1177/25168657231199893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Background Alterations in DNA methylation play an important role in cancer development and progression. Dietary nutrients and lifestyle behaviors can influence DNA methylation patterns and thereby modulate cancer risk. Introduction To comprehensively review available evidence on how dietary and lifestyle factors impact DNA methylation and contribute to carcinogenesis through epigenetic mechanisms. Materials and methods A literature search was conducted using PubMed to identify relevant studies published between 2005 and 2022 that examined relationships between dietary/lifestyle factors and DNA methylation in cancer. Studies investigating the effects of dietary components (eg, micronutrients, phytochemicals), physical activity, smoking, and obesity on global and gene-specific DNA methylation changes in animal and human cancer models were included. Data on specific dietary/lifestyle exposures, cancer types, DNA methylation targets and underlying mechanisms were extracted. Results Multiple dietary and lifestyle factors were found to influence DNA methylation patterns through effects on DNA methyltransferase activity, methyl donor availability, and generation of oxidative stress. Altered methylation of specific genes regulating cell proliferation, apoptosis, and inflammation were linked to cancer development and progression. Conclusion Dietary and lifestyle interventions aimed at modulating DNA methylation have potential for both cancer prevention and treatment through epigenetic mechanisms. Further research is needed to identify actionable targets for nutrition and lifestyle-based epigenetic therapies.
Collapse
Affiliation(s)
- Mohsen Maleknia
- Noorgene Genetic & Clinical Laboratory, Molecular Research Center, Ahvaz, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasmina Katebi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
15
|
Vidovič E, Pelikan S, Atanasova M, Kouter K, Pileckyte I, Oblak A, Novak Šarotar B, Videtič Paska A, Bon J. DNA Methylation Patterns in Relation to Acute Severity and Duration of Anxiety and Depression. Curr Issues Mol Biol 2023; 45:7286-7303. [PMID: 37754245 PMCID: PMC10527760 DOI: 10.3390/cimb45090461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Depression and anxiety are common mental disorders that often occur together. Stress is an important risk factor for both disorders, affecting pathophysiological processes through epigenetic changes that mediate gene-environment interactions. In this study, we explored two proposed models about the dynamic nature of DNA methylation in anxiety and depression: a stable change, in which DNA methylation accumulates over time as a function of the duration of clinical symptoms of anxiety and depression, or a flexible change, in which DNA methylation correlates with the acute severity of clinical symptoms. Symptom severity was assessed using clinical questionnaires for anxiety and depression (BDI-II, IDS-C, and HAM-A), and the current episode and the total lifetime symptom duration was obtained from patients' medical records. Peripheral blood DNA methylation levels were determined for the BDNF, COMT, and SLC6A4 genes. We found a significant negative correlation between COMT_1 amplicon methylation and acute symptom scores, with BDI-II (R(22) = 0.190, p = 0.033), IDS-C (R(22) = 0.199, p = 0.029), and HAM-A (R(22) = 0.231, p = 0.018) all showing a similar degree of correlation. Our results suggest that DNA methylation follows flexible dynamics, with methylation levels closely associated with acute clinical presentation rather than with the duration of anxiety and depression. These results provide important insights into the dynamic nature of DNA methylation in anxiety and affective disorders and contribute to our understanding of the complex interplay between stress, epigenetics, and individual phenotype.
Collapse
Affiliation(s)
- Eva Vidovič
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Sebastian Pelikan
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Marija Atanasova
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Kouter
- Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Indre Pileckyte
- Center for Brain and Cognition, Pompeu Fabra University, 08018 Barcelona, Spain
| | - Aleš Oblak
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Brigita Novak Šarotar
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jurij Bon
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Zou ZL, Zhang Y, Huang YL, Wang JY, Zhou B, Chen HF. Pilot study of genome-wide DNA methylation and gene expression for treatment response to escitalopram in panic disorder. World J Psychiatry 2023; 13:524-532. [PMID: 37701547 PMCID: PMC10494772 DOI: 10.5498/wjp.v13.i8.524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Antidepressants, particularly selective serotonin reuptake inhibitors, are currently considered the first-line treatment for panic disorder (PD). However, little is known about the relationship between the biomarkers that may predict better treatment. AIM To compare genome-wide methylation and gene expression patterns between responsive and non-responsive patients with PD after 4 wk of escitalopram treatment. METHODS Thirty patients with PD were enrolled in this study (responders = 13; non-responders = 17). All patients were assessed using the PD Severity Scale-Chinese version before and after treatment. The Illumina Infinium MethylationEPIC (850k) BeadChip for genome-wide methylation screening and mRNA sequencing was used in all patients with PD. RESULTS A total of 701 differentially methylated positions (DMPs) were found between responders and non-responders (|Δβ| ≥ 0.06, q < 0.05), and the hyper- and hypomethylated CpG sites were 511 (72.9%) and 190 (27.1%), respectively. Relative to non-responders, there were 59 differential transcripts, of which 20 were downregulated and 39 were upregulated (q < 0.05). However, no differentially expressed genes were identified by mRNA sequencing after correcting for multiple testing (|log2(FC)| > 1, q > 0.05). CONCLUSION This preliminary study showed that DMPs might be associated with the treatment response to escitalopram in PD; however, these DMPs need to be verified in large samples.
Collapse
Affiliation(s)
- Zhi-Li Zou
- Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Yu-Lan Huang
- Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| | - Jin-Yu Wang
- Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| | - Bo Zhou
- Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| | - Hua-Fu Chen
- Department of Psychosomatic Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
| |
Collapse
|
17
|
Sarkisova KY, Gabova AV, Fedosova EA, Shatskova AB, Narkevich VB, Kudrin VS. Antidepressant and Anxiolytic Effects of L-Methionine in the WAG/Rij Rat Model of Depression Comorbid with Absence Epilepsy. Int J Mol Sci 2023; 24:12425. [PMID: 37569798 PMCID: PMC10419169 DOI: 10.3390/ijms241512425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Depression is a severe and widespread psychiatric disease that often accompanies epilepsy. Antidepressant treatment of depression comorbid with epilepsy is a major concern due to the risk of seizure aggravation. SAMe, a universal methyl donor for DNA methylation and the synthesis of brain monoamines, is known to have high antidepressant activity. This study aimed to find out whether L-methionine (L-MET), a precursor of SAMe, can have antidepressant and/or anxiolytic effects in the WAG/Rij rat model of depression comorbid with absence epilepsy. The results indicate that L-MET reduces the level of anxiety and depression in WAG/Rij rats and suppresses associated epileptic seizures, in contrast to conventional antidepressant imipramine, which aggravates absence seizures. The antidepressant effect of L-MET was comparable with that of the conventional antidepressants imipramine and fluoxetine. However, the antidepressant profile of L-MET was more similar to imipramine than to fluoxetine. Taken together, our findings suggest that L-MET could serve as a promising new antidepressant drug with anxiolytic properties for the treatment of depression comorbid with absence epilepsy. Increases in the level of monoamines and their metabolites-DA, DOPAC, HVA, NA, and MHPG-in several brain structures, is suggested to be a neurochemical mechanism of the beneficial phenotypic effect of L-MET.
Collapse
Affiliation(s)
- Karine Yu. Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str. 5A, Moscow 117485, Russia; (A.V.G.); (E.A.F.); (A.B.S.)
| | - Alexandra V. Gabova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str. 5A, Moscow 117485, Russia; (A.V.G.); (E.A.F.); (A.B.S.)
| | - Ekaterina A. Fedosova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str. 5A, Moscow 117485, Russia; (A.V.G.); (E.A.F.); (A.B.S.)
| | - Alla B. Shatskova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str. 5A, Moscow 117485, Russia; (A.V.G.); (E.A.F.); (A.B.S.)
| | - Victor B. Narkevich
- Federal State Budgetary Institution “Scientific Research Institute of Pharmacology named after V.V. Zakusov”, Baltiyskaya Str. 8, Moscow 125315, Russia; (V.B.N.); (V.S.K.)
| | - Vladimir S. Kudrin
- Federal State Budgetary Institution “Scientific Research Institute of Pharmacology named after V.V. Zakusov”, Baltiyskaya Str. 8, Moscow 125315, Russia; (V.B.N.); (V.S.K.)
| |
Collapse
|
18
|
Ni P, Zhou C, Liang S, Jiang Y, Liu D, Shao Z, Noh H, Zhao L, Tian Y, Zhang C, Wei J, Li X, Yu H, Ni R, Yu X, Qi X, Zhang Y, Ma X, Deng W, Guo W, Wang Q, Sham PC, Chung S, Li T. YBX1-Mediated DNA Methylation-Dependent SHANK3 Expression in PBMCs and Developing Cortical Interneurons in Schizophrenia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300455. [PMID: 37211699 PMCID: PMC10369273 DOI: 10.1002/advs.202300455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Indexed: 05/23/2023]
Abstract
Schizophrenia (SCZ) is a severe psychiatric and neurodevelopmental disorder. The pathological process of SCZ starts early during development, way before the first onset of psychotic symptoms. DNA methylation plays an important role in regulating gene expression and dysregulated DNA methylation is involved in the pathogenesis of various diseases. The methylated DNA immunoprecipitation-chip (MeDIP-chip) is performed to investigate genome-wide DNA methylation dysregulation in peripheral blood mononuclear cells (PBMCs) of patients with first-episode SCZ (FES). Results show that the SHANK3 promoter is hypermethylated, and this hypermethylation (HyperM) is negatively correlated with the cortical surface area in the left inferior temporal cortex and positively correlated with the negative symptom subscores in FES. The transcription factor YBX1 is further found to bind to the HyperM region of SHANK3 promoter in induced pluripotent stem cells (iPSCs)-derived cortical interneurons (cINs) but not glutamatergic neurons. Furthermore, a direct and positive regulatory effect of YBX1 on the expression of SHANK3 is confirmed in cINs using shRNAs. In summary, the dysregulated SHANK3 expression in cINs suggests the potential role of DNA methylation in the neuropathological mechanism underlying SCZ. The results also suggest that HyperM of SHANK3 in PBMCs can serve as a potential peripheral biomarker of SCZ.
Collapse
Affiliation(s)
- Peiyan Ni
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Chuqing Zhou
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Sugai Liang
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Youhui Jiang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Dongxin Liu
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Zhicheng Shao
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
| | - Haneul Noh
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Liansheng Zhao
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yang Tian
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Chengcheng Zhang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jinxue Wei
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiaojing Li
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Hua Yu
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Rongjun Ni
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xueli Yu
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Xueyu Qi
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Yamin Zhang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiaohong Ma
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Wei Deng
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Wanjun Guo
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Qiang Wang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Pak C. Sham
- Department of PsychiatryLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong, SAR999077China
- Centre for PanorOmic SciencesThe University of Hong KongHong Kong, SAR999077China
| | - Sangmi Chung
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Tao Li
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
19
|
Castro SCC, Bicca C, Bicca B, Araujo S, Viola TW. A systematic mini-review of epigenetic mechanisms associated with electroconvulsive therapy in humans. Front Hum Neurosci 2023; 17:1143332. [PMID: 36968786 PMCID: PMC10033581 DOI: 10.3389/fnhum.2023.1143332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Electroconvulsive therapy (ECT) is one of the most effective strategies for treating resistant major depression. Although the mechanism of action is not fully understood and studies are limited, epigenetics is a promising area for the development of biomarkers associated with ECT treatment response. Aim We reviewed studies available in the literature that explored the epigenetics of ECT in peripheral samples from patients with major depressive disorder (MDD). Methods A systematic review was performed following The PRISMA guidelines. The search was performed in seven electronic databases: Scopus, Web of Science, Medline, PsycINFO, Embase, Cochrane, and Cinahl. Results Nine studies were included. Seven assessed DNA methylation and three investigated microRNAs (miR). Overall, most studies were exploratory, with small sample sizes, and we found high heterogeneity between the study's design, ECT protocols, molecular biology methods, and epigenetic findings. Investigated candidates with some evidence of association with ECT treatment response were BDNF, S100A10, RNF213M, TNKS, FKBP5, miR-126, miR-106a, and miR-24. Conclusion The present findings seem to support previous preclinical research, suggesting that epigenetic mechanisms play an important role in the molecular mechanism underlying ECT effects.
Collapse
Affiliation(s)
- Sayra Catalina Coral Castro
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Carla Bicca
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bruno Bicca
- Center for Medical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Stéfany Araujo
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
20
|
Boström ADE, Andersson P, Jamshidi E, Wilczek A, Nilsonne Å, Rask-Andersen M, Åsberg M, Jokinen J. Accelerated epigenetic aging in women with emotionally unstable personality disorder and a history of suicide attempts. Transl Psychiatry 2023; 13:66. [PMID: 36813766 PMCID: PMC9946998 DOI: 10.1038/s41398-023-02369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Emotional unstable personality disorder (EUPD; previously borderline personality disorder, BPD) is associated with excess natural-cause mortality, comorbid medical conditions, poor health habits and stress related epigenomic alterations. Previous studies demonstrated that GrimAge - a state-of-the-art epigenetic age (EA) estimator - strongly predicts mortality risk and physiological dysregulation. Herein, we utilize the GrimAge algorithm to investigate whether women with EUPD and a history of recent suicide attempts exhibit EA acceleration (EAA) in comparison to healthy controls. Genome-wide methylation patterns were measured using the Illumina Infinum Methylation Epic BeadChip in whole blood from 97 EUPD patients and 32 healthy controls. The control group was significantly older (p < 0.0001) and reported lesser exposure to violent behavior in both youth and adulthood (p < 0.0001). Groups were otherwise comparable regarding gender, BMI, or tobacco usage (p > 0.05). EA estimator DNAmGrimAge exceeded chronological age by 8.8 and 2.3 years in the EUPD and control group, respectively. Similarly, EAA marker AgeAccelGrim was substantially higher in EUPD subjects when compared to controls, in both univariate and multivariate analyzes (p < 0.00001). Tobacco usage conferred substantial within-group effects on the EA-chronological age difference, i.e., 10.74 years (SD = 4.19) compared to 6.00 years (SD = 3.10) in the non-user EUPD group (p < 0.00001). Notably, past alcohol and substance abuse, use of psychotropic medications, global assessment of functioning, self-reported exposure to violent behavior in youth and adulthood, later completed suicide (N = 8) and age at first suicide attempt did not predict EAA in the EUPD group (p > 0.05). These results underscore the importance of addressing medical health conditions along with low-cost preventative interventions aimed at improving somatic health outcomes in EUPD, such as efforts to support cessation of tobacco use. The independency of GrimAge to other EA algorithms in this group of severely impaired EUPD patients, suggest it may have unique characteristics to evaluate risk of adverse health outcomes in context of psychiatric disorders.
Collapse
Affiliation(s)
- Adrian Desai E. Boström
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden ,grid.24381.3c0000 0000 9241 5705Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Peter Andersson
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience/Psychology, Karolinska Institute, Stockholm, Sweden ,grid.8993.b0000 0004 1936 9457Centre for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Esmail Jamshidi
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
| | - Alexander Wilczek
- grid.4714.60000 0004 1937 0626Department of Clinical Sciences, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Åsa Nilsonne
- grid.4714.60000 0004 1937 0626Department of Clinical Sciences, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Mathias Rask-Andersen
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marie Åsberg
- grid.4714.60000 0004 1937 0626Department of Clinical Sciences, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Jussi Jokinen
- grid.12650.300000 0001 1034 3451Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden ,grid.24381.3c0000 0000 9241 5705Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Region Stockholm, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
21
|
Handschuh PA, Murgaš M, Vraka C, Nics L, Hartmann AM, Winkler-Pjrek E, Baldinger-Melich P, Wadsak W, Winkler D, Hacker M, Rujescu D, Domschke K, Lanzenberger R, Spies M. Effect of MAOA DNA Methylation on Human in Vivo Protein Expression Measured by [11C]harmine Positron Emission Tomography. Int J Neuropsychopharmacol 2023; 26:116-124. [PMID: 36573644 PMCID: PMC9926052 DOI: 10.1093/ijnp/pyac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epigenetic modifications like DNA methylation are understood as an intermediary between environmental factors and neurobiology. Cerebral monoamine oxidase A (MAO-A) levels are altered in depression, as are DNA methylation levels within the MAOA gene, particularly in the promoter/exon I/intron I region. An effect of MAOA methylation on peripheral protein expression was shown, but the extent to which methylation affects brain MAO-A levels is not fully understood. METHODS Here, the influence of MAOA promoter/exon I/intron I region DNA methylation on global MAO-A distribution volume (VT), an index of MAO-A density, was assessed via [11C]harmine positron emission tomography in 22 patients (14 females) suffering from seasonal affective disorder and 30 healthy controls (17 females). RESULTS No significant influence of MAOA DNA methylation on global MAO-A VT was found, despite correction for health status, sex, season, and MAOA variable number of tandem repeat genotype. However, season affected average methylation in women, with higher levels in spring and summer (Puncorr = .03). We thus did not find evidence for an effect of MAOA DNA methylation on brain MAO-A VT. CONCLUSIONS In contrast to a previous study demonstrating an effect of methylation of a MAOA promoter region located further 5' on brain MAO-A, MAOA methylation of the region assessed here appears to affect brain protein levels to a limited extent at most. The observed effect of season on methylation levels is in accordance with extensive evidence for seasonal effects within the serotonergic system. CLINICALTRIALS.GOV IDENTIFIER NCT02582398 (https://clinicaltrials.gov/ct2/show/NCT02582398).
Collapse
Affiliation(s)
- Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
22
|
Franzago M, Orecchini E, Porreca A, Mondanelli G, Orabona C, Dalla Ragione L, Di Nicola M, Stuppia L, Vitacolonna E, Beccari T, Ceccarini MR. SLC6A4 DNA Methylation Levels and Serum Kynurenine/Tryptophan Ratio in Eating Disorders: A Possible Link with Psychopathological Traits? Nutrients 2023; 15:nu15020406. [PMID: 36678277 PMCID: PMC9866524 DOI: 10.3390/nu15020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Background: The incidence of eating disorders (EDs), serious mental and physical conditions characterized by a disturbance in eating or eating-related behaviors, has increased steadily. The present study aims to develop insights into the pathophysiology of EDs, spanning over biochemical, epigenetic, psychopathological, and clinical data. In particular, we focused our attention on the relationship between (i) DNA methylation profiles at promoter-associated CpG sites of the SCL6A4 gene, (ii) serum kynurenine/tryptophan levels and ratio (Kyn/Trp), and (iii) psychopathological traits in a cohort of ED patients. Among these, 45 patients were affected by restricting anorexia nervosa (AN0), 21 by purging AN (AN1), 21 by bulimia (BN), 31 by binge eating disorders (BED), 23 by unspecified feeding or eating disorders (UFED), and finally 14 by other specified eating disorders (OSFED) were compared to 34 healthy controls (CTRs). Results: Kyn level was higher in BED, UFED, and OSFED compared to CTRs (p ≤ 0.001). On the other hand, AN0, AN1, and BN patients showed significatively lower Kyn levels compared to the other three ED groups but were closed to CTRs. Trp was significantly higher in AN0, AN1, and BN in comparison to other ED groups. Moreover, AN1 and BN showed more relevant Trp levels than CTRs (p <0.001). BED patients showed a lower Trp as compared with CTRs (p ≤ 0.001). In addition, Kyn/Trp ratio was lower in the AN1 subtype but higher in BED, UFED, and OSFED patients than in CTRs (p ≤ 0.001). SCL6A4 DNA methylation level at CpG5 was lower in AN0 compared to BED (p = 0.021), and the CpG6 methylation was also significantly lower in AN0 in comparison to CTRs (p = 0.025). The mean methylation levels of the six CpGs analyzed were lower only in the AN0 subgroup compared to CTRs (p = 0.008). Relevant psychological trait EDI-3 subscales were correlated with biochemical and epigenetic data. Conclusions: These findings underline the complexity of psychological and pathophysiological components of EDs.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Annamaria Porreca
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Laura Dalla Ragione
- Food Science and Human Nutrition Unit, University Campus Biomedico of Rome, 00128 Rome, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence: ; Tel.: +39-075-585-7905
| |
Collapse
|
23
|
Zwolińska W, Dmitrzak-Węglarz M, Słopień A. Biomarkers in Child and Adolescent Depression. Child Psychiatry Hum Dev 2023; 54:266-281. [PMID: 34590201 PMCID: PMC9867683 DOI: 10.1007/s10578-021-01246-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Despite the significant prevalence of Major Depressive Disorder in the pediatric population, the pathophysiology of this condition remains unclear, and the treatment outcomes poor. Investigating tools that might aid in diagnosing and treating early-onset depression seems essential in improving the prognosis of the future disease course. Recent studies have focused on searching for biomarkers that constitute biochemical indicators of MDD susceptibility, diagnosis, or treatment outcome. In comparison to increasing evidence of possible biomarkers in adult depression, the studies investigating this subject in the youth population are lacking. This narrative review aims to summarize research on molecular and biochemical biomarkers in child and adolescent depression in order to advocate future directions in the research on this subject. More studies on depression involving the youth population seem vital to comprehend the natural course of the disease and identify features that may underlie commonly observed differences in treatment outcomes between adults and children.
Collapse
Affiliation(s)
- Weronika Zwolińska
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Szpitalna St. 27/33, 60-572, Poznan, Poland.
| | - Monika Dmitrzak-Węglarz
- grid.22254.330000 0001 2205 0971Department of Psychiatric Genetics, Medical Biology Center, Poznan University of Medical Sciences, Rokietnicka St. 8, 60-806 Poznan, Poland
| | - Agnieszka Słopień
- grid.22254.330000 0001 2205 0971Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Szpitalna St. 27/33, 60-572 Poznan, Poland
| |
Collapse
|
24
|
Moon YK, Kim H, Kim S, Lim SW, Kim DK. Influence of antidepressant treatment on SLC6A4 methylation in Korean patients with major depression. Am J Med Genet B Neuropsychiatr Genet 2023; 192:28-37. [PMID: 36094099 DOI: 10.1002/ajmg.b.32921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation of the serotonin transporter gene (SLC6A4) has been suggested as potential mediator for antidepressant response in patients with depression. This study aimed to determine whether DNA methylation in SLC6A4 changes after antidepressant treatment and whether it affects treatment response in patients with depression. Overall, 221 Korean patients with depression completed 6 weeks of selective serotonin reuptake inhibitor (SSRI) monotherapy. DNA was extracted from venous blood pre- and post-treatment, and DNA methylation was analyzed using polymerase chain reaction. We used Wilcoxon's signed-rank test to verify the difference in methylation after treatment. Treatment response was assessed using the 17-item Hamilton Depression Rating Scale, and mRNA levels were quantified. After adjusting for relevant covariates, DNA methylation was significantly altered in specific CpG sites in SLC6A4 (p < .001 in CpG3, CpG4, and CpG5) following 6 weeks of treatment. Methylation change's magnitude (ΔDNA methylation) after drug treatment was not associated with treatment response or mRNA level change. SSRI antidepressants can influence SLC6A4 methylation in patients with depression. However, ΔDNA methylation at CpG3, CpG4, and CpG5 in SLC6A4 was not associated with treatment response. Future studies should investigate the integrative effect of other genetic variants and CpG methylation on gene transcription and antidepressant treatment response.
Collapse
Affiliation(s)
- Young Kyung Moon
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyeseung Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Seonwoo Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Shinn-Won Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Pathak H, Borchert A, Garaali S, Burkert A, Frieling H. BDNF exon IV promoter methylation and antidepressant action: a complex interplay. Clin Epigenetics 2022; 14:187. [PMID: 36572893 PMCID: PMC9793565 DOI: 10.1186/s13148-022-01415-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND BDNF exon IV promoter methylation is a potential biomarker for treatment response to antidepressants in MDD. We have previously shown CpG-87 methylation as a successful biomarker for the prediction of non-response to monoaminergic antidepressants like the SSRI Fluoxetine or the SNRI Venlafaxine. This study aimed to dissect the biological evidence and mechanisms for the functionality of CpG-87 methylation in a cell culture model. RESULTS We observed a significant interaction between methylation and antidepressant-mediated transcriptional activity in BDNF exon IV promoter. In addition, antidepressant treatment increased the promoter methylation in a concentration-dependent manner. Further single CpG methylation of -87 did not change the promoter activity, but methylation of CREB domain CpG-39 increased the transcriptional activity in an antidepressant-dependent manner. Interestingly, DNMT3a overexpression also increases the BDNF exon IV transcription and more so in Venlafaxine-treated cells. CONCLUSIONS The study strengthens the previously reported association between antidepressant treatment and BDNF exon IV promoter methylation as well as hints toward the mechanism of action. We argue that potential CpG methylation biomarkers display a complex synergy with the molecular changes at the neighboring CpG positions, thus highlighting the importance of epiallele analyses.
Collapse
Affiliation(s)
- Hansi Pathak
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Anton Borchert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Sara Garaali
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Alexandra Burkert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| |
Collapse
|
26
|
Amasi-Hartoonian N, Pariante CM, Cattaneo A, Sforzini L. Understanding treatment-resistant depression using "omics" techniques: A systematic review. J Affect Disord 2022; 318:423-455. [PMID: 36103934 DOI: 10.1016/j.jad.2022.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Treatment-resistant depression (TRD) results in huge healthcare costs and poor patient clinical outcomes. Most studies have adopted a "candidate mechanism" approach to investigate TRD pathogenesis, however this is made more challenging due to the complex and heterogeneous nature of this condition. High-throughput "omics" technologies can provide a more holistic view and further insight into the underlying mechanisms involved in TRD development, expanding knowledge beyond already-identified mechanisms. This systematic review assessed the information from studies that examined TRD using hypothesis-free omics techniques. METHODS PubMed, MEDLINE, Embase, APA PsycInfo, Scopus and Web of Science databases were searched on July 2022. 37 human studies met the eligibility criteria, totalling 17,518 TRD patients, 571,402 healthy controls and 62,279 non-TRD depressed patients (including antidepressant responders and untreated MDD patients). RESULTS Significant findings were reported that implicate the role in TRD of various molecules, including polymorphisms, genes, mRNAs and microRNAs. The pathways most commonly reported by the identified studies were involved in immune system and inflammation, neuroplasticity, calcium signalling and neurotransmitters. LIMITATIONS Small sample sizes, variability in defining TRD, and heterogeneity in study design and methodology. CONCLUSIONS These findings provide insight into TRD pathophysiology, proposing future research directions for novel drug targets and potential biomarkers for clinical staging and response to antidepressants (citalopram/escitalopram in particular) and electroconvulsive therapy (ECT). Further validation is warranted in large prospective studies using standardised TRD criteria. A multi-omics and systems biology strategy with a collaborative effort will likely deliver robust findings for translation into the clinic.
Collapse
Affiliation(s)
- Nare Amasi-Hartoonian
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK.
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK; National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| |
Collapse
|
27
|
Mohammadi S, Beh-Pajooh A, Ahmadimanesh M, Amini M, Ghazi-Khansari M, Moallem SA, Hosseini R, Nourian YH, Ghahremani MH. Evaluation of DNA methylation in BDNF, SLC6A4, NR3C1 and FKBP5 before and after treatment with selective serotonin-reuptake inhibitor in major depressive disorder. Epigenomics 2022; 14:1269-1280. [DOI: 10.2217/epi-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim: To identify the DNA methylation status of related genes in major depressive disorder following selective serotonin-reuptake inhibitor treatment. Materials & methods: 45 patients with major depressive disorder and 45 healthy volunteers were considered experimental and control groups, respectively. High-resolution melting real-time PCR was implemented to evaluate DNA methylation. Results: After 100 days of selective serotonin-reuptake inhibitor treatment, methylation of promoter CpG sites of BDNF, NR3C1, FKBP5 and SLC6A4 was significantly reduced. Compared with before treatment, patients' Hamilton Depression Rating Scale scores were significantly reduced after selective serotonin-reuptake inhibitor treatment (p ≤ 0.0001). Conclusion: Based on the proven effect of antidepressants on DNA methylation and gene expression, these medications can improve the treatment process and reduce depression scores after treatment.
Collapse
Affiliation(s)
- Saeid Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Beh-Pajooh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Rohollah Hosseini
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Hasani Nourian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Paoli C, Misztak P, Mazzini G, Musazzi L. DNA Methylation in Depression and Depressive-Like Phenotype: Biomarker or Target of Pharmacological Intervention? Curr Neuropharmacol 2022; 20:2267-2291. [PMID: 35105292 PMCID: PMC9890294 DOI: 10.2174/1570159x20666220201084536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking. In this narrative review, we focused on the association between changes in DNA methylation patterns and MDD or depressive-like phenotype in animal models, as well as mechanisms of response to antidepressant drugs. We discussed studies presenting DNA methylation changes at specific genes of interest and profiling analyses in both patients and animal models of depression. Overall, we collected evidence showing that DNA methylation could not only be considered as a promising epigenetic biomarker of pathology but could also help in predicting antidepressant treatment efficacy. Finally, we discussed the hypothesis that specific changes in DNA methylation signature could play a role in aetiopathogenetic processes as well as in the induction of antidepressant effect.
Collapse
Affiliation(s)
- Caterina Paoli
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- School of Pharmacy, Pharmacy Unit, University of Camerino, 62032 Camerino, Italy
| | - Paulina Misztak
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Mazzini
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
29
|
Combined HTR1A/1B methylation and human functional connectome to recognize patients with MDD. Psychiatry Res 2022; 317:114842. [PMID: 36150307 DOI: 10.1016/j.psychres.2022.114842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study aimed to use a machine-learning method to identify HTR1A/1B methylation and resting-state functional connectivity (rsFC) related to the diagnosis of MDD, then try to build classification models for MDD diagnosis based on the identified features. METHODS Peripheral blood samples were collected from all recruited participants, and part of the participants underwent the resting-state fMRI scan. Features including HTR1A/1B methylation and rsFC were calculated. Then, the initial feature sets of epigenetics and neuroimaging were separately input into an all-relevant feature selection to generate significant discriminative power for MDD diagnosis. Random forest classifiers were constructed and evaluated based on identified features. In addition, the SHapley Additive exPlanations (SHAP) method was adapted to interpret the diagnostic model. RESULTS A combination of selected HTR1A/1B methylation and rsFC feature sets achieved better performance than using either one alone - a distinction between MDD and healthy control groups was achieved at 81.78% classification accuracy and 0.8948 AUC. CONCLUSION A high classification accuracy can be achieved by combining multidimensional information from epigenetics and cerebral radiomic features in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD and further exploring the pathogenesis of MDD.
Collapse
|
30
|
Xu P, Tao Y, Zhang H, Jin M, Xu H, Zou S, Deng F, Huang L, Zhang H, Wang X, Tang X, Dong Z, Wang Y, Yin L, Sun X. RPS6KA5 methylation predict response to 6-week treatment for adolescent MDD patients. BMC Psychiatry 2022; 22:561. [PMID: 35986314 PMCID: PMC9392312 DOI: 10.1186/s12888-022-04196-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE We aimed to investigate the effect of differentially methylated genes and chronic childhood stress on the development of depressive symptoms in Chinese adolescents, as well as to test whether methylation at baseline can be used as a predictor of remission at follow-up after six weeks of treatment. METHODS After recruiting 87 MDD patients and 53 healthy controls, we compared demographic and baseline clinical characteristics. The Childhood Chronic Stress Questionnaire was used to assess stress caused by early-life events. MDD patients underwent six weeks of treatment, and response to treatment was assessed using the Beck Depression Inventory-II. In addition, four MDD patients and five controls were randomly chosen for genome-wide methylation analysis. RESULTS The gene RPS6KA5 showed significant methylation differences between the two groups. Severity of chronic childhood stress was significantly associated with increased risk of depression in adolescents, but not with treatment response. Baseline RPS6KA5 methylation can predict remission after six weeks of treatment. We did not observe any interaction between RPS6KA5 methylation and chronic childhood stress. CONCLUSIONS Our results suggest that RPS6KA5 methylation can be used as a predictor of response to treatment in adolescent MDD patients. Here we offer new evidence for the role of epigenetics in early response to treatment of depression. TRIAL REGISTRATION ChiCTR, ChiCTR2000033402, 31/05/2020, http://www.chictr.org.cn/index.aspx.
Collapse
Affiliation(s)
- Peiwei Xu
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Yuanmei Tao
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Hang Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Meijiang Jin
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Hanmei Xu
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Shoukang Zou
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Fang Deng
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Lijuan Huang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Hong Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Xiaolan Wang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Xiaowei Tang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Zaiquan Dong
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Yanping Wang
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| | - Li Yin
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
- Frontier Science Center for Disease-Related Molecular Networks, Chengdu, 610041 Sichuan China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, 610041 Sichuan China
| | - Xueli Sun
- Department of Psychiatry, West China Hospital of Sichuan University, No. 28 Dianxin South Street, Chengdu, 610041 Sichuan China
| |
Collapse
|
31
|
Nascimento LV, Neto FL, Ribeiro Moreira DA, Cerutti VB, Thurow HS, Bastos GM, Ferreira EB, Crespo Hirata RD, Hirata MH. Influence of antidepressant drugs on DNA methylation of ion channels genes in blood cells of psychiatric patients. Epigenomics 2022; 14:851-864. [PMID: 35818955 DOI: 10.2217/epi-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated the influence of antidepressant drugs on methylation status of KCNE1, KCNH2 and SCN5A promoters and ECG parameters in adult psychiatric patients. Materials & methods: Electrocardiographic evaluation (24 h) and blood samples were obtained from 34 psychiatric patients before and after 30 days of antidepressant therapy. Methylation of promoter CpG sites of KCNE1, KCNH2 and SCN5A was analyzed by pyrosequencing. Results: Three CpG and four CpG sites of KCNE1 and SCN5A, respectively, had increased % methylation after treatment. Principal component analysis showed correlations of the methylation status with electrocardiographic variables, antidepressant doses and patient age. Conclusion: Short-term treatment with antidepressant drugs increase DNA methylation in KCNE1 and SCN5A promoters, which may induce ECG alterations in psychiatric patients.
Collapse
Affiliation(s)
- Larissa Vilela Nascimento
- Department of Clinical e Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Francisco Lotufo Neto
- Institute of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo, 01246-903, Brazil
| | - Dalmo Antonio Ribeiro Moreira
- Department of Electrophysiology & Cardiac Arrhythmias, Institute Dante Pazzanese of Cardiology, Sao Paulo, 04012-909, Brazil
| | - Virginia Braga Cerutti
- Department of Electrophysiology & Cardiac Arrhythmias, Institute Dante Pazzanese of Cardiology, Sao Paulo, 04012-909, Brazil
| | - Helena Strelow Thurow
- Department of Teaching & Research, Real e Benemerita Associação Portuguesa de Beneficiência, Sao Paulo, 01323-001, Brazil
| | - Gisele Medeiros Bastos
- Department of Teaching & Research, Real e Benemerita Associação Portuguesa de Beneficiência, Sao Paulo, 01323-001, Brazil
| | - Eric Batista Ferreira
- Institute of Exact Sciences, Federal University of Alfenas, Alfenas, 37130-001, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical e Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical e Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
32
|
Epigenetic signatures in antidepressant treatment response: a methylome-wide association study in the EMC trial. Transl Psychiatry 2022; 12:268. [PMID: 35794104 PMCID: PMC9259740 DOI: 10.1038/s41398-022-02032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Although the currently available antidepressants are well established in the treatment of the major depressive disorder (MDD), there is strong variability in the response of individual patients. Reliable predictors to guide treatment decisions before or in an early stage of treatment are needed. DNA-methylation has been proven a useful biomarker in different clinical conditions, but its importance for mechanisms of antidepressant response has not yet been determined. 80 MDD patients were selected out of >500 participants from the Early Medication Change (EMC) cohort with available genetic material based on their antidepressant response after four weeks and stratified into clear responders and age- and sex-matched non-responders (N = 40, each). Early improvement after two weeks was analyzed as a secondary outcome. DNA-methylation was determined using the Illumina EPIC BeadChip. Epigenome-wide association studies were performed and differentially methylated regions (DMRs) identified using the comb-p algorithm. Enrichment was tested for hallmark gene-sets and in genome-wide association studies of depression and antidepressant response. No epigenome-wide significant differentially methylated positions were found for treatment response or early improvement. Twenty DMRs were associated with response; the strongest in an enhancer region in SORBS2, which has been related to cardiovascular diseases and type II diabetes. Another DMR was located in CYP2C18, a gene previously linked to antidepressant response. Results pointed towards differential methylation in genes associated with cardiac function, neuroticism, and depression. Linking differential methylation to antidepressant treatment response is an emerging topic and represents a step towards personalized medicine, potentially facilitating the prediction of patients' response before treatment.
Collapse
|
33
|
Jokinen J, Andersson P, Chatzittofis A, Savard J, Rask-Andersen M, Åsberg M, Boström ADE. Accelerated epigenetic aging in suicide attempters uninfluenced by high intent-to-die and choice of lethal methods. Transl Psychiatry 2022; 12:224. [PMID: 35654772 PMCID: PMC9163048 DOI: 10.1038/s41398-022-01998-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Suicide attempts (SA) are associated with excess non-suicidal mortality, putatively mediated in part by premature cellular senescence. Epigenetic age (EA) estimators of biological age have been previously demonstrated to strongly predict physiological dysregulation and mortality risk. Herein, we investigate if violent SA with high intent-to-die is predictive of epigenetics-derived estimates of biological aging. The genome-wide methylation pattern was measured using the Illumina Infinium Methylation EPIC BeadChip in whole blood of 88 suicide attempters. Subjects were stratified into two groups based on the putative risk of later committed suicide (low- [n = 58] and high-risk [n = 30]) in dependency of SA method (violent or non-violent) and/or intent-to-die (high/low). Estimators of intrinsic and extrinsic EA acceleration, one marker optimized to predict physiological dysregulation (DNAmPhenoAge/AgeAccelPheno) and one optimized to predict lifespan (DNAmGrimAge/AgeAccelGrim) were investigated for associations to severity of SA, by univariate and multivariate analyses. The study was adequately powered to detect differences of 2.2 years in AgeAccelGrim in relation to SA severity. Baseline DNAmGrimAge exceeded chronological age by 7.3 years on average across all samples, conferring a mean 24.6% increase in relation to actual age. No individual EA acceleration marker was differentiated by suicidal risk group (p > 0.1). Thus, SA per se but not severity of SA is related to EA, implicating that excess non-suicidal mortality in SA is unrelated to risk of committed suicide. Preventative healthcare efforts aimed at curtailing excess mortality after SA may benefit from acting equally powerful to recognize somatic comorbidities irrespective of the severity inherent in the act itself.
Collapse
Affiliation(s)
- Jussi Jokinen
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
- Department of Clinical Neuroscience/Psychology, Karolinska Institute, Stockholm, Sweden
| | - Peter Andersson
- Department of Clinical Neuroscience/Psychology, Karolinska Institute, Stockholm, Sweden
- Centre for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Andreas Chatzittofis
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - Josephine Savard
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marie Åsberg
- Department of Clinical Neuroscience/Psychology, Karolinska Institute, Stockholm, Sweden
| | - Adrian Desai E Boström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden.
- Department of Women's and Children's Health/Neuropediatrics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Gao C, Xu Z, Tan T, Chen Z, Shen T, Chen L, Tan H, Chen B, Zhang Z, Yuan Y. Combination of spontaneous regional brain activity and HTR1A/1B DNA methylation to predict early responses to antidepressant treatments in MDD. J Affect Disord 2022; 302:249-257. [PMID: 35092755 DOI: 10.1016/j.jad.2022.01.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Antidepressant medications are suggested as the first-line treatment in patients with major depressive disorder (MDD). However, the drug therapy outcomes vary from person to person. The functional activity of the brain and DNA methylation levels correlate with the antidepressant efficacy. To predict the early antidepressant responses in MDD and establish the prediction framework, we aimed to apply multidimensional data based on the resting-state activity of the brain and HTR1A/1B methylation. METHODS The values of Amplitude of Low-Frequency Fluctuations (ALFF) and regional homogeneity (ReHo) were measured as variables in 116 brain regions along with 181 CpG sites in the promoter region of HTR1A/1B and 11 clinical characteristics. After performing the feature reduction step using the least absolute shrinkage and selection operator (LASSO) method, the selected variables were put into Support Vector Machines (SVM), Random Forest (RF), Naïve Bayes (NB), and logistic regression (LR), consecutively, to construct the prediction models. The models' performance was evaluated by the Leave-One-Out Cross-Validation. RESULTS The LR model composed of the selected multidimensional features reached a maximum performance of 78.57% accuracy and 0.8340 area under the ROC curve (AUC). The prediction accuracies based on multidimensional datasets were found to be higher than those obtained from the data based only on fMRI or methylation. LIMITATIONS A relatively small sample size potentially restricted the usage of our prediction framework in clinical applications. CONCLUSION Our study revealed that combining the data of brain imaging and DNA methylation could provide a complementary effect in predicting early-stage antidepressant outcomes.
Collapse
Affiliation(s)
- Chenjie Gao
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zimu Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tian Shen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Psychiatric Rehabilitation, Wuxi Mental Health Center, Nanjing Medical University, Wuxi 214123, China
| | - Lei Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Psychology and Psychiatry, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210018, China
| | - Haiping Tan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zhijun Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
35
|
de Witte LD, Wang Z, Snijders GLJL, Mendelev N, Liu Q, Sneeboer MAM, Boks MPM, Ge Y, Haghighi F. Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia. Biol Psychiatry 2022; 91:572-581. [PMID: 35027166 PMCID: PMC11181298 DOI: 10.1016/j.biopsych.2021.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. METHODS Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. RESULTS We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. CONCLUSIONS Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level.
Collapse
Affiliation(s)
- Lot D de Witte
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhaoyu Wang
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gijsje L J L Snijders
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Natalia Mendelev
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Qingkun Liu
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marjolein A M Sneeboer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Translational Neuroscience, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marco P M Boks
- Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fatemeh Haghighi
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
36
|
Increased telomerase activity in major depressive disorder with melancholic features: Possible role of pro-inflammatory cytokines and the brain-derived neurotrophic factor. Brain Behav Immun Health 2021; 14:100259. [PMID: 34589765 PMCID: PMC8474565 DOI: 10.1016/j.bbih.2021.100259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
The biological mechanisms responsible for depression symptoms are not yet understood. For this reason, it is important to reveal the etiopathogenetic mechanisms in this disease. This study aims to compare the levels of pro-inflammatory cytokines, Brain-Derived Neurotrophic Factor (BDNF), and telomerase activity in patients with major depressive disorder (MDD) and healthy controls. Plasma BDNF, interleukin-6 (IL-6), IL-1beta, and Tumor Necrosis Factor-alpha (TNF-alpha) levels, and telomerase activity were measured in 39 patients with major depression and 39 healthy controls matched with patients in terms of age, gender, and education year. Plasma concentration of BDNF, IL-6 levels, and telomerase activity was significantly different between patients with MDD and healthy controls. Correlation analysis showed a positive trend between plasma BDNF levels and plasma IL-6 levels in patients with MDD with melancholic features. Furthermore, the path analysis results showed that the telomerase activity was indirectly affected by gender, IL-1β, IL-6, BDNF, and BMI, via the severity of depression and anxiety and MDD status as the mediators. Further studies are needed to examine the molecular mechanism of the telomerase activity and the role of BDNF and pro-inflammatory cytokines in the telomerase activation in MDD.
Collapse
|
37
|
Xing Y, Sun T, Li G, Xu G, Cheng J, Gao S. The role of BDNF exon I region methylation in the treatment of depression with sertraline and its clinical diagnostic value. J Clin Lab Anal 2021; 35:e23993. [PMID: 34528295 PMCID: PMC8605126 DOI: 10.1002/jcla.23993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background Brain‐derived neurotrophic factor (BDNF) is considered to be one of the best candidate genes for depression. However, whether sertraline treatment affects the methylation level of this gene remains unknown. Methods Fifty‐three patients with depression and 51 healthy controls were included in the study. The methylation level of BDNF exon I was determined in blood samples from these subjects. The Hamilton Depression Scale was used to evaluate the depression status of patients. Single nucleotide polymorphism detection was used for genotyping, and a receiver operating characteristic (ROC) curve was used to evaluate the predictive value of the methylation level of this locus in patients with depression. Results There was a significant difference in the methylation level of BDNF exon I between the control and depression groups. No effect of sertraline monotherapy on BDNF methylation was found in subjects with depression. Moreover, no interaction was found between BDNF genotype and the per cent methylation of BDNF exon I. However, methylation at this site was positively correlated with diurnal variation and retardation scores. Blood homocysteine concentrations were significantly reduced by sertraline treatment. No influence of genotype on serum BDNF concentration was found in subjects with depression. The ROC curve showed that methylation of BDNF exon I may be used to distinguish patients from healthy people, to a certain extent. Conclusion Methylation of BDNF exon I may be used as a biomarker of depression and may be a therapeutic target for previously untreated depression.
Collapse
Affiliation(s)
- Yuhua Xing
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Ting Sun
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Guangxue Li
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guoan Xu
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jia Cheng
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, Zhejiang, China.,Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Shugui Gao
- Department of Affective Disorder, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
38
|
Tang L, Liu J, Zhu Y, Duan J, Chen Y, Wei Y, Gong X, Wang F, Tang Y. ANK3 Gene Polymorphism Rs10994336 Influences Executive Functions by Modulating Methylation in Patients With Bipolar Disorder. Front Neurosci 2021; 15:682873. [PMID: 34421516 PMCID: PMC8371237 DOI: 10.3389/fnins.2021.682873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 01/11/2023] Open
Abstract
Background: A large body of evidence suggests that epigenetic modification including DNA methylation plays a critical role in BD's pathogenesis while the identification of methylation quantitative trait loci (meQTLs) shed light on the interpretation of the function of genetic variants in non-coding regions. The intronic single nucleotide polymorphism (SNP) rs10994336 within the ANK3 has emerged as one of the most replicated risk variants for bipolar disorder (BD) in genome-wide association studies. Whether rs10994336 functions as a meQTL to mediate the association between genotype and phenotype remains unclear. Method: A total of 154 patients with BD and 181 healthy controls (HC) were recruited. The genotypes of rs10994336 and methylation levels of CpG sites within ANK3 were tested. Executive functions were assessed using a computerized version of the Wisconsin Card Sorting Test (WCST). Results: Bipolar disorder patients with the risk-T allele of rs10994336 scored lower on tests of executive function compared to homozygous CC carriers, after controlling for age, gender, and education level. No significant difference was found in HC individuals. The risk-T allele is associated with a lower methylation level of CpG site cg02172182 in HC after multiple corrections and replicated in the BD group in the same direction. Further mediation analysis revealed that the cg02172182 methylation significantly mediated the association between the polymorphism rs10994336 and PE index of WCST in patients with BD. Conclusion: Our study suggests that BD-related genetic variant rs10994336 in ANK3 impacts executive functions by modulating ANK3 methylation, supporting the theory that methylation acts as a mediator between genotype and phenotype.
Collapse
Affiliation(s)
- Lili Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Liu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yifan Chen
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Bakusic J, Vrieze E, Ghosh M, Pizzagalli DA, Bekaert B, Claes S, Godderis L. Interplay of Val66Met and BDNF methylation: effect on reward learning and cognitive performance in major depression. Clin Epigenetics 2021; 13:149. [PMID: 34325733 PMCID: PMC8323304 DOI: 10.1186/s13148-021-01136-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background There is a growing interest in the role of brain-derived neurotrophic factor (BDNF) in major depressive disorder (MDD). BDNF potentially exhibits opposite effects in the pathways linked to anhedonia and reward learning on the one hand and cognitive performance, on the other hand. However, the epigenetic mechanisms behind this remain unknown. In the present study, we aimed to investigate the interplay of DNA methylation of different BDNF exons and the common Val66Met polymorphism on anhedonia, reward learning and cognitive performance in MDD. Methods We recruited 80 depressed patients and 58 age- and gender-matched healthy controls. Participants underwent clinical assessment including neuropsychological testing and a probabilistic reward task to assess reward learning. Val66Met polymorphism and DNA methylation of BDNF promoters I, IV and exon IX were assessed from whole blood derived DNA, using pyrosequencing. Results BDNF promoter I methylation was lower in MDD patients (p = 0.042) and was negatively associated with self-reported anhedonia. In depressed patients, both Val66Met polymorphism and DNA methylation of promoter I were significantly associated with reward bias (p < 0.050 and p = 0.040, respectively), without an interaction effect. On the other hand, methylation of exon IX had a negative impact on executive functioning (p = 0.002) and mediated the effect of Val66Met on this outcome in patients with MDD. Conclusions Our results provide the first evidence of Val66Met susceptibility to differential epigenetic regulation of BDNF exons in reward learning and executive functioning in MDD, which needs to be further explored. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01136-z.
Collapse
Affiliation(s)
- J Bakusic
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium.
| | - E Vrieze
- Psychiatry Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - M Ghosh
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - D A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - B Bekaert
- Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - S Claes
- Psychiatry Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - L Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium.,IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| |
Collapse
|
40
|
Dionisie V, Ciobanu AM, Toma VA, Manea MC, Baldea I, Olteanu D, Sevastre-Berghian A, Clichici S, Manea M, Riga S, Filip GA. Escitalopram Targets Oxidative Stress, Caspase-3, BDNF and MeCP2 in the Hippocampus and Frontal Cortex of a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress. Int J Mol Sci 2021; 22:ijms22147483. [PMID: 34299103 PMCID: PMC8304451 DOI: 10.3390/ijms22147483] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, escitalopram (ESC) has been suggested to have different mechanisms of action beyond its well known selective serotonin reuptake inhibition. The aim of this study is to investigate the effects of escitalopram on oxidative stress, apoptosis, brain-derived neurotrophic factor (BDNF), Methyl-CpG-binding protein 2 (MeCP2), and oligodendrocytes number in the brain of chronic unpredictable mild stress-induced depressed rats. The animals were randomised in four groups (8 in each group): control, stress, stress + ESC 5 and stress + ESC 5/10. ESC was administered for 42 days in a fixed dose (5 mg/kg b.w.) or in an up-titration regimen (21 days ESC 5 mg/kg b.w. then 21 days ESC 10 mg/kg b.w.). Sucrose preference test (SPT) and elevated plus maze (EPM) were also performed. ESC improved the percentage of sucrose preference, locomotion and anxiety. ESC5/10 reduced the oxidative damage in the hippocampus and improved the antioxidant defence in the hippocampus and frontal lobe. ESC5/10 lowered caspase 3 activity in the hippocampus. Escitalopram had a modulatory effect on BDNF and the number of oligodendrocytes in the hippocampus and frontal lobe and also improved the MeCP2 expressions. The results confirm the multiple pathways implicated in the pathogenesis of depression and suggest that escitalopram exerts an antidepressant effect via different intricate mechanisms.
Collapse
Affiliation(s)
- Vlad Dionisie
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Adela Magdalena Ciobanu
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Neuroscience Department, Discipline of Psychiatry, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400028 Cluj-Napoca, Romania
- Department of Biochemistry and Experimental Biology, Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, NIRD for Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Correspondence: (V.A.T.); (M.C.M.)
| | - Mihnea Costin Manea
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Correspondence: (V.A.T.); (M.C.M.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Diana Olteanu
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Mirela Manea
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Sorin Riga
- Department of Stress Research and Prophylaxis, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Romanian Academy of Medical Sciences, 927180 Bucharest, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| |
Collapse
|
41
|
Methylome-wide change associated with response to electroconvulsive therapy in depressed patients. Transl Psychiatry 2021; 11:347. [PMID: 34091594 PMCID: PMC8179923 DOI: 10.1038/s41398-021-01474-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022] Open
Abstract
Electroconvulsive therapy (ECT) is a quick-acting and powerful antidepressant treatment considered to be effective in treating severe and pharmacotherapy-resistant forms of depression. Recent studies have suggested that epigenetic mechanisms can mediate treatment response and investigations about the relationship between the effects of ECT and DNA methylation have so far largely taken candidate approaches. In the present study, we examined the effects of ECT on the methylome associated with response in depressed patients (n = 34), testing for differentially methylated CpG sites before the first and after the last ECT treatment. We identified one differentially methylated CpG site associated with the effect of ECT response (defined as >50% decrease in Hamilton Depression Rating Scale score, HDRS), TNKS (q < 0.05; p = 7.15 × 10-8). When defining response continuously (ΔHDRS), the top suggestive differentially methylated CpG site was in FKBP5 (p = 3.94 × 10-7). Regional analyses identified two differentially methylated regions on chromosomes 8 (Šídák's p = 0.0031) and 20 (Šídák's p = 4.2 × 10-5) associated with ΔHDRS. Functional pathway analysis did not identify any significant pathways. A confirmatory look at candidates previously proposed to be involved in ECT mechanisms found CpG sites associated with response only at the nominally significant level (p < 0.05). Despite the limited sample size, the present study was able to identify epigenetic change associated with ECT response suggesting that this approach, especially when involving larger samples, has the potential to inform the study of mechanisms involved in ECT and severe and treatment-resistant depression.
Collapse
|
42
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Bakusic J, Vrieze E, Ghosh M, Bekaert B, Claes S, Godderis L. Increased methylation of NR3C1 and SLC6A4 is associated with blunted cortisol reactivity to stress in major depression. Neurobiol Stress 2020; 13:100272. [PMID: 33344725 PMCID: PMC7739183 DOI: 10.1016/j.ynstr.2020.100272] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic changes are considered the main mechanisms behind the interplay of environment and genetic susceptibility in major depressive disorder (MDD). However, studies focusing on epigenetic dysregulation of the HPA axis stress response in MDD are lacking. Our objective was to simultaneously asses DNA methylation of the glucocorticoid receptor gene (NR3C1) and serotonin transporter gene (SLC6A4) and HPA axis response to stress in MDD. Methods We recruited 80 depressed inpatients and 58 gender and age matched healthy controls. All participants underwent the Trier Social Stress Test (TSST) and salivary cortisol was repeatedly measured to assess HPA axis reactivity. DNA methylation of the NR3C1 (exon 1 F) and SLC6A4 CpG islands was quantified from whole blood DNA. In the MDD group, clinical assessment was repeated at 8-week follow-up to test the predictive potential of DNA methylation for symptom improvement. Results Depressed patients had blunted cortisol reactivity to TSST compared to healthy controls (p = 0.01). In addition, they presented with increased average SLC6A4 (p = 0.003) and NR3C1 methylation (p = 0.03), as well as methylation of two individual NR3C1 CpG loci overlapping with the NGFI-A-binding sites (CpG12 and CpG20). Methylation of one of these two loci (CpG20) predicted lower symptom improvement at the follow-up (p = 0.007). Both, average NR3C1 and SLC6A4 methylation were associated with lower cortisol reactivity in the MDD group and explained about 16% of variability in cortisol response to TSST. Conclusions We provide evidence of the role of NR3C1 and SLC6A4 DNA methylation in HPA axis dysregulation in MDD, which needs to be further explored.
Collapse
Affiliation(s)
| | - Elske Vrieze
- Psychiatry Research Group, Department of Neuroscience, KU Leuven, Belgium
| | | | - Bram Bekaert
- Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Stephan Claes
- Psychiatry Research Group, Department of Neuroscience, KU Leuven, Belgium
| | - Lode Godderis
- Environment and Health, KU Leuven, Belgium.,IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| |
Collapse
|
44
|
Shen T, Li X, Chen L, Chen Z, Tan T, Hua T, Chen B, Yuan Y, Zhang Z, Kuney L, Xu Z. The relationship of tryptophan hydroxylase-2 methylation to early-life stress and its impact on short-term antidepressant treatment response. J Affect Disord 2020; 276:850-858. [PMID: 32738671 DOI: 10.1016/j.jad.2020.07.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The gene tryptophan hydroxylase 2 (TPH2) encodes the associated rate-limiting enzyme in the biosynthesis 5-HT (serotonin). Early life stress and adult variability in TPH2 can correspond with diminished response to antidepressants for patients with major depressive disorder (MDD). DNA methylation is an epigenetic mechanism mediating gene expression, often tempered by environmental factors. Here, we investigate the influence of TPH2 methylation combined with stress on response to antidepressants within the first two weeks of treatment initiation. METHODS 291 Han Chinese patients with major depressive disorder and 100 healthy controls comprised the study population. The Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) rated recent and early-life stress. The primary outcome equaled a reduction by ≥ 50% from the Hamilton Depression Rating Scale-17 (HAMD-17) after 2 weeks of treatment. The Illumina HiSeq platform assessed methylation status in 38 CpG sites located upstream and downstream of 11 TPH2 polymorphism sites. RESULTS In 291 patients and 100 healthy controls, 3 CpG sites predict antidepressant treatment response per sex (TPH2-7-142, p=0.012; TPH2-1-43, p=0.033; TPH2-5-203, p=0.036). High-level CTQ scores relate significantly to DNA hypomethylation at CpG-site TPH2-8-237 in males (false discovery rate [FDR]-corrected p=0.038). Additionally, the interaction of hypermethylation in two CpG sites and elevated early-life stress may reduce antidepressant response (TPH2-5-203, FDR corrected p=0.010; TPH2-10-60, FDR corrected p=0.001). CONCLUSIONS Our study suggests that TPH2 methylation and its interaction with early-life stress may impair antidepressant response, suggesting that pharmaco-epigenetic studies could identify epigenetic biomarkers for antidepressant response.
Collapse
Affiliation(s)
- Tian Shen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xingyu Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China
| | - Lei Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Zimu Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Tiantian Hua
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Zhijun Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Liz Kuney
- Psychiatry Department, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
45
|
Castro-Vale I, Carvalho D. The Pathways between Cortisol-Related Regulation Genes and PTSD Psychotherapy. Healthcare (Basel) 2020; 8:healthcare8040376. [PMID: 33019527 PMCID: PMC7712185 DOI: 10.3390/healthcare8040376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 01/30/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) only develops after exposure to a traumatic event in some individuals. PTSD can be chronic and debilitating, and is associated with co-morbidities such as depression, substance use, and cardiometabolic disorders. One of the most important pathophysiological mechanisms underlying the development of PTSD and its subsequent maintenance is a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis. The corticotrophin-releasing hormone, cortisol, glucocorticoid receptor (GR), and their respective genes are some of the mediators of PTSD's pathophysiology. Several treatments are available, including medication and psychotherapies, although their success rate is limited. Some pharmacological therapies based on the HPA axis are currently being tested in clinical trials and changes in HPA axis biomarkers have been found to occur in response not only to pharmacological treatments, but also to psychotherapy-including the epigenetic modification of the GR gene. Psychotherapies are considered to be the first line treatments for PTSD in some guidelines, even though they are effective for some, but not for all patients with PTSD. This review aims to address how knowledge of the HPA axis-related genetic makeup can inform and predict the outcomes of psychotherapeutic treatments.
Collapse
Affiliation(s)
- Ivone Castro-Vale
- Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Correspondence:
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and Metabolism, São João Hospital University Centre, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| |
Collapse
|
46
|
Xu Q, Jiang M, Gu S, Wang F, Yuan B. Early Life Stress Induced DNA Methylation of Monoamine Oxidases Leads to Depressive-Like Behavior. Front Cell Dev Biol 2020; 8:582247. [PMID: 33015076 PMCID: PMC7505948 DOI: 10.3389/fcell.2020.582247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is coming to be the regarded as one of the leading causes for human disabilities. Due to its complicated pathological process, the etiology is still unclear and the treatment is still targeting at the monoamine neurotransmitters. Early life stress has been known as a major cause for MDD, but how early life stress affects adult monoaminergic activity is not clear either. Recently, DNA methylation is considered to be the key mechanism of epigenetics and might play a role in early life stress induced mental illness. DNA methylation is an enzymatic covalent modification of DNA, has been one of the main epigenetic mechanisms investigated. The metabolic enzyme for the monoamine neurotransmitters, monoamine oxidases A/B (MAO A/MAO B) are the prime candidates for the investigation into the role of DNA methylation in mental disorders. In this review, we will review recent advances about the structure and physiological function of monoamine oxidases (MAO), brief narrative other factors include stress induced changes, early life stress, perinatal depression (PD) relationship with other epigenetic changes, such as DNA methylation, microRNA (miRNA). This review will shed light on the epigenetic changes involved in MDD, which may provide potential targets for future therapeutics in depression pathogenesis.
Collapse
Affiliation(s)
- Qiuyue Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingchen Jiang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yuan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
47
|
Catale C, Bussone S, Lo Iacono L, Viscomi MT, Palacios D, Troisi A, Carola V. Exposure to different early-life stress experiences results in differentially altered DNA methylation in the brain and immune system. Neurobiol Stress 2020; 13:100249. [PMID: 33344704 PMCID: PMC7739045 DOI: 10.1016/j.ynstr.2020.100249] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
The existence of a proportional relationship between the number of early-life stress (ELS) events experienced and the impoverishment of child mental health has been hypothesized. However, different types of ELS experiences may be associated with different neuro-psycho-biological impacts, due to differences in the intrinsic nature of the stress. DNA methylation is one of the molecular mechanisms that have been implicated in the "translation" of ELS exposure into neurobiological and behavioral abnormalities during adulthood. Here, we investigated whether different ELS experiences resulted in differential impacts on global DNA methylation levels in the brain and blood samples from mice and humans. ELS exposure in mice resulted in observable changes in adulthood, with exposure to social isolation inducing more dramatic alterations in global DNA methylation levels in several brain structures compared with exposure to a social threatening environment. Moreover, these two types of stress resulted in differential impacts on the epigenetic programming of different brain regions and cellular populations, namely microglia. In a pilot clinical study, blood global DNA methylation levels and exposure to childhood neglect or abuse were investigated in patients presenting with major depressive disorder or substance use disorder. A significant effect of the mental health diagnosis on global methylation levels was observed, but no effect of either childhood abuse or neglect was detected. These findings demonstrate that different types of ELS have differential impacts on epigenetic programming, through DNA methylation in specific brain regions, and that these differential impacts are associated with the different behavioral outcomes observed after ELS experiences.
Collapse
Affiliation(s)
- Clarissa Catale
- Department of Psychology, Ph.D. Program in "Behavioral Neuroscience", Sapienza University of Rome, Rome, Italy
| | - Silvia Bussone
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Luisa Lo Iacono
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Section of Histology and Embryology, University "Cattolica Del S. Cuore", Rome, Italy
| | | | - Alfonso Troisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
48
|
Wigner P, Synowiec E, Jóźwiak P, Czarny P, Bijak M, Białek K, Szemraj J, Gruca P, Papp M, Śliwiński T. The Effect of Chronic Mild Stress and Venlafaxine on the Expression and Methylation Levels of Genes Involved in the Tryptophan Catabolites Pathway in the Blood and Brain Structures of Rats. J Mol Neurosci 2020; 70:1425-1436. [PMID: 32406039 PMCID: PMC7399689 DOI: 10.1007/s12031-020-01563-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
A growing body of evidence suggests that depression may be associated with impairment of the tryptophan catabolites (TRYCATs) pathway. The present study investigated the effects of the chronic administration of venlafaxine on the expression and methylation status of Katl, Tph1/2, Ido1, Kmo and Kynu in the brain and blood of rats exposed to the CMS model of depression. The rats were subjected to the CMS procedure for 2 or 7 weeks and administered venlafaxine (10 mg/kg/day, IP) for 5 weeks. mRNA and protein expression and the methylation status of gene promoters in PBMCs and six brain structures were evaluated and analysed using the TaqMan Gene Expression Assay and Western blotting, and methylation-sensitive high-resolution melting (MS-HRM), respectively. We found that the CMS procedure increased KatI expression in the midbrain and KatII expression in the midbrain and the amygdala, while venlafaxine administration decreased KatII expression in the hypothalamus and the cerebral cortex. The methylation status of the Tph1 and Kmo promoters in peripheral blood mononuclear cells (PBMCs) was significantly increased in the stressed group after antidepressant therapy. The protein levels of Tph1 and Ido1 were decreased following venlafaxine administration. Our results confirmed that CMS and venlafaxine modulate the expression levels and methylation status of genes involved in the TRYCATs pathway.
Collapse
Affiliation(s)
- Paulina Wigner
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Ewelina Synowiec
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Paweł Jóźwiak
- Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Michał Bijak
- Faculty of Biology and Environmental Protection, Department of General Biochemistry, University of Lodz, Lodz, Poland
| | - Katarzyna Białek
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Piotr Gruca
- Polish Academy of Sciences, Institute of Pharmacology, Krakow, Poland
| | - Mariusz Papp
- Polish Academy of Sciences, Institute of Pharmacology, Krakow, Poland
| | - Tomasz Śliwiński
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|