1
|
Cagnetta GE, Martínez SR, Ibarra LE, Wendel A, Palacios RE, Chesta CA, Gómez ML. Photoactive broad-spectrum dressings with antimicrobial and antitumoral properties. BIOMATERIALS ADVANCES 2025; 169:214158. [PMID: 39709689 DOI: 10.1016/j.bioadv.2024.214158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
In this work the development of photoactive dressings (PAD) with dual purpose, is presented. These PAD can be used for the topical treatment of persistent infections caused by fungi and bacteria and are also applicable in light antitumor therapy for carcinoma. The synthesized PAD were designed employing conjugated polymer nanoparticles (CPN) doped with platinum porphyrin which serve as polymerization photoinitiators and photosensitizers for the production of reactive oxygen species (ROS). This approach led to the synthesis of N-vinyl-2-pyrrolidone (NVP) hydrogels co-polymerized with [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC). NVP and METAC were selected to impart a good biocompatibility with eukaryotic cell lines and antimicrobial properties, respectively. The combination of METAC with an efficient photogeneration of ROS by doped CPN resulted in a material with outstanding antimicrobial features. These dressings are capable of producing an aseptic environment upon irradiation and demonstrates a bacteriostatic profile in dark conditions. Additionally, the dressings fulfill critical requirements for topical applications, providing protection and acting as a barrier, with appropriate mechanical and swelling properties; as well as adequate water vapor transmission rates. The synthesized PAD have been shown to be biocompatible and non-toxic to erythrocytes and HaCaT cell line. PAD demonstrated efficacy in eliminating microbes such as fungi and bacteria. The underlying light-induced killing mechanism involved protein photooxidation, which amplified the effects of METAC mechanism that disrupt cellular membranes. Furthermore, in vitro studies using carcinoma cell lines displayed a complete cell eradication using a relatively low light dose (36 J/cm2 at 395 nm). These promising results reveal also the potential of PAD in the treatment of skin cancer.
Collapse
Affiliation(s)
- Gonzalo E Cagnetta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Ana Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - María Lorena Gómez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| |
Collapse
|
2
|
Sun Y, Wu Y, Chang Y, Sun G, Wang X, Lu Z, Li K, Liang X, Liu Q, Wang W, Wei L. Exploring the antibacterial and anti-biofilm properties of Diacerein against methicillin-resistant Staphylococcus aureus. Front Microbiol 2025; 16:1545902. [PMID: 40182283 PMCID: PMC11965656 DOI: 10.3389/fmicb.2025.1545902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) poses a significant clinical challenge due to its multidrug resistance. Diacerein (DIA), primarily used to treat degenerative joint diseases, has recently been found to exhibit antibacterial activity, though its specific antibacterial mechanisms remain unclear. Methods The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DIA, as well as in - vitro combination susceptibility testing, were determined using the broth microdilution method. Additionally, resistance induction assays, time-growth curve measurements, membrane fluidity, intracellular protein levels, and reactive oxygen species (ROS) were assessed. The inhibition and clearance of MRSA biofilms by DIA were evaluated using the crystal violet staining method, with bacterial morphology and biofilms observed via scanning electron microscopy and confocal laser scanning microscopy. Finally, transcriptome analysis was conducted to identify gene expression changes in MRSA treated with DIA, and RT-qPCR verification was performed. Results The MIC and MBC of DIA against MRSA were 32 μg/mL and 128 μg/mL, respectively, and synergistic antibacterial effects when combined with ampicillin. DIA increased intracellular ROS levels and membrane fluidity in MRSA, decreased soluble protein synthesis, and altered bacterial morphology. Additionally, DIA significantly inhibited MRSA biofilm formation and disrupted pre - existing biofilms. Transcriptome analysis revealed 1,045 differentially expressed genes between the DIA-treated group and the control group, primarily involving pathways such as the tricarboxylic acid cycle, phosphorylation, ribosome metabolism, and nucleotide metabolism. Conclusion In summary, DIA has antibacterial and anti-biofilm activities against MRSA and does not easily induce resistance. Its antibacterial mechanisms may involve multiple aspects, including bacterial protein synthesis, energy metabolism.
Collapse
Affiliation(s)
- Yingying Sun
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yaozhou Wu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
- First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yanbin Chang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Gaoling Sun
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Zhangping Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Keke Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaofang Liang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qianqian Liu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Wenjie Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
3
|
Ran Q, Yuan Y, Wu Y, Gan X, Deng J, Chu Y, Ji Q, Wang X, Zhao K. Two amino-substituted diphenyl fumaramide derivatives inhibit the virulence regulated by quorum sensing system of Pseudomonas aeruginosa. J Appl Microbiol 2025; 136:lxaf038. [PMID: 39971733 DOI: 10.1093/jambio/lxaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
AIM Pseudomonas aeruginosa employs the quorum sensing (QS) system, a sophisticated cell-to-cell communication mechanism, to modulate the synthesis and secretion of a range of virulence factors, which contribute to the establishment of acute or chronic infections in hosts. This study seeks to attenuate the virulence of P. aeruginosa by inhibiting the QS system, thereby reducing its pathogenicity as a promising alternative to traditional antibiotics. METHODS AND RESULTS Two compounds with an amino-substituted diphenyl fumaramide core, N1-(4-bromophenyl)-N4-(4'-oxo-3',4'-dihydro-1'H-spiro [cyclopentane-1,2'-quinazolin]-6'-yl) fumaramide (10D) and N1-(3-chloro-4-fluorophenyl)-N4-(4-oxo-3,4,4',5'-tetrahydro-1H,2'H-spiro [quinazoline-2,3'-thiophen]-6-yl) fumaramide (12A), were identified through in-silico screening. The QS inhibitory potential of both compounds was explored in vitro and in vivo. In in vitro experiments, neither compound exhibited bactericidal effects but significantly inhibited the production of QS-regulated extracellular protease and pyocyanin. Quantitative PCR analysis revealed that QS-activated genes and downstream virulence genes were transcriptionally suppressed by 10D or 12A. Molecular docking and molecular dynamics simulations predicted stable interactions between these compounds and the key QS regulators LasR and PqsR. When combined with polymyxin B, kanamycin, and levofloxacin, 10D and 12A exhibited synergistic antibacterial activity. Furthermore, compounds 10D and 12A significantly improved the survival of mice challenged with P. aeruginosa and effectively reduced the bacterial load in the lungs. CONCLUSION This study indicates that 10D and 12A possess considerable QS inhibitory potential, effectively attenuating the pathogenicity of P. aeruginosa. Moreover, the study offers structural insights and methodological guidance for the advancement of anti-virulence drug development.
Collapse
Affiliation(s)
- Qiman Ran
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106 Sichuan, China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106 Sichuan, China
| | - Yi Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106 Sichuan, China
| | - Xiongyao Gan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106 Sichuan, China
| | - Junfeng Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106 Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106 Sichuan, China
| | - Qinggang Ji
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106 Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106 Sichuan, China
| |
Collapse
|
4
|
Shao K, Yang Y, Gong X, Chen K, Liao Z, Ojha SC. Staphylococcal Drug Resistance: Mechanisms, Therapies, and Nanoparticle Interventions. Infect Drug Resist 2025; 18:1007-1033. [PMID: 39990781 PMCID: PMC11847421 DOI: 10.2147/idr.s510024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
The increasing incidence of antibiotic resistance in Staphylococcus aureus (S. aureus) poses a substantial threat to global public health. In recent decades, the evolution of bacteria and the misuse of antibiotics have led to a progressive development in drug resistance of S. aureus, resulting in a worldwide rise in methicillin-resistant S. aureus (MRSA) infection rates. Understanding the molecular mechanisms underlying staphylococcal drug resistance, the treatments for staphylococcal infections, and the efficacy of nanomaterials in addressing multi-drug resistance is crucial. This review explores the resistance mechanisms, which include limiting drug uptake, target modification, drug inactivation through the production of degrading enzymes, and active efflux of drugs. It also examines the current therapeutic strategies, such as antibiotic combination therapy, phage therapy, monoclonal antibody therapy, and nanoparticle therapy, with a particular emphasis on the role of silver-based nanomaterials. Nanoparticles possess the ability to overcome multi-drug resistance, offering a novel avenue for the management of drug-resistant bacteria. The nanomaterials have demonstrated potent antibacterial activity against S. aureus through various mechanisms, including cell membrane disruption, generation of reactive oxygen species (ROS), and inhibition of essential cellular processes. It also highlights the need for further research to optimize nanoparticle design, enhance their antibacterial potency, and ensure their biocompatibility and biodegradability. The review ultimately concludes by emphasizing the importance of a multifaceted approach to treatment, including the development of new antibiotics, investment in stewardship programs to prevent antibiotic misuse, and the exploration of natural compounds and bacteriocins as potential antimicrobial agents.
Collapse
Affiliation(s)
- Kunyu Shao
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yuxun Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xuankai Gong
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ke Chen
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Infectious Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zixiang Liao
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
5
|
Wang J, Xia C, Xia Z, Shen J. Disruption of zinc homeostasis reverses tigecycline resistance in Klebsiella pneumoniae. Front Cell Infect Microbiol 2025; 15:1458945. [PMID: 40012610 PMCID: PMC11860891 DOI: 10.3389/fcimb.2025.1458945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/02/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Zinc exhibits potent antimicrobial properties due to its ability to compromise bacterial structure and protein functionality, effectively inhibiting and eradicating bacteria. However, bacteria have evolved mechanisms to expel excess zinc ions from their cells, enabling them to thrive in environments rich in metal ions at high concentrations. This evolutionary advancement limits the clinical application of metal ions as antimicrobial agents. In this study, we aimed to investigate the potential of zinc ionophores to overcome bacterial resistance by elevating intracellular zinc ion levels. Methods We employed the zinc ionophore PBT2 to elevate intracellular zinc ion levels in Klebsiella pneumoniae, a bacterium known for its resistance to various antibiotics. By treating K. pneumoniae with PBT2, we aimed to assess its impact on bacterial resistance to tigecycline, an antibiotic commonly used in clinical settings. The changes in intracellular zinc ion levels, superoxide dismutase activity, reactive oxygen species concentration, and cell wall synthesis pathway were monitored to evaluate the mechanism of action of PBT2. Results Our results revealed that PBT2 successfully reversed the resistance of K. pneumoniae to tigecycline. Specifically, PBT2 increased the concentration of intracellular zinc ions in K. pneumoniae, leading to a suppression of superoxide dismutase activity within the cell and an elevation of reactive oxygen species concentration. These changes impaired the oxidative stress response of the bacteria. Additionally, the disruption of zinc homeostasis significantly inhibited the cell wall synthesis pathway in K. pneumoniae, potentially restricting the efflux pump mechanism that predominantly drives tigecycline resistance. Discussion The findings of this study pave the way for innovative strategies and approaches in the clinical development of novel antimicrobial agents. By using zinc ionophores such as PBT2 to elevate intracellular zinc ion levels, we can overcome bacterial resistance to antibiotics like tigecycline. The suppression of superoxide dismutase activity and elevation of reactive oxygen species concentration suggest that PBT2 impairs the oxidative stress response of K. pneumoniae, further enhancing its susceptibility to antibiotics. Furthermore, the inhibition of the cell wall synthesis pathway and restriction of the efflux pump mechanism provide additional mechanisms by which PBT2 reverses antibiotic resistance. These results highlight the potential of zinc ionophores as a novel class of antimicrobial agents and warrant further investigation into their clinical applications.
Collapse
Affiliation(s)
- Jinyu Wang
- The First Affiliated Hospital of Anhui Medical University, Clinical laboratory, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Clinical laboratory, Hefei, Anhui, China
| | - Cuiping Xia
- The First Affiliated Hospital of Anhui Medical University, Clinical laboratory, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Clinical laboratory, Hefei, Anhui, China
| | - Zhaoxin Xia
- The First Affiliated Hospital of Anhui Medical University, Clinical laboratory, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Clinical laboratory, Hefei, Anhui, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Clinical laboratory, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Clinical laboratory, Hefei, Anhui, China
| |
Collapse
|
6
|
Soni S, Gambhir L, Sharma G, Sharma A, Kapoor N. Unraveling the treasure trove of phytochemicals in mitigating the Salmonella enterica infection. Folia Microbiol (Praha) 2025; 70:1-17. [PMID: 39212846 DOI: 10.1007/s12223-024-01192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
Collapse
Affiliation(s)
- Saurabh Soni
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, 303303, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India.
| |
Collapse
|
7
|
Ikhane AO, Osunsanmi FO, Mosa RA, Opoku AR. Antibacterial Potential of Crude Extracts from Cylindrospermum alatosporum NR125682 and Loriellopsis cavernicola NR117881. Microorganisms 2025; 13:211. [PMID: 39858979 PMCID: PMC11767720 DOI: 10.3390/microorganisms13010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The challenges of antimicrobial resistance (AMR) to human health have pushed for the discovery of a new antibiotics agent from natural products. Cyanobacteria are oxygen-producing photosynthetic prokaryotes found in a variety of water habitats. Secondary metabolites are produced by cyanobacteria to survive extreme environmental stress factors, including microbial competition. This study presents the antibacterial activity and mechanism of the crude extracts from Cylindrospermum alatosporum NR125682 (A) and Loriellopsis cavernicola NR117881 (B) isolated from freshwater. The cyanobacteria were identified through 16S rRNA sequencing. Crude extracts were sequentially prepared using hexane, dichloromethane, and ethanol consistently. The minimum inhibition concentration (MIC), minimum bactericidal concentration (MBC) using the CSLI microdilution test protocol, and crude extract potential to inhibit the growth of the tested clinical bacteria strains were evaluated. The mechanism of action of the extracts including membrane damage, efflux pump, β-lactamase activity, DNA degradation, and extract-drug interaction was investigated using standard procedures. The hexane extract of B performed the best with a MIC (0.7-1.41 mg/mL) and MBC (1.41-2.81 mg/mL) range. All the crude extracts inhibited efflux pump activity against the bacteria tested. However, the extracts poorly inhibited β-lactamase. The ethanol extract of B exhibited the most appreciable antibacterial activity. The dichloromethane extract of B showed the highest significant DNA degradation potential, when compared with other samples. The extracts exhibited synergism when combined with erythromycin against some test bacteria, indicating primary microbial activity through membrane interactions. Hence, this study demonstrates the significance of cyanobacteria for antibiotic development.
Collapse
Affiliation(s)
- Albert Olufemi Ikhane
- Department of Biochemistry and Microbiology, University of Zululand, Richards Bay 3886, South Africa;
| | | | - Rebamang Anthony Mosa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0002, South Africa;
| | - Andrew Rowland Opoku
- Department of Biochemistry and Microbiology, University of Zululand, Richards Bay 3886, South Africa;
| |
Collapse
|
8
|
Fernández-Fernández R, Lozano C, Campaña-Burguet A, González-Azcona C, Álvarez-Gómez T, Fernández-Pérez R, Peña R, Zarazaga M, Carrasco J, Torres C. Bacteriocin-Producing Staphylococci and Mammaliicocci Strains for Agro-Food and Public Health Applications with Relevance of Micrococcin P1. Antibiotics (Basel) 2025; 14:97. [PMID: 39858382 PMCID: PMC11763047 DOI: 10.3390/antibiotics14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial-producing strains and their bacteriocins hold great promise for the control of bacterial diseases, being an attractive alternative to antibiotics. Thus, the aim of this study was to evaluate the inhibitory activity of 15 bacteriocin-producing staphylococci and mammaliicocci (BP-S/M) strains and their pre-purified extracts with butanol (BT) against a collection of 27 harmful or zoonotic strains (including Gram-positive/-negative bacteria and molds) with relevance in the public health and agro-food fields. These indicators (excluding Gram-negative strains) were grouped into seven categories based on their potential application areas: dairy livestock mastitis, avian pathogen zoonoses, swine zoonoses, food safety, aquaculture, wine making, and mushroom cultivation. In addition, cross-immunity assays between the BP-S/M strains were carried out to identify potential strain combinations to enhance their activity against pathogens. Finally, the hemolytic and gelatinase activities were tested in the BP-S/M strains. A strong inhibitory capacity of the BP-S/M strains was verified against relevant Gram-positive indicators, such as methicillin-resistant Staphylococcus aureus, Listeria monocytogenes, and Clostridium perfringens, among others, while no activity was detected against Gram-negative ones. Interestingly, several BT extracts inhibited the two mold indicators included in this study as representants of mushroom pathogens. The Micrococcin P1 producer Staphylococcus hominis C5835 (>60% of indicators were intensively inhibited by all the methods) can be proposed as a potential candidate for the control of bacterial diseases in the aforementioned categories alone or in combination with other BP-S/M strains (mainly with Staphylococcus warneri X2969). In this regard, five potential combinations of BP-S/M strains that enhanced their activity against specific pathogens were detected.
Collapse
Affiliation(s)
- Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Tamara Álvarez-Gómez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Rocío Fernández-Pérez
- Instituto de Ciencias de la Vid y del Vino (ICVV) (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas (CSIC), Gobierno de La Rioja), 26007 Logroño, Spain;
| | - Raquel Peña
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Jaime Carrasco
- Department Ecology of Cultivated Mushrooms, Regional Institute for Agri-Food and Forest Research and Development (IRIAF), 16194 Cuenca, Spain;
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| |
Collapse
|
9
|
Sheikh S, Saleem Z, Afzal S, Qamar MU, Raza AA, Haider Naqvi SZ, Al-Rawi MBA, Godman B. Identifying targets for antibiotic stewardship interventions in pediatric patients in Punjab, Pakistan: point prevalence surveys using AWaRe guidance. Front Pediatr 2025; 12:1469766. [PMID: 39867700 PMCID: PMC11759272 DOI: 10.3389/fped.2024.1469766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Surveillance of antibiotic use is crucial for identifying targets for antibiotic stewardship programs (ASPs), particularly in pediatric populations within countries like Pakistan, where antimicrobial resistance (AMR) is escalating. This point prevalence survey (PPS) seeks to assess the patterns of antibiotic use in pediatric patients across Punjab, Pakistan, employing the WHO AWaRe classification to pinpoint targets for intervention and encourage rational antibiotic usage. Methods A PPS was conducted across 23 pediatric wards of 14 hospitals in the Punjab Province of Pakistan using the standardized Global-PPS methodology developed by the University of Antwerp. The study included all pediatric inpatients receiving antibiotics at the time of the survey, categorizing antibiotic prescriptions according to the WHO Anatomical Therapeutic Chemical classification and the AWaRe classification system. Results Out of 498 pediatric patients, 409 were receiving antibiotics, representing an antibiotic use prevalence of 82.1%. A substantial majority (72.1%) of the prescribed antibiotics fell under the WHO's Watch category, with 25.7% in the Access category and 2.2% in the Reserve group. The predominant diagnoses were respiratory infections, notably pneumonia (32.4%). The most commonly used antibiotics were ceftriaxone (37.2%) and Vancomycin (13.5%). Only 2% of antibiotic uses were supported by culture sensitivity reports, highlighting a reliance on empirical therapy. Conclusion The high prevalence of antibiotic use, particularly from the Watch category, and low adherence to culture-based prescriptions underscore the critical need for robust antibiotic stewardship programs in Pakistan. Strengthening these programs could help mitigate AMR and optimize antibiotic use, aligning with global health objectives.
Collapse
Affiliation(s)
- Samia Sheikh
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Shairyar Afzal
- Department of Pharmacy, DHQ Hospital Jhelum, Jhelum, Pakistan
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Ali Abuzar Raza
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
- Department of Microbiology, CMH Multan Institute of Medical Sciences, Multan, Pakistan
| | | | - Mahmood Basil A. Al-Rawi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Brian Godman
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
10
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
11
|
Monsef AS, Nemattalab M, Parvinroo S, Hesari Z. Antibacterial effects of thyme oil loaded solid lipid and chitosan nano-carriers against Salmonella Typhimurium and Escherichia coli as food preservatives. PLoS One 2024; 19:e0315543. [PMID: 39739777 DOI: 10.1371/journal.pone.0315543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVES Escherichia coli and Salmonella Typhimurium are frequent causes of foodborne illness affecting many people annually. In order to develop natural antimicrobial agents against these microorganisms, thyme oil (TO) was considered as active antibacterial ingredient. TO contains various bioactive compounds that exhibit antimicrobial properties. To increase the antibacterial effects and stability of thyme oil, two promising carrier systems, solid lipid nanoparticles (SLN) and chitosan nanoparticles have been fabricated in this study. METHODS Nanoparticles were made using natural-based lipids and polymers by a probe sonication method. They were characterized using infrared spectrometry (FTIR), transmission electron microscopy (TEM), particle size, cytotoxicity, etc. Antibacterial effects of TO, thyme oil loaded in SLN (TO-SLN) and thyme oil loaded in chitosan nanoparticle (TO-CH) was evaluated against E. coli and S. typhimurium using Minimum inhibitory/bactericidal concentrations (MIC/MBC) determination. Encapsulation efficiency (EE%) and drug release profile were also studied in vitro. RESULTS TEM analysis revealed spherical/ovoid-shaped particles with clear edges. TO-SLN had an average size of 42.47nm, while TO-CH had an average size of 144.8nm. The Encapsulation efficiency of TO-CH and TO-SLN nanoparticles were about 81.6±1% and 73.4±1%, respectively. Results indicated 92% cumulative release in TO-CH in comparison with 88% in TO-SLN in 72 h. MIC against E. coli and S. typhimurium for TO-CH, TO-SLN, and pure TO were 4 and 1.5 μg/mL, 60 and 40 μg/mL, and 180-150 μg/mL, respectively. CONCLUSION Nanoencapsulation of thyme oil significantly potentiated its antimicrobial effects. TO-CH exhibited a significantly higher antibacterial effect compared to TO-SLN (6-fold) and pure thyme oil (more than 10-fold).
Collapse
Affiliation(s)
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shirin Parvinroo
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
12
|
Villata S, Baruffaldi D, Cue Lopez R, Paoletti C, Bosch P, Napione L, Giovannozzi AM, Pirri CF, Martinez-Campos E, Frascella F. Broadly Accessible 3D In Vitro Skin Model as a Comprehensive Platform for Antibacterial Therapy Screening. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70284-70296. [PMID: 39667725 DOI: 10.1021/acsami.4c16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Skin infections are currently a worldwide emergency as antibiotic-resistant bacteria are spreading, leading to the ineffectiveness of most antibiotics and antibacterial strategies. Consequently, there is an urgency of developing and testing innovative antibacterial therapies. As traditional 2D cell culture and planktonic bacteria culture can be obsolete due to their incapability of resembling the complex infection environment, 3D in vitro skin models can be a powerful tool to test and validate therapies. In this article, a 3D in vitro epidermis-dermis skin model has been developed and biofabricated to be broadly available, reaching a balance between the simplicity and reproducibility of the model and its complexity in terms of wound, infection, and treatment response. The results are really promising, as the skin model developed a comprehensive physical barrier. To further investigate the skin model, controlled wounding, infection, and antibiotic treatments were performed. The results were remarkable: Not only was the unwounded epidermal barrier able to partially stop the bacterial proliferation, but the entire system reacted to both wound and infection in a complex and complete way. Extracellular matrix deposition and remodeling, inflammatory response, antimicrobial peptide production, and change in cellular behaviors, from epithelial to mesenchymal and from fibroblasts to myofibroblasts, were witnessed, with different extents depending on the bacterial strain. In addition, the inflammatory response to the antibiotic administration was opposite for the two bacterial infections, probably revealing the release of inflammatory endotoxins during Escherichia coli death. In conclusion, the presented 3D in vitro skin model has all the characteristics to be a future landmark as a platform for antibacterial strategy therapy testing.
Collapse
Affiliation(s)
- Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Raquel Cue Lopez
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Camilla Paoletti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin 10129, Italy
| | - Paula Bosch
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28006, Spain
| | - Lucia Napione
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Andrea M Giovannozzi
- Quantum Metrology and Nano Technologies Division, National Institute of Metrological Research, Turin 10135, Italy
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
- Center for Sustainable Futures, Istituto Italiano di Tecnologia, Turin 10144, Italy
| | - Enrique Martinez-Campos
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28006, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Madrid 28040, Spain
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| |
Collapse
|
13
|
Wang D, Yang J, Yang L, Du Y, Zhu Q, Ma C, Zhou D. Combination therapy strategies against multidrug resistant bacteria in vitro and in vivo. Lett Appl Microbiol 2024; 77:ovae129. [PMID: 39674809 DOI: 10.1093/lambio/ovae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024]
Abstract
Exploring effective combination antibacterial therapies has become a research focus. This study selected seven common antibiotics to perform a series of tests on different Gram-negative bacteria isolated from clinical samples of chronic obstructive pulmonary disease patients. More than 70% of the strains exhibited multidrug resistance but remained sensitive to polymyxin B. The checkerboard assay revealed a significant synergistic effect between polymyxin B and tetracycline against different resistant strains, with fractional inhibitory concentration index values consistently below 0.5. Further time-kill curve analysis demonstrated that the use of minimal inhibit concentration of polymyxin B or tetracycline alone had limited bactericidal effects, while their combination significantly reduced bacterial counts by 2-3 log colony-forming units within 12 h. Additionally, the survival rate of larvae treated with the polymyxin B and tetracycline combination was significantly higher than that of the mono-therapy and untreated groups. In brief, this study demonstrates that the combination of polymyxin B and tetracycline exhibits potent antibacterial activity against multidrug resistant Gram-negative bacteria both in vitro and in vivo.
Collapse
Affiliation(s)
- Daliang Wang
- Department of Emergency Medicine, The First People's Hospital Of Jiashan County, Jiaxing 314100 Zhejiang, China
| | - Jie Yang
- Department of Emergency Medicine, The First People's Hospital Of Jiashan County, Jiaxing 314100 Zhejiang, China
| | - Lilan Yang
- Department of Emergency Medicine, The First People's Hospital Of Jiashan County, Jiaxing 314100 Zhejiang, China
| | - Yanglin Du
- Department of Emergency Medicine, The First People's Hospital Of Jiashan County, Jiaxing 314100 Zhejiang, China
| | - Qunchao Zhu
- Department of Emergency Medicine, The First People's Hospital Of Jiashan County, Jiaxing 314100 Zhejiang, China
| | - Chendong Ma
- Department of Emergency Medicine, The First People's Hospital Of Jiashan County, Jiaxing 314100 Zhejiang, China
| | - Dongdong Zhou
- Department of Emergency Medicine, The First People's Hospital Of Jiashan County, Jiaxing 314100 Zhejiang, China
| |
Collapse
|
14
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
15
|
Silva TO, Bulla ACS, Teixeira BA, Gomes VMS, Raposo T, Barbosa LS, da Silva ML, Moreira LO, Olsen PC. Bacterial efflux pump OMPs as vaccine candidates against multidrug-resistant Gram-negative bacteria. J Leukoc Biol 2024; 116:1237-1253. [PMID: 39011942 DOI: 10.1093/jleuko/qiae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
The emergence and propagation of bacteria resistant to antimicrobial drugs is a serious public health threat worldwide. The current antibacterial arsenal is becoming obsolete, and the pace of drug development is decreasing, highlighting the importance of investment in alternative approaches to treat or prevent infections caused by antimicrobial-resistant bacteria. A significant mechanism of antimicrobial resistance employed by Gram-negative bacteria is the overexpression of efflux pumps that can extrude several compounds from the bacteria, including antimicrobials. The overexpression of efflux pump proteins has been detected in several multidrug-resistant Gram-negative bacteria, drawing attention to these proteins as potential targets against these pathogens. This review will focus on the role of outer membrane proteins from efflux pumps as potential vaccine candidates against clinically relevant multidrug-resistant Gram-negative bacteria, discussing advantages and pitfalls. Additionally, we will explore the relevance of efflux pump outer membrane protein diversity and the possible impact of vaccination on microbiota.
Collapse
Affiliation(s)
- Thaynara O Silva
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana Carolina S Bulla
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Bárbara A Teixeira
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vinnicius Machado Schelk Gomes
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764. Centro, Macaé, RJ, 27965-045, Brazil
| | - Thiago Raposo
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiza S Barbosa
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Manuela Leal da Silva
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764. Centro, Macaé, RJ, 27965-045, Brazil
| | - Lilian O Moreira
- Laboratório de Bacteriologia e Imunologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 07, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Priscilla C Olsen
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A 2º Andar sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
16
|
Liu Y, Yang P, Zhou Y, Zhou Z. Antibacterial activity of the structurally novel C-2 amine-substituted analogues based on quinoxaline. RSC Med Chem 2024:d4md00670d. [PMID: 39574794 PMCID: PMC11577936 DOI: 10.1039/d4md00670d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
In the current study, we have designed and prepared a series of quinoxaline-based compounds, which were derived from o-phenylenediamine. Among them, compounds 5m-5p displayed good to moderate antibacterial activity with MICs of 4-16 μg mL-1 against S. aureus, 8-32 μg mL-1 against B. subtilis, 8-32 μg mL-1 against MRSA and 4-32 μg mL-1 against E. coli, respectively. Compound 5p, identified as a potent broad-spectrum antibacterial agent, demonstrated the strongest inhibitory effects against a range of bacterial strains and low cytotoxicity, thereby warranting further investigation. Compound 5p not only demonstrated the ability to disperse established bacterial biofilms but also induced a slower development of bacterial resistance compared to norfloxacin. Moreover, bactericidal time-kill kinetic studies revealed that at a high concentration of 3MIC, compound 5p was capable of directly killing MRSA cells. The subsequent postcontact effect (PCE) results showed that the growth rate of viable bacteria (MRSA) was greatly impacted and did not recover in less than 24 hours, even after antibacterial agent 5p was removed. The drug-like properties and ADME prediction exhibited that 5m-5p obeyed Lipinski's rule of five and therefore presumably maintained moderate to good bioavailability and human intestinal absorption rate when administered orally. Mechanistic investigations have elucidated that compound 5p exerted its antibacterial effect by compromising the structural integrity of bacterial cell membranes, resulting in the leakage of intracellular constituents and ultimately causing bacterial demise. Further studies in vivo have demonstrated that 5p exhibited potent antibacterial efficacy against MRSA in murine corneal infection models, particularly at elevated concentrations. The current dataset has also been meticulously analyzed to delineate the structure-activity relationships (SARs) of the synthesized compounds.
Collapse
Affiliation(s)
- Yuting Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002 China +86 717 6397328
- Department of Pharmacy, College of Medicine and Health Sciences, China Three Gorges University Yichang 443002 China
| | - Pengju Yang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002 China +86 717 6397328
- Department of Pharmacy, College of Medicine and Health Sciences, China Three Gorges University Yichang 443002 China
| | - Yunyun Zhou
- Department of Quality Control, China Resources Sanjiu (Huangshi) Medical & Pharmaceutical Co., Ltd. Huangshi China
| | - Zhiwen Zhou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002 China +86 717 6397328
- Department of Pharmacy, College of Medicine and Health Sciences, China Three Gorges University Yichang 443002 China
| |
Collapse
|
17
|
Liu Y, Liu S, Wan S, Li Z, Li H, Tang S. Anti-inflammatory properties of Bacillus pumilus TS1 in lipopolysaccharide-induced inflammatory damage in broilers. Anim Biotechnol 2024; 35:2418516. [PMID: 39460459 DOI: 10.1080/10495398.2024.2418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study investigates whether Bacillus pumilus TS1 improves growth performance and alleviates inflammatory damage in broilers and explored its feasibility as an antibiotic alternative. We divided 240 one-day-old AA308 white-finned broilers into five groups (con, LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS). The TS1L + LPS, TS1M + LPS and TS1H + LPS groups were fed TS1 for 15 days by gavage. The LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS groups were injected intraperitoneally with 1 mg/kg LPS for three days. We investigated the probiotic and anti-inflammatory activities by measuring body weight, sequencing the intestinal flora and examining the structure of tissues by using pathological stain, real-time PCR, Western blotting and immunohistochemical detection. TS1 could improve growth performance and intestinal flora composition, also reduced different organ damage and inflammatory cytokine expression in serum and organs. The mechanism may involve upregulating HSP60 and HSP70 expression, targeting and regulating Nrf2 and P38 MAPK and modulating NF-κB and HO-1 expression at the transcriptional level in different organs. B. pumilus TS1 alleviated Inflammatory injury caused by LPS and attenuated the inflammatory response in broilers, and these effects were achieved through MAPK and Nrf2 regulation of HSPs/HO-1 in different organs. The above results suggested broilers fed with TS1 could release the LPS caused organ damage, and the most suggested dosage was 1.4 × 108 CFU/mL.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sirui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Shulga DA, Kudryavtsev KV. Ensemble Docking as a Tool for the Rational Design of Peptidomimetic Staphylococcus aureus Sortase A Inhibitors. Int J Mol Sci 2024; 25:11279. [PMID: 39457061 PMCID: PMC11508331 DOI: 10.3390/ijms252011279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sortase A (SrtA) of Staphylococcus aureus has long been shown to be a relevant molecular target for antibacterial development. Moreover, the designed SrtA inhibitors act via the antivirulence mechanism, potentially causing less evolutional pressure and reduced antimicrobial resistance. However, no marketed drugs or even drug candidates have been reported until recently, despite numerous efforts in the field. SrtA has been shown to be a tough target for rational structure-based drug design (SBDD), which hampers the regular development of small-molecule inhibitors using the available arsenal of drug discovery tools. Recently, several oligopeptides resembling the sorting sequence LPxTG (Leu-Pro-Any-Thr-Gly) of the native substrates of SrtA were reported to be active in the micromolar range. Despite the good experimental design of those works, their molecular modeling parts are still not convincing enough to be used as a basis for a rational modification of peptidic inhibitors. In this work, we propose to use the ensemble docking approach, in which the relevant SrtA conformations are extracted from the molecular dynamics simulation of the LPRDA (Leu-Pro-Arg-Asp-Ala)-SrtA complex, to effectively represent the most significant and diverse target conformations. The developed protocol is shown to describe the known experimental data well and then is applied to a series of new peptidomimetic molecules resembling the active oligopeptide structures reported previously in order to prioritize structures from this work for further synthesis and activity testing. The proposed approach is compared to existing alternatives, and further directions for its development are outlined.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Konstantin V. Kudryavtsev
- Vreden National Medical Research Center of Traumatology and Orthopedics, 195427 St. Petersburg, Russia
| |
Collapse
|
19
|
Giovanoulis V, Pastamentzas V, Veizi E, Matzaroglou C, Naoum S, Samonis G, Piagkou M, Papadopoulos DV, Tsantes AG, Koutserimpas C. Fungal Shoulder Periprosthetic Infections: A Systematic Review. J Clin Med 2024; 13:6128. [PMID: 39458078 PMCID: PMC11508564 DOI: 10.3390/jcm13206128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Data regarding fungal PJIs of the shoulder are scarce. The present systematic review aims to identify and evaluate all published shoulder fungal PJIs in an effort to better understand the diagnostic and therapeutic approach to these infections. Methods: A systematic review according to the PRISMA guidelines was conducted, locating all shoulder fungal PJIs. The initial search located 1435 articles. Data were collected on demographics, the causative fungus, antifungal treatment (AFT), surgical interventions, and infection outcomes. Results: After screening and implementation of the inclusion criteria, a total of 10 articles, including 10 cases, were eligible. The sample's mean age was 62.44 years. Diabetes mellitus was the most common comorbidity (30%), while 70% were immunocompromised. Candida spp. was the most common causative fungus (nine cases; 90%), while all cases were confirmed with cultures. In three cases (30%), there was bacterial co-infection. The mean duration of antifungal treatment (AFT) was 8.4 weeks, while the preferred agent was fluconazole (60% of cases), followed by amphotericin B (30%). Most cases (50%) underwent resection arthroplasty as part of the treatment, while two-stage revision arthroplasty was performed in 30%. Infection's eradication was reported in 90% of the studied cases. Conclusions: The diagnosis and management of fungal periprosthetic shoulder infections are particularly challenging and require a multidisciplinary approach. The combination of antifungal therapy and tailored surgical strategies is crucial, but further research is needed to refine treatment protocols and address the unique considerations in shoulder PJIs.
Collapse
Affiliation(s)
- Vasileios Giovanoulis
- Department of Orthopaedic Surgery, Hôpital Henri Mondor, AP-HP, Université Paris Est Créteil (UPEC), 94010 Creteil, France;
| | - Vasileios Pastamentzas
- Department of Orthopaedics and Traumatology, “251” Hellenic Air Force General Hospital of Athens, 11525 Athina, Greece;
| | - Enejd Veizi
- Department of Orthopedics and Traumatology, Yıldırım Beyazıt University, Ankara City Hospital, Ankara 2367, Turkey;
| | - Charalampos Matzaroglou
- Department of Physiotherapy, School of Health Rehabilitation Sciences, University of Patras, 26504 Rio, Greece;
| | - Symeon Naoum
- Department of Trauma and Orthopaedics, Royal Berkshire Hospital, Reading RG1 5AN, UK;
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece;
- First Department of Medical Oncology, Metropolitan Hospital of Neon Faliron, 18547 Athens, Greece
| | - Maria Piagkou
- Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Dimitrios V. Papadopoulos
- 2nd Academic Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 14233 Athens, Greece;
| | - Andreas G. Tsantes
- Microbiology Department, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece;
- Laboratory of Hematology and Blood Bank Unit, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Christos Koutserimpas
- Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Orthopaedic Surgery and Sports Medicine Department, Croix Rousse, University Hospital of Lyon, 69004 Lyon, France
| |
Collapse
|
20
|
Singh I, Kumar S, Singh S, Wani MY. Overcoming resistance: Chitosan-modified liposomes as targeted drug carriers in the fight against multidrug resistant bacteria-a review. Int J Biol Macromol 2024; 278:135022. [PMID: 39182895 DOI: 10.1016/j.ijbiomac.2024.135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, rendering standard antibiotics ineffective against multi-drug resistant bacteria. To tackle this urgent issue, innovative approaches are essential. Liposomes, small spherical vesicles made of a phospholipid bilayer, present a promising solution. These vesicles can encapsulate various medicines and are both biocompatible and biodegradable. Their ability to be modified for targeted tissue or cell uptake makes them an ideal drug delivery system. By delivering antibiotics directly to infection sites, liposomes minimize side effects and reduce the development of resistance. However, challenges such as poor stability and rapid drug leakage limit their biological application. Chitosan, a biocompatible polymer, enhances liposome interaction with specific tissues or cells, enabling selective drug release at infection sites. Incorporating chitosan into liposome formulations alters and diversifies their surface characteristics through electrostatic interactions, resulting in improved stability and pH-sensitive drug release. These interactions are crucial for enhancing drug retention and targeted delivery, especially in varying pH environments like tumor sites or infection areas, thereby improving therapeutic outcomes and reducing systemic side effects. This review discusses recent advancements, challenges, and the need for further research to optimize liposome formulations and enhance targeted drug delivery for effective AMR treatment. Chitosan-modified liposomes offer a promising strategy to overcome AMR and improve antimicrobial therapies.
Collapse
Affiliation(s)
- Ira Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
| | - Shalinee Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
22
|
Lima Bezerra JJ, Vieira Pinheiro AA, Melo Coutinho HD. Phytochemical and ethnomedicinal evidences of the use of Alternanthera brasiliana (L.) Kuntze against infectious diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118304. [PMID: 38723917 DOI: 10.1016/j.jep.2024.118304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Popularly known as "penicilina" and "terramicina", Alternanthera brasiliana (L.) Kuntze belongs to the Amaranthaceae family and stands out for its ethnomedicinal uses in the treatment of infections caused by pathogenic microorganisms in some countries. AIM OF THE STUDY The present study aimed to carry out a literature review and analyze whether the scientific evidence really validates the numerous indications for the use of A. brasiliana in traditional medicine for the treatment of infectious diseases. Phytochemical and toxicological studies related to this species were also analyzed. MATERIAL AND METHODS Scientific documents were retrieved from Google Scholar, PubMed®, ScienceDirect®, SciELO, SpringerLink®, Scopus®, and Web of Science™ databases. The literature was reviewed from the first report on the antimicrobial activity of A. brasiliana in 1994 until April 2024. RESULTS According to the scientific documents analyzed, it was observed that A. brasiliana is widely used as a natural antibiotic for the treatment of infectious diseases in Brazil, mainly in the states of Rio Grande do Sul, Mato Grosso, and Minas Gerais. Its ethnomedicinal uses have also been reported in other countries such as Colombia and India. The leaves (78%) of A. brasiliana are the main parts used in the preparation of herbal medicines by traditional communities. Several A. brasiliana extracts showed low activity when evaluated against pathogens, including gram-positive bacteria, gram-negative bacteria, parasitic protozoa, and fungi. Only two studies reported that extracts from this plant showed high activity against the herpes simplex virus, Mycobacterium smegmatis, and Candida albicans. Phytochemicals belonging to the classes of phenolic compounds and flavonoid (52%), saturated and unsaturated fatty acids (33%), steroids and phytosterols (8%), terpenoids (5%), and fatty alcohol esters (2%) were identified in A. brasiliana. Toxicity (in vivo) and cytotoxicity (in vitro) studies of polar and non-polar extracts obtained from A. brasiliana leaves indicated that this plant is biologically safe. CONCLUSION Despite being widely used as a natural antibiotic by traditional communities, scientific investigations related to the antimicrobial potential of A. brasiliana extracts have indicated inactivity against several pathogens.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Av. da Engenharia, s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Anderson Angel Vieira Pinheiro
- Universidade Federal de Campina Grande, Centro de Formação de Professores, Rua Sérgio Moreira de Figueiredo s/n, Casas Populares, 58900-000 Cajazeiras, PB, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology-LMBM, Regional University of Cariri-URCA, Antonio Luiz Avenue, Crato, 63105-000, CE, Brazil.
| |
Collapse
|
23
|
Riva F, Dechesne A, Eckert EM, Riva V, Borin S, Mapelli F, Smets BF, Crotti E. Conjugal plasmid transfer in the plant rhizosphere in the One Health context. Front Microbiol 2024; 15:1457854. [PMID: 39268528 PMCID: PMC11390587 DOI: 10.3389/fmicb.2024.1457854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is one of the primary routes of antimicrobial resistance (AMR) dissemination. In the One Health context, tracking the spread of mobile genetic elements (MGEs) carrying ARGs in agri-food ecosystems is pivotal in understanding AMR diffusion and estimating potential risks for human health. So far, little attention has been devoted to plant niches; hence, this study aimed to evaluate the conjugal transfer of ARGs to the bacterial community associated with the plant rhizosphere, a hotspot for microbial abundance and activity in the soil. We simulated a source of AMR determinants that could enter the food chain via plants through irrigation. Methods Among the bacterial strains isolated from treated wastewater, the strain Klebsiella variicola EEF15 was selected as an ARG donor because of the relevance of Enterobacteriaceae in the AMR context and the One Health framework. The strain ability to recolonize lettuce, chosen as a model for vegetables that were consumed raw, was assessed by a rifampicin resistant mutant. K. variicola EEF15 was genetically manipulated to track the conjugal transfer of the broad host range plasmid pKJK5 containing a fluorescent marker gene to the natural rhizosphere microbiome obtained from lettuce plants. Transconjugants were sorted by fluorescent protein expression and identified through 16S rRNA gene amplicon sequencing. Results and discussion K. variicola EEF15 was able to colonize the lettuce rhizosphere and inhabit its leaf endosphere 7 days past bacterial administration. Fluorescence stereomicroscopy revealed plasmid transfer at a frequency of 10-3; cell sorting allowed the selection of the transconjugants. The conjugation rates and the strain's ability to colonize the plant rhizosphere and leaf endosphere make strain EEF15::lacIq-pLpp-mCherry-gmR with pKJK5::Plac::gfp an interesting candidate to study ARG spread in the agri-food ecosystem. Future studies taking advantage of additional environmental donor strains could provide a comprehensive snapshot of AMR spread in the One Health context.
Collapse
Affiliation(s)
- Francesco Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ester M Eckert
- CNR - IRSA Water Research Institute, Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological and Chemical Engineering, Center for Water Technology, Aarhus University, Aarhus, Denmark
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
24
|
Liao F, Ye Z, Cheng J, Zhu J, Chen X, Zhou X, Wang T, Jiang Y, Ma C, Zhou M, Chen T, Shaw C, Wang L. Discovery and engineering of a novel peptide, Temporin-WY2, with enhanced in vitro and in vivo efficacy against multi-drug resistant bacteria. Sci Rep 2024; 14:18769. [PMID: 39138237 PMCID: PMC11322164 DOI: 10.1038/s41598-024-67777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Infections by drug-resistant microorganisms are a threat to global health and antimicrobial peptides are considered to be a new hope for their treatment. Temporin-WY2 was identified from the cutaneous secretion of the Ranidae frog, Amolops wuyiensis. It presented with a potent anti-Gram-positive bacterial efficacy, but its activity against Gram-negative bacteria and cancer cell lines was unremarkable. Also, it produced a relatively high lytic effect on horse erythrocytes. For further improvement of its functions, a perfect amphipathic analogue, QUB-1426, and two lysine-clustered analogues, 6K-WY2 and 6K-1426, were synthesised and investigated. The modified peptides were found to be between 8- and 64-fold more potent against Gram-negative bacteria than the original peptide. Additionally, the 6K analogues showed a rapid killing rate. Also, their antiproliferation activities were more than 100-fold more potent than the parent peptide. All of the peptides that were examined demonstrated considerable biofilm inhibition activity. Moreover, QUB-1426, 6K-WY2 and 6K-1426, demonstrated in vivo antimicrobial activity against MRSA and E. coli in an insect larvae model. Despite observing a slight increase in the hemolytic activity and cytotoxicity of the modified peptides, they still demonstrated a improved therapeutic index. Overall, QUB-1426, 6K-WY2 and 6K-1426, with dual antimicrobial and anticancer functions, are proposed as putative drug candidates for the future.
Collapse
Affiliation(s)
- Fengting Liao
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Zhuming Ye
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jinsheng Cheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China
| | - Jianhua Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Xiaowei Zhou
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China.
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
25
|
Mó I, da Silva GJ. Tackling Carbapenem Resistance and the Imperative for One Health Strategies-Insights from the Portuguese Perspective. Antibiotics (Basel) 2024; 13:557. [PMID: 38927223 PMCID: PMC11201282 DOI: 10.3390/antibiotics13060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.
Collapse
Affiliation(s)
- Inês Mó
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC, Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| |
Collapse
|
26
|
Zhang T, Nickerson R, Zhang W, Peng X, Shang Y, Zhou Y, Luo Q, Wen G, Cheng Z. The impacts of animal agriculture on One Health-Bacterial zoonosis, antimicrobial resistance, and beyond. One Health 2024; 18:100748. [PMID: 38774301 PMCID: PMC11107239 DOI: 10.1016/j.onehlt.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Yu Shang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
27
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
28
|
Tuncer G, Aktas Z, Basaran S, Cagatay A, Eraksoy H. Effect of N-acetyl cysteine, rifampicin, and ozone on biofilm formation in pan-resistant Klebsiella pneumoniae: an experimental study. SAO PAULO MED J 2024; 142:e2023113. [PMID: 38422239 PMCID: PMC10885632 DOI: 10.1590/1516-3180.2023.0113.r1.29112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/27/2023] [Accepted: 11/11/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND To the best of our knowledge, this is the first study to evaluate the effectiveness of specific concentrations of antibiofilm agents, such as N-acetyl cysteine (NAC), rifampicin, and ozone, for the treatment of pan-resistant Klebsiella pneumoniae (PRKp). OBJECTIVES We evaluated the effectiveness of antibiofilm agents, such as NAC, rifampicin, and ozone, on biofilm formation in PRKp at 2, 6, 24, and 72 h. DESIGN AND SETTING This single-center experimental study was conducted on June 15, 2017, and July 15, 2018, at Istanbul Faculty of Medicine, Istanbul University, Turkey. METHODS Biofilm formation and the efficacy of these agents on the biofilm layer were demonstrated using colony counting and laser-screened confocal microscopy. RESULTS NAC at a final concentration of 2 μg/mL was administered to bacteria that formed biofilms (24 h), and no significant decrease was detected in the bacterial counts of all isolates (all P > 0.05). Rifampicin with a final concentration of 0.1 μg/mL was administered to bacteria that formed biofilm (24 h), and no significant decrease was detected in bacterial count (all P > 0.05). Notably, ozonated water of even 4.78 mg/L concentration for 72 h decreased the bacterial count by ≥ 2 log10. CONCLUSION Different approaches are needed for treating PRKp isolates. We demonstrate that PRKp isolates can be successfully treated with higher concentrations of ozone.
Collapse
Affiliation(s)
- Gulsah Tuncer
- MD. Physician, Assistant Professor, Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zerrin Aktas
- PhD. Professor, Department Microbiology and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seniha Basaran
- MD. Physician, Assistant Professor, Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Atahan Cagatay
- MD. Physician, Professor, Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Haluk Eraksoy
- MD. Physician, Professor, Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
29
|
Bonacorsi A, Trespidi G, Scoffone VC, Irudal S, Barbieri G, Riabova O, Monakhova N, Makarov V, Buroni S. Characterization of the dispirotripiperazine derivative PDSTP as antibiotic adjuvant and antivirulence compound against Pseudomonas aeruginosa. Front Microbiol 2024; 15:1357708. [PMID: 38435690 PMCID: PMC10904629 DOI: 10.3389/fmicb.2024.1357708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Pseudomonas aeruginosa is a major human pathogen, able to establish difficult-to-treat infections in immunocompromised and people with cystic fibrosis (CF). The high rate of antibiotic treatment failure is due to its notorious drug resistance, often mediated by the formation of persistent biofilms. Alternative strategies, capable of overcoming P. aeruginosa resistance, include antivirulence compounds which impair bacterial pathogenesis without exerting a strong selective pressure, and the use of antimicrobial adjuvants that can resensitize drug-resistant bacteria to specific antibiotics. In this work, the dispirotripiperazine derivative PDSTP, already studied as antiviral, was characterized for its activity against P. aeruginosa adhesion to epithelial cells, its antibiotic adjuvant ability and its biofilm inhibitory potential. PDSTP was effective in impairing the adhesion of P. aeruginosa to various immortalized cell lines. Moreover, the combination of clinically relevant antibiotics with the compound led to a remarkable enhancement of the antibiotic efficacy towards multidrug-resistant CF clinical strains. PDSTP-ceftazidime combination maintained its efficacy in vivo in a Galleria mellonella infection model. Finally, the compound showed a promising biofilm inhibitory activity at low concentrations when tested both in vitro and using an ex vivo pig lung model. Altogether, these results validate PDSTP as a promising compound, combining the ability to decrease P. aeruginosa virulence by impairing its adhesion and biofilm formation, with the capability to increase antibiotic efficacy against antibiotic resistant strains.
Collapse
Affiliation(s)
- Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Viola C. Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Samuele Irudal
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Olga Riabova
- Research Center of Biotechnology RAS, Moscow, Russia
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Kim HK, Baek HW, Park HH, Cho YS. Reusable mechano-bactericidal surface with echinoid-shaped hierarchical micro/nano-structure. Colloids Surf B Biointerfaces 2024; 234:113729. [PMID: 38160475 DOI: 10.1016/j.colsurfb.2023.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Biofilms formed owing to the attachment of bacteria to surfaces have caused various problems in industries such as marine transportation/logistics and medicine. In response, many studies have been conducted on bactericidal surfaces, and nanostructured surfaces mimicking cicada and dragonfly wings are emerging as candidates for mechano-bactericidal surfaces. In specific circumstances involving mechano-bactericidal activity, certain nanostructured surfaces could exhibit their bactericidal effects by directly deforming the membranes of bacteria that adhere to these nanostructures. Additionally, in most cases, debris of bacterial cells may accumulate on these nanostructured surfaces. Such accumulation poses a significant challenge: it diminishes the mechano-bactericidal effectiveness of the surface, as it hinders the direct interaction between the nanostructures and any new bacteria that attach subsequently. In specific circumstances involving mechano-bactericidal activity, certain nanostructured surfaces could exhibit their bactericidal effects by directly deforming the membranes of bacteria that adhere to these nanostructures. Additionally, in most cases, debris of bacterial cells may accumulate on these nanostructured surfaces. Such accumulation poses a significant challenge: it diminishes the mechano-bactericidal effectiveness of the surface, as it hinders the direct interaction between the nanostructures and any new bacteria that attach subsequently.In other words, there is a need for strategies to remove the accumulated bacterial debris in order to sustain the mechano-bactericidal effect of the nanostructured surface. In this study, hierarchical micro/nano-structured surface (echinoid-shaped nanotextures were formed on Al micro-particle's surfaces) was fabricated using a simple pressure-less sintering method, and effective bactericidal efficiency was shown against E. coli (97 ± 3.81%) and S. aureus (80 ± 9.34%). In addition, thermal cleaning at 500 °C effectively eliminated accumulated dead bacterial debris while maintaining the intact Al2O3 nanostructure, resulting in significant mechano-bactericidal activity (E. coli: 89 ± 6.86%, S. aureus: 75 ± 8.31%). As a result, thermal cleaning maintains the intact nanostructure and allows the continuance of the mechano-bactericidal effect. This effect was consistently maintained even after five repetitive use (E. coli: 80 ± 16.26%, S. aureus: 76 ± 12.67%).
Collapse
Affiliation(s)
- Hee-Kyeong Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyeon Woo Baek
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea; MECHABIO Group, Wonkwang University, 460 Ikandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| | - Young-Sam Cho
- Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea; MECHABIO Group, Wonkwang University, 460 Ikandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
31
|
Ding Y, Jiang X, Wu J, Wang Y, Zhao L, Pan Y, Xi Y, Zhao G, Li Z, Zhang L. Synergistic horizontal transfer of antibiotic resistance genes and transposons in the infant gut microbial genome. mSphere 2024; 9:e0060823. [PMID: 38112433 PMCID: PMC10826358 DOI: 10.1128/msphere.00608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Transposons, plasmids, bacteriophages, and other mobile genetic elements facilitate horizontal gene transfer in the gut microbiota, allowing some pathogenic bacteria to acquire antibiotic resistance genes (ARGs). Currently, the relationship between specific ARGs and specific transposons in the comprehensive infant gut microbiome has not been elucidated. In this study, ARGs and transposons were annotated from the Unified Human Gastrointestinal Genome (UHGG) and the Early-Life Gut Genomes (ELGG). Association rules mining was used to explore the association between specific ARGs and specific transposons in UHGG, and the robustness of the association rules was validated using the external database in ELGG. Our results suggested that ARGs and transposons were more likely to be relevant in infant gut microbiota compared to adult gut microbiota, and nine robust association rules were identified, among which Klebsiella pneumoniae, Enterobacter hormaechei_A, and Escherichia coli_D played important roles in this association phenomenon. The emphasis of this study is to investigate the synergistic transfer of specific ARGs and specific transposons in the infant gut microbiota, which can contribute to the study of microbial pathogenesis and the ARG dissemination dynamics.IMPORTANCEThe transfer of transposons carrying antibiotic resistance genes (ARGs) among microorganisms accelerates antibiotic resistance dissemination among infant gut microbiota. Nonetheless, it is unclear what the relationship between specific ARGs and specific transposons within the infant gut microbiota. K. pneumoniae, E. hormaechei_A, and E. coli_D were identified as key players in the nine robust association rules we discovered. Meanwhile, we found that infant gut microorganisms were more susceptible to horizontal gene transfer events about specific ARGs and specific transposons than adult gut microorganisms. These discoveries could enhance the understanding of microbial pathogenesis and the ARG dissemination dynamics within the infant gut microbiota.
Collapse
Affiliation(s)
- Yanwen Ding
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Jiang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiacheng Wu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yihui Wang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingmiao Pan
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxuan Xi
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University, State Key Laboratory of Microbial Technology, Qingdao, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, China National Institute of Health, Shanghai, China
| | - Ziyun Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University, State Key Laboratory of Microbial Technology, Qingdao, China
| |
Collapse
|
32
|
Tiwari S, Gidwani B, Vyas A. Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Curr Mol Med 2024; 24:876-888. [PMID: 37497706 DOI: 10.2174/1566524023666230727094635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.
Collapse
Affiliation(s)
- Sakshi Tiwari
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| | - Bina Gidwani
- Columbia Institute of Pharmacy, Raipur, C.G., India
| | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| |
Collapse
|
33
|
Tian L, Wang L, Yang F, Zhou T, Jiang H. Exploring the modulatory impact of isosakuranetin on Staphylococcus aureus: Inhibition of sortase A activity and α-haemolysin expression. Virulence 2023; 14:2260675. [PMID: 37733916 PMCID: PMC10543341 DOI: 10.1080/21505594.2023.2260675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023] Open
Abstract
The ubiquity of methicillin-resistant Staphylococcus aureus (MRSA) and the mounting prevalence of antibiotic resistance necessitate the identification of novel therapeutic approaches to reduce the selective pressure of antibiotics. Targeting bacterial virulence factors, such as the pivotal Sortase A (SrtA) in S. aureus for adhesion and invasion, and the salient toxin α-Hemolysin (Hla), offers a sophisticated approach to attenuate pathogenicity without bacterial elimination. Herein, we report the discovery of a flavonoid, isosakuranetin, which inhibits the activity of S. aureus SrtA. A fluorescence resonance energy transfer assay revealed that isosakuranetin exhibited a low IC50 of 21.20 μg/mL. Furthermore, isosakuranetin significantly inhibited SrtA-related virulence properties, such as bacterial adhesion to fibrinogen, biofilm formation, and invasion of A549 cells. We employed fluorescence quenching and molecular docking to determine the interactions between isosakuranetin and SrtA, revealing the key amino acid sites for binding. Importantly, isosakuranetin inhibited the haemolytic activity of S. aureus in vitro at a concentration of 32 μg/mL. Moreover, isosakuranetin effectively suppressed the transcription and expression of Hla in a dose-dependent manner and regulated the transcription of RNAIII, the upstream operator of Hla. Notably, isosakuranetin demonstrated in vivo efficacy in a mouse model of S. aureus-induced pneumonia by significantly improving survival rates and reducing lung damage. This is a valuable finding, as isosakuranetin's dual inhibitory effects on SrtA and haemolytic activity, as well as its anti-virulence activity against MRSA, make it an excellent candidate for therapeutic development.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
34
|
Saeed U, Insaf RA, Piracha ZZ, Tariq MN, Sohail A, Abbasi UA, Fida Rana MS, Gilani SS, Noor S, Noor E, Waheed Y, Wahid M, Najmi MH, Fazal I. Crisis averted: a world united against the menace of multiple drug-resistant superbugs -pioneering anti-AMR vaccines, RNA interference, nanomedicine, CRISPR-based antimicrobials, bacteriophage therapies, and clinical artificial intelligence strategies to safeguard global antimicrobial arsenal. Front Microbiol 2023; 14:1270018. [PMID: 38098671 PMCID: PMC10720626 DOI: 10.3389/fmicb.2023.1270018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
The efficacy of antibiotics and other antimicrobial agents in combating bacterial infections faces a grave peril in the form of antimicrobial resistance (AMR), an exceedingly pressing global health issue. The emergence and dissemination of drug-resistant bacteria can be attributed to the rampant overuse and misuse of antibiotics, leading to dire consequences such as organ failure and sepsis. Beyond the realm of individual health, the pervasive specter of AMR casts its ominous shadow upon the economy and society at large, resulting in protracted hospital stays, elevated medical expenditures, and diminished productivity, with particularly dire consequences for vulnerable populations. It is abundantly clear that addressing this ominous threat necessitates a concerted international endeavor encompassing the optimization of antibiotic deployment, the pursuit of novel antimicrobial compounds and therapeutic strategies, the enhancement of surveillance and monitoring of resistant bacterial strains, and the assurance of universal access to efficacious treatments. In the ongoing struggle against this encroaching menace, phage-based therapies, strategically tailored to combat AMR, offer a formidable line of defense. Furthermore, an alluring pathway forward for the development of vaccines lies in the utilization of virus-like particles (VLPs), which have demonstrated their remarkable capacity to elicit a robust immune response against bacterial infections. VLP-based vaccinations, characterized by their absence of genetic material and non-infectious nature, present a markedly safer and more stable alternative to conventional immunization protocols. Encouragingly, preclinical investigations have yielded promising results in the development of VLP vaccines targeting pivotal bacteria implicated in the AMR crisis, including Salmonella, Escherichia coli, and Clostridium difficile. Notwithstanding the undeniable potential of VLP vaccines, formidable challenges persist, including the identification of suitable bacterial markers for vaccination and the formidable prospect of bacterial pathogens evolving mechanisms to thwart the immune response. Nonetheless, the prospect of VLP-based vaccines holds great promise in the relentless fight against AMR, underscoring the need for sustained research and development endeavors. In the quest to marshal more potent defenses against AMR and to pave the way for visionary innovations, cutting-edge techniques that incorporate RNA interference, nanomedicine, and the integration of artificial intelligence are currently under rigorous scrutiny.
Collapse
Affiliation(s)
- Umar Saeed
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratories (MDL), Foundation University School of Health Sciences (FUSH), Foundation University Islamabad (FUI), Islamabad, Pakistan
| | - Rawal Alies Insaf
- Regional Disease Surveillance and Response Unit Sukkur, Sukkur, Sindh, Pakistan
| | - Zahra Zahid Piracha
- International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | | | - Azka Sohail
- Central Park Teaching Hospital, Lahore, Pakistan
| | | | | | | | - Seneen Noor
- International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Elyeen Noor
- International Center of Medical Sciences Research (ICMSR), Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Maryam Wahid
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratories (MDL), Foundation University School of Health Sciences (FUSH), Foundation University Islamabad (FUI), Islamabad, Pakistan
| | - Muzammil Hasan Najmi
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratories (MDL), Foundation University School of Health Sciences (FUSH), Foundation University Islamabad (FUI), Islamabad, Pakistan
| | - Imran Fazal
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratories (MDL), Foundation University School of Health Sciences (FUSH), Foundation University Islamabad (FUI), Islamabad, Pakistan
| |
Collapse
|
35
|
Sabt A, Abdelraof M, Hamissa MF, Noamaan MA. Antibacterial Activity of Quinoline-Based Derivatives against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa: Design, Synthesis, DFT and Molecular Dynamic Simulations. Chem Biodivers 2023; 20:e202300804. [PMID: 37933986 DOI: 10.1002/cbdv.202300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023]
Abstract
Bacterial virulence becomes a significant challenge for clinical treatments, particularly those characterized as Multi-Drug-Resistant (MDR) strains. Therefore, the preparation of new compounds with active moieties could be a successful approach for eradication of MDR strains. For this purpose, newly synthesized quinoline compounds were prepared and tested for their antimicrobial activity against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Pseudomonas Aeruginosa (PA). Among the synthesized derivatives, compounds 1-(quinolin-2-ylamino)pyrrolidine-2,5-dione (8) and 2-(2-((5-methylfuran-2-yl)methylene)hydrazinyl)quinoline (12) were shown to possess the highest antimicrobial activity with the minimum inhibitory concentration with the values of 5±2.2 and10±1.5 μg/mL towards Pseudomonas aeruginosa without any activity towards MRSA. Interestingly, compounds 2-(2-((1H-indol-3-yl)methylene)hydrazinyl)quinoline (13) and 2-(4-bromophenyl)-3-(quinolin-2-ylamino)thiazolidin-4-one (16c) showed significant inhibition activity against Staphylococcus aureus MRSA and Pseudomonas aeruginosa. Compound 13 (with indole moiety) particularly displayed excellent bactericidal activity with low MIC values 20±3.3 and 10±1.5 μg/mL against Staphylococcus aureus MRSA and Pseudomonas aeruginosa, respectively. Effects molecular modelling was used to determine the mode of action for the antimicrobial effect. The stability of complexes formed by docking and target-ligand pairing was evaluated using molecular dynamics simulations. The compounds were also tested for binding affinity to the target protein using MM-PBSA. Density-functional theory (DFT) calculations were also used to investigate the electrochemical properties of various compounds.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center (NRC), 33 El Behouth St., Giza P.O., 12622, Egypt
| | - Mohamed Farouk Hamissa
- Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | - Mahmoud A Noamaan
- Mathematics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
36
|
Ghosh R, De M. Liposome-Based Antibacterial Delivery: An Emergent Approach to Combat Bacterial Infections. ACS OMEGA 2023; 8:35442-35451. [PMID: 37810644 PMCID: PMC10551917 DOI: 10.1021/acsomega.3c04893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
The continued emergence and spread of drug-resistant pathogens and the decline in the approval of new antimicrobial drugs pose a major threat to managing infectious diseases, resulting in high morbidity and mortality. Even though a significant variety of antibiotics can effectively cure many bacterial infectious diseases, microbial infections remain one of the biggest global health problems, which may be due to the traditional drug delivery system's shortcomings which lead to poor therapeutic index, low drug absorption, and numerous other drawbacks. Further, the use of traditional antibiotics to treat infectious diseases has always been accompanied by the emergence of multidrug resistance and adverse side effects. Despite developing numerous new antibiotics, nanomaterials, and various techniques to combat infectious diseases, they have persisted as major global health issues. Improving the current antibiotic delivery systems is a promising approach to solving many life-threatening infections. In this context, nanoliposomal systems have recently attracted much attention. Herein, we attempt to provide a concise summary of recent studies that have used liposomal nanoparticles as delivery systems for antibacterial medicines. The minireview also highlights the enormous potential of liposomal nanoparticles as antibiotic delivery systems. The future of these promising approaches lies in developing more efficient delivery systems by precisely targeting bacterial cells with antibiotics with minimum cytotoxicity and high bacterial combating efficacy.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
37
|
Hamzah H, Nuryastuti T, Rahmah W, Chabib L, Syamsul ES, Lestari D, Jabbar A, Tunjung Pratiwi SU. Molecular Docking Study of the C-10 Massoia Lactone Compound as an Antimicrobial and Antibiofilm Agent against Candida tropicalis. ScientificWorldJournal 2023; 2023:6697124. [PMID: 37766863 PMCID: PMC10522437 DOI: 10.1155/2023/6697124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is now considered a global health problem because it reduces the effectiveness of antimicrobial drugs. According to the World Health Organization (WHO), the highest mortality rate is associated with infections caused by multidrug-resistant microorganisms, with approximately 700,000 deaths worldwide each year. The aim of this study was to determine the potential of C-10 massoia lactone to inhibit the growth of fungi and C. tropicalis biofilm, and molecular docking studies were performed to determine the nature of the inhibition. The study was conducted using the microdilution method for antifungal and antibiofilm testing and designed with a molecular docking approach. Furthermore, an analysis using the scanning electron microscope (SEM) was performed to evaluate the mechanism of effect. The results obtained showed that C-10 massoia lactone can inhibit the growth of fungi by 84.21% w/v. Meanwhile, the growth of C. tropicalis biofilm in the intermediate phase was 80.23% w/v and in the mature phase was 74.23% w/v. SEM results showed that C-10 massoia lactone damaged the EPS matrix of C. tropicalis so that hyphal formation was hindered due to damage to fungal cells, resulting in a decrease in attachment, density, and lysis of C. tropicalis fungal cells. Based on molecular docking tests, C-10 massoia lactone was able to inhibit biofilm formation without affecting microbial growth, while docking C-10 massoia lactone showed a significant binding and has the potential as an antifungal agent. In conclusion, the C-10 massoia lactone compound has the potential as an antibiofilm against C. tropicalis, so it can become a new antibiofilm agent.
Collapse
Affiliation(s)
- Hasyrul Hamzah
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Titik Nuryastuti
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Street, North Sekip, Yogyakarta 55281, Indonesia
| | - Widya Rahmah
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Street, North Sekip, Yogyakarta 55281, Indonesia
| | - Lutfi Chabib
- Department of Pharmacy, Islamic University of Indonesia, Yogyakarta, Indonesia
| | - Eka Siswanto Syamsul
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Samarinda, Samarinda, East Borneo, Indonesia
| | - Dwi Lestari
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia
| | - Asriullah Jabbar
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Pharmacy, Faculty of Pharmacy, Haluoleo University, Kendari 93232, Indonesia
| | - Sylvia Utami Tunjung Pratiwi
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Faculty of Pharmacy, Universitas Gadjah Mada, North Sekip, Yogyakarta 55281, Indonesia
| |
Collapse
|
38
|
Soto-Garcia LF, Guerrero-Rodriguez ID, Hoang L, Laboy-Segarra SL, Phan NTK, Villafuerte E, Lee J, Nguyen KT. Photocatalytic and Photothermal Antimicrobial Mussel-Inspired Nanocomposites for Biomedical Applications. Int J Mol Sci 2023; 24:13272. [PMID: 37686076 PMCID: PMC10488035 DOI: 10.3390/ijms241713272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial infection has traditionally been treated with antibiotics, but their overuse is leading to the development of antibiotic resistance. This may be mitigated by alternative approaches to prevent or treat bacterial infections without utilization of antibiotics. Among the alternatives is the use of photo-responsive antimicrobial nanoparticles and/or nanocomposites, which present unique properties activated by light. In this study, we explored the combined use of titanium oxide and polydopamine to create nanoparticles with photocatalytic and photothermal antibacterial properties triggered by visible or near-infrared light. Furthermore, as a proof-of-concept, these photo-responsive nanoparticles were combined with mussel-inspired catechol-modified hyaluronic acid hydrogels to form novel light-driven antibacterial nanocomposites. The materials were challenged with models of Gram-negative and Gram-positive bacteria. For visible light, the average percentage killed (PK) was 94.6 for E. coli and 92.3 for S. aureus. For near-infrared light, PK for E. coli reported 52.8 and 99.2 for S. aureus. These results confirm the exciting potential of these nanocomposites to prevent the development of antibiotic resistance and also to open the door for further studies to optimize their composition in order to increase their bactericidal efficacy for biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kytai T. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| |
Collapse
|
39
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
40
|
Guo X, Zhang J, Wang Y, Zhou F, Li Q, Teng T. Phenotypic Characterization and Comparative Genomic Analyses of Mycobacteriophage WIVsmall as A New Member Assigned to F1 Subcluster. Curr Issues Mol Biol 2023; 45:6432-6448. [PMID: 37623225 PMCID: PMC10453261 DOI: 10.3390/cimb45080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, we conducted the morphological observation, biological and genomic characterization, evolutionary analysis, comparative genomics description, and proteome identification of a recently isolated mycobacteriophage, WIVsmall. Morphologically, WIVsmall is classified as a member of the Siphoviridae family, characterized by a flexible tail, measuring approximately 212 nm in length. The double-stranded phage genome DNA of WIVsmall spans 53,359 base pairs, and exhibits a G + C content of 61.01%. The genome of WIVsmall comprises 103 protein-coding genes, while no tRNA genes were detected. The genome annotation unveiled the presence of functional gene clusters responsible for mycobacteriophage assembly and maturation, replication, cell lysis, and functional protein synthesis. Based on the analysis of the phylogenetic tree, the genome of WIVsmall was classified as belonging to subgroup F1. A comparative genomics analysis indicated that the WIVsmall genome exhibited the highest similarity to the phage SG4, with a percentage of 64%. The single-step growth curve analysis of WIVsmall revealed a latent period of 120 min, and an outbreak period of 200 min.
Collapse
Affiliation(s)
- Xinge Guo
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jing Zhang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fang Zhou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qiming Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
41
|
Shin MK, Hwang IW, Jang BY, Bu KB, Yoo JS, Sung JS. In silico identification of novel antimicrobial peptides from the venom gland transcriptome of the spider Argiope bruennichi (Scopoli, 1772). Front Microbiol 2023; 14:1249175. [PMID: 37577428 PMCID: PMC10416796 DOI: 10.3389/fmicb.2023.1249175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
As the emergence and prevalence of antibiotic-resistant strains have resulted in a global crisis, there is an urgent need for new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit inhibitory activity against a wide spectrum of pathogens and can be utilized as an alternative to conventional antibiotics. In this study, two novel AMPs were identified from the venom transcriptome of the spider Argiope bruennichi (Scopoli, 1772) using in silico methods, and their antimicrobial activity was experimentally validated. Aranetoxin-Ab2a (AATX-Ab2a) and Aranetoxin-Ab3a (AATX-Ab3a) were identified by homology analysis and were predicted to have high levels of antimicrobial activity based on in silico analysis. Both peptides were found to have antibacterial effect against Gram-positive and -negative strains, and, in particular, showed significant inhibitory activity against multidrug-resistant Pseudomonas aeruginosa isolates. In addition, AATX-Ab2a and AATX-Ab3a inhibited animal and vegetable fungal strains, while showing low toxicity to normal human cells. The antimicrobial activity of the peptides was attributed to the increased permeability of microbial membranes. The study described the discovery of novel antibiotic candidates, AATX-Ab2a and AATX-Ab3a, using the spider venom gland transcriptome, and validated an in silico-based method for identifying functional substances from biological resources.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - In-Wook Hwang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Bo-Young Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kyung-Bin Bu
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Jung Sun Yoo
- Species Diversity Research Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
42
|
Zhu S, Yang B, Jia Y, Yu F, Wang Z, Liu Y. Comprehensive analysis of disinfectants on the horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131428. [PMID: 37094448 DOI: 10.1016/j.jhazmat.2023.131428] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The propagation of antimicrobial resistance (AMR) is constantly paralyzing our healthcare systems. In addition to the pressure of antibiotic selection, the roles of non-antibiotic compounds in disseminating antibiotic resistance genes (ARGs) are a matter of great concerns. This study aimed to explore the impact of different disinfectants on the horizontal transfer of ARGs and their underlying mechanisms. First, the effects of different kinds of disinfectants on the conjugative transfer of RP4-7 plasmid were evaluated. Results showed that quaternary ammonium salt, organic halogen, alcohol and guanidine disinfectants significantly facilitated the conjugative transfer. Conversely, heavy-metals, peroxides and phenols otherwise displayed an inhibitory effect. Furthermore, we deciphered the mechanism by which guanidine disinfectants promoted conjugation, which includes increased cell membrane permeability, over-production of ROS, enhanced SOS response, and altered expression of conjugative transfer-related genes. More critically, we also revealed that guanidine disinfectants promoted bacterial energy metabolism by enhancing the activity of electron transport chain (ETC) and proton force motive (PMF), thus promoting ATP synthesis and flagellum motility. Overall, our findings reveal the promotive effects of disinfectants on the transmission of ARGs and highlight the potential risks caused by the massive use of guanidine disinfectants, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shuyao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Feiyu Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
43
|
Umarje SC, Banerjee SK. Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 2023; 23:1113-1135. [PMID: 38007617 DOI: 10.1080/14712598.2023.2279644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION The drying up of antibiotic pipeline has necessitated the development of alternative therapeutic strategies to control the problem of antimicrobial resistance (AMR) that is expected to kill 10-million people annually by 2050. Newer therapeutic approaches address the shortcomings of traditional small-molecule antibiotics - the lack of specificity, evolvability, and susceptibility to mutation-based resistance. These 'non-traditional' molecules are biologicals having a complex structure and mode(s) of action that makes them resilient to resistance. AREAS COVERED This review aims to provide information about the non-traditional drug development approaches to tackle the problem of antimicrobial resistance, from the pre-antibiotic era to the latest developments. We have covered the molecules under development in the clinic with literature sourced from reviewed scholarly articles, official company websites involved in innovation of concerned therapeutics, press releases from the regulatory bodies, and clinical trial databases. EXPERT OPINION Formal introduction of non-traditional therapies in general practice can be quick and feasible only if supported with companion diagnostics and used in conjunction with established therapies. Owing to relatively higher development costs, non-traditional therapeutics require more funding as well as well as clarity in regulatory and clinical path. We are hopeful these issues are adequately addressed before AMR develops into a pandemic.
Collapse
Affiliation(s)
- Siddharth C Umarje
- Department of Proteomics, AbGenics Life Sciences Pvt. Ltd., Pune, India
- AbGenics Life Sciences Pvt. Ltd., Pune, India
| | | |
Collapse
|
44
|
Parisi M, Lucidi M, Visca P, Cincotti G. Super-Resolution Optical Imaging of Bacterial Cells. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2023; 29:1-13. [DOI: 10.1109/jstqe.2022.3228121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Miranda Parisi
- Engineering Department, University Roma Tre, Rome, Italy
| | | | - Paolo Visca
- Science Department, University Roma Tre, Rome, Italy
| | | |
Collapse
|
45
|
Gal Y, Marcus H, Mamroud E, Aloni-Grinstein R. Mind the Gap-A Perspective on Strategies for Protecting against Bacterial Infections during the Period from Infection to Eradication. Microorganisms 2023; 11:1701. [PMID: 37512874 PMCID: PMC10386665 DOI: 10.3390/microorganisms11071701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria is a pressing public health concern, highlighting the need for alternative approaches to control bacterial infections. Promising approaches include the development of therapeutic vaccines and the utilization of innate immune activation techniques, which may prove useful in conjunction with antibiotics, as well as other antibacterial modalities. However, innate activation should be fast and self- or actively- contained to prevent detrimental consequences. TLR ligand adjuvants are effective at rapidly activating, within minutes to hours, the innate immune system by inducing cytokine production and other signaling molecules that bolster the host's immune response. Neutrophils serve as the first line of defense against invading pathogens by capturing and destroying them through various mechanisms, such as phagocytosis, intracellular degradation, and the formation of NETs. Nutritional immunity is another host defense mechanism that limits the availability of essential metals, such as iron, from invading bacterial pathogens. Thus, iron starvation has been proposed as a potential antibacterial strategy. In this review, we focus on approaches that have the potential to enhance rapid and precise antibacterial responses, bridging the gap between the onset of infection and the elimination of bacteria, hence limiting the infection by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hadar Marcus
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
46
|
Fernández-Fernández R, Lozano C, Reuben RC, Ruiz-Ripa L, Zarazaga M, Torres C. Comprehensive Approaches for the Search and Characterization of Staphylococcins. Microorganisms 2023; 11:1329. [PMID: 37317303 PMCID: PMC10221470 DOI: 10.3390/microorganisms11051329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Novel and sustainable approaches are required to curb the increasing threat of antimicrobial resistance (AMR). Within the last decades, antimicrobial peptides, especially bacteriocins, have received increased attention and are being explored as suitable alternatives to antibiotics. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria as a self-preservation method against competitors. Bacteriocins produced by Staphylococcus, also referred to as staphylococcins, have steadily shown great antimicrobial potential and are currently being considered promising candidates to mitigate the AMR menace. Moreover, several bacteriocin-producing Staphylococcus isolates of different species, especially coagulase-negative staphylococci (CoNS), have been described and are being targeted as a good alternative. This revision aims to help researchers in the search and characterization of staphylococcins, so we provide an up-to-date list of bacteriocin produced by Staphylococcus. Moreover, a universal nucleotide and amino acid-based phylogeny system of the well-characterized staphylococcins is proposed that could be of interest in the classification and search for these promising antimicrobials. Finally, we discuss the state of art of the staphylococcin applications and an overview of the emerging concerns.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
47
|
Chehelgerdi M, Heidarnia F, Dehkordi FB, Chehelgerdi M, Khayati S, Khorramian-Ghahfarokhi M, Kabiri-Samani S, Kabiri H. Immunoinformatic prediction of potential immunodominant epitopes from cagW in order to investigate protection against Helicobacter pylori infection based on experimental consequences. Funct Integr Genomics 2023; 23:107. [PMID: 36988775 PMCID: PMC10049908 DOI: 10.1007/s10142-023-01031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Helicobacter pylori is a leading cause of stomach cancer and peptic ulcers. Thus, identifying epitopes in H. pylori antigens is important for disease etiology, immunological surveillance, enhancing early detection tests, and developing optimal epitope-based vaccines. We used immunoinformatic and computational methods to create a potential CagW epitope candidate for H. pylori protection. The cagW gene of H. pylori was amplified and cloned into pcDNA3.1 (+) for injection into the muscles of healthy BALB/c mice to assess the impact of the DNA vaccine on interleukin levels. The results will be compared to a control group of mice that received PBS or cagW-pcDNA3.1 (+) vaccinations. An analysis of CagW protein antigens revealed 8 CTL and 7 HTL epitopes linked with AYY and GPGPG, which were enhanced by adding B-defensins to the N-terminus. The vaccine's immunogenicity, allergenicity, and physiochemistry were validated, and its strong activation of TLRs (1, 2, 3, 4, and 10) suggests it is antigenic. An in-silico cloning and immune response model confirmed the vaccine's expression efficiency and predicted its impact on the immune system. An immunofluorescence experiment showed stable and bioactive cagW gene expression in HDF cells after cloning the whole genome into pcDNA3.1 (+). In vivo vaccination showed that pcDNA3.1 (+)-cagW-immunized mice had stronger immune responses and a longer plasmid DNA release window than control-plasmid-immunized mice. After that, bioinformatics methods predicted, developed, and validated the three-dimensional structure. Many online services docked it with Toll-like receptors. The vaccine was refined using allergenicity, antigenicity, solubility, physicochemical properties, and molecular docking scores. Virtual-reality immune system simulations showed an impressive reaction. Codon optimization and in-silico cloning produced E. coli-expressed vaccines. This study suggests a CagW epitopes-protected H. pylori infection. These studies show that the proposed immunization may elicit particular immune responses against H. pylori, but laboratory confirmation is needed to verify its safety and immunogenicity.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Fatemeh Heidarnia
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahr-e Kord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran.
| | - Shahoo Khayati
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saber Kabiri-Samani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| |
Collapse
|
48
|
Escobar-Salom M, Barceló IM, Jordana-Lluch E, Torrens G, Oliver A, Juan C. Bacterial virulence regulation through soluble peptidoglycan fragments sensing and response: knowledge gaps and therapeutic potential. FEMS Microbiol Rev 2023; 47:fuad010. [PMID: 36893807 PMCID: PMC10039701 DOI: 10.1093/femsre/fuad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Given the growing clinical-epidemiological threat posed by the phenomenon of antibiotic resistance, new therapeutic options are urgently needed, especially against top nosocomial pathogens such as those within the ESKAPE group. In this scenario, research is pushed to explore therapeutic alternatives and, among these, those oriented toward reducing bacterial pathogenic power could pose encouraging options. However, the first step in developing these antivirulence weapons is to find weak points in the bacterial biology to be attacked with the goal of dampening pathogenesis. In this regard, during the last decades some studies have directly/indirectly suggested that certain soluble peptidoglycan-derived fragments display virulence-regulatory capacities, likely through similar mechanisms to those followed to regulate the production of several β-lactamases: binding to specific transcriptional regulators and/or sensing/activation of two-component systems. These data suggest the existence of intra- and also intercellular peptidoglycan-derived signaling capable of impacting bacterial behavior, and hence likely exploitable from the therapeutic perspective. Using the well-known phenomenon of peptidoglycan metabolism-linked β-lactamase regulation as a starting point, we gather and integrate the studies connecting soluble peptidoglycan sensing with fitness/virulence regulation in Gram-negatives, dissecting the gaps in current knowledge that need filling to enable potential therapeutic strategy development, a topic which is also finally discussed.
Collapse
Affiliation(s)
- María Escobar-Salom
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Isabel María Barceló
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
| | - Gabriel Torrens
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University. Försörjningsvägen 2A, SE-901 87 Umeå, Sweden
| | - Antonio Oliver
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Carlos Juan
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
49
|
Hays MR, Kildow BJ, Hartman CW, Lyden ER, Springer BD, Fehring TK, Garvin KL. Increased Incidence of Methicillin-Resistant Staphylococcus aureus in Knee and Hip Prosthetic Joint Infection. J Arthroplasty 2023; 38:S326-S330. [PMID: 36813212 DOI: 10.1016/j.arth.2023.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Periprosthetic joint infection (PJI) is a devastating complication of knee and hip arthroplasty. Past literature has shown that gram-positive bacteria are commonly responsible for these infections, although limited research exists studying the changes in the microbial profile of PJIs over time. This study sought to analyze the incidence and trends of pathogens responsible for PJI over three decades. METHODS This is a multi-institutional retrospective review of patients who had a knee or hip PJI from 1990 to 2020. Patients with a known causative organism were included and those with insufficient culture sensitivity data were excluded. There were 731 eligible joint infections from 715 patients identified. Organisms were divided into multiple categories based on genus/species and 5-year increments were used to analyze the study period. The Cochran-Armitage trend tests were used to evaluate linear trends in microbial profile over time and a P-value <.05 was considered statistically significant. RESULTS There was a statistically significant positive linear trend in the incidence of methicillin-resistant Staphylococcus aureus over time (P = .0088) as well as a statistically significant negative linear trend in the incidence of coagulase-negative staphylococci over time (P = .0018). There was no statistical significance between organism and affected joint (knee/hip). CONCLUSION The incidence of methicillin-resistant Staphylococcus aureus PJI is increasing over time, whereas, coagulase-negative staphylococci PJI is decreasing, paralleling the global trend of antibiotic resistance. Identifying these trends may help with the prevention and treatment of PJI through methods such as remodeling perioperative protocols, modifying prophylactic/empiric antimicrobial approaches, or transitioning to alternative therapeutic strategies.
Collapse
Affiliation(s)
- Matthew R Hays
- Department of Orthopaedic Surgery, University Nebraska Medical Center, Omaha, Nebraska
| | - Beau J Kildow
- Department of Orthopaedic Surgery, University Nebraska Medical Center, Omaha, Nebraska
| | - Curtis W Hartman
- Department of Orthopaedic Surgery, University Nebraska Medical Center, Omaha, Nebraska
| | - Elizabeth R Lyden
- Department of Orthopaedic Surgery, University Nebraska Medical Center, Omaha, Nebraska
| | | | | | - Kevin L Garvin
- Department of Orthopaedic Surgery, University Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
50
|
Liu Y, Li Z, Li H, Wan S, Tang S. Bacillus pumilus TS1 alleviates Salmonella Enteritidis-induced intestinal injury in broilers. BMC Vet Res 2023; 19:41. [PMID: 36759839 PMCID: PMC9912683 DOI: 10.1186/s12917-023-03598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the current context of reduced and limited antibiotic use, several pathogens and stressors cause intestinal oxidative stress in poultry, which leads to a reduced feed intake, slow or stagnant growth and development, and even death, resulting in huge economic losses to the poultry breeding industry. Oxidative stress in animals is a non-specific injury for which no targeted drug therapy is available; however, the health of poultry can be improved by adding appropriate feed additives. Bacillus pumilus, as a feed additive, promotes growth and development and reduces intestinal oxidative stress damage in poultry. Heat shock protein 70 (HSP70) senses oxidative damage and repairs unfolded and misfolded proteins; its protective effect has been widely investigated. Mitogen-activated protein kinase/protein kinase C (MAPK/PKC) and hypoxia inducible factor-1 alpha (HIF-1α) are also common proteins associated with inflammatory response induced by several stressors, but there is limited research on these proteins in the context of poultry intestinal Salmonella Enteritidis (SE) infections. In the present study, we isolated a novel strain of Bacillus pumilus with excellent performance from the feces of healthy yaks, named TS1. To investigate the effect of TS1 on SE-induced enteritis in broilers, 120 6-day-old white-feathered broilers were randomly divided into four groups (con, TS1, SE, TS1 + SE). TS1 and TS1 + SE group chickens were fed with 1.4 × 107 colony-forming units per mL of TS1 for 15 days and intraperitoneally injected with SE to establish the oxidative stress model. Then, we investigated whether TS1 protects the intestine of SE-treated broiler chickens using inflammatory cytokine gene expression analysis, stress protein quantification, antioxidant quantification, and histopathological analysis. RESULTS The TS1 + SE group showed lower MDA and higher GSH-Px, SOD, and T-AOC than the SE group. TS1 alleviated the effects of SE on intestinal villus length and crypt depth. Our results suggest that SE exposure increased the expression of inflammatory factors (IL-1β, IL-6, TNF-α, IL-4, and MCP-1), p38 MAPK, and PKCβ and decreased the expression of HSP60, HSP70, and HIF-1α, whereas TS1 alleviated these effects. CONCLUSIONS Bacillus pumilus TS1 alleviated oxidative stress damage caused by SE and attenuated the inflammatory response in broilers through MAPK/PKC regulation of HSPs/HIF-1α.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|