1
|
Dong S, Li D, Shi D. Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne) 2024; 11:1335551. [PMID: 38606161 PMCID: PMC11007107 DOI: 10.3389/fmed.2024.1335551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
As chronic inflammatory conditions driven by immune dysregulation are influenced by genetics and environment factors, psoriasis and atopic dermatitis (AD) have traditionally been considered to be distinct diseases characterized by different T cell responses. Psoriasis, associated with type 17 helper T (Th17)-mediated inflammation, presents as well-defined scaly plaques with minimal pruritus. AD, primarily linked to Th2-mediated inflammation, presents with poorly defined erythema, dry skin, and intense itching. However, psoriasis and AD may overlap or transition into one another spontaneously, independent of biological agent usage. Emerging evidence suggests that defects in skin barrier-related molecules interact with the polarization of T cells, which forms a skin barrier-inflammatory loop with them. This loop contributes to the chronicity of the primary disease or the transition between psoriasis and AD. This review aimed to elucidate the mechanisms underlying skin barrier defects in driving the overlap between psoriasis and AD. In this review, the importance of repairing the skin barrier was underscored, and the significance of tailoring biologic treatments based on individual immune status instead of solely adhering to the treatment guidelines for AD or psoriasis was emphasized.
Collapse
Affiliation(s)
- Sitan Dong
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Shi
- Department of Dermatology/Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
2
|
Sachslehner AP, Surbek M, Golabi B, Geiselhofer M, Jäger K, Hess C, Kuchler U, Gruber R, Eckhart L. Transglutaminase Activity Is Conserved in Stratified Epithelia and Skin Appendages of Mammals and Birds. Int J Mol Sci 2023; 24:2193. [PMID: 36768511 PMCID: PMC9916842 DOI: 10.3390/ijms24032193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The cross-linking of structural proteins is critical for establishing the mechanical stability of the epithelial compartments of the skin and skin appendages. The introduction of isopeptide bonds between glutamine and lysine residues depends on catalysis by transglutaminases and represents the main protein cross-linking mechanism besides the formation of disulfide bonds. Here, we used a fluorescent labeling protocol to localize the activity of transglutaminases on thin sections of the integument and its appendages in mammals and birds. In human tissues, transglutaminase activity was detected in the granular layer of the epidermis, suprabasal layers of the gingival epithelium, the duct of sweat glands, hair follicles and the nail matrix. In the skin appendages of chickens, transglutaminase activity was present in the claw matrix, the feather follicle sheath, the feather sheath and in differentiating keratinocytes of feather barb ridges. During chicken embryogenesis, active transglutaminase was found in the cornifying epidermis, the periderm and the subperiderm. Transglutaminase activity was also detected in the filiform papillae on the tongue of mice and in conical papillae on the tongue of chickens. In summary, our study reveals that transglutaminase activities are widely distributed in integumentary structures and suggests that transglutamination contributes to the cornification of hard skin appendages such as nails and feathers.
Collapse
Affiliation(s)
| | - Marta Surbek
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Miriam Geiselhofer
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Jäger
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ulrike Kuchler
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Transglutaminase 3 attenuates skin inflammation in psoriasis by inhibiting NF-κB activation via p-STAT3–TET3 signaling. J Invest Dermatol 2022; 142:2968-2977.e10. [DOI: 10.1016/j.jid.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
|
4
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
5
|
Pan Y, You Y, Sun L, Sui Q, Liu L, Yuan H, Chen C, Liu J, Wen X, Dai L, Sun H. The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-κB-mediated inflammation. Br J Pharmacol 2021; 178:4907-4922. [PMID: 34460100 DOI: 10.1111/bph.15673] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is a chronic inflammatory skin disease associated with both innate and adaptive immune responses. The stimulator of interferon genes (STING) protein engages in sensing of cytosolic DNA to initiate dsDNA-driven immune responses. In vitro and in vivo anti-psoriasis effects of STING antagonist H-151 were explored. EXPERIMENTAL APPROACH We analysed the gene expression profile of STING and related downstream targets in the skin samples of healthy people and psoriasis patients from the GEO database. Cellular inhibitory activity of H-151 on STING pathway was confirmed via qPCR and western blotting. The preventive effect of topical application of H-151 on imiquimod-induced psoriatic mice was examined through histological, immunohistochemical, immunofluorescent, flow cytometric analysis, ELISA Kits and other approaches. Preliminary mechanistic studies were also performed. KEY RESULTS Gene expressions of STING and its downstream target were up-regulated in lesional skin samples from psoriasis patients. Topical administration of H-151 attenuated the skin lesions in imiquimod-induced psoriatic mouse model, while the secretion of pro-inflammatory cytokines (IL-17, IL-23 and IL-6), infiltration of M1 macrophages and differentiation of Th17 cells were significantly suppressed by H-151 treatment. Mechanistically, H-151 inhibited STING/NF-κB signalling in both keratinocytes and immune cells. CONCLUSION AND IMPLICATIONS H-151 displayed anti-inflammatory activity in both keratinocytes and immune cells, and decreased the severity of psoriatic response in vivo. Inhibition of STING signalling pathway may represent a novel therapeutic approach to psoriasis and related complications.
Collapse
Affiliation(s)
- Yanhong Pan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yanping You
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, China
| | - Qibang Sui
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin, China
| |
Collapse
|
6
|
Transglutaminase 2 as a Marker for Inflammation and Therapeutic Target in Sepsis. Int J Mol Sci 2021; 22:ijms22041897. [PMID: 33672962 PMCID: PMC7918628 DOI: 10.3390/ijms22041897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis results in lethal organ malfunction due to dysregulated host response to infection, which is a condition with increasing prevalence worldwide. Transglutaminase 2 (TG2) is a crosslinking enzyme that forms a covalent bond between lysine and glutamine. TG2 plays important roles in diverse cellular processes, including extracellular matrix stabilization, cytoskeletal function, cell motility, adhesion, signal transduction, apoptosis, and cell survival. We have shown that the co-culture of Candida albicans and hepatocytes activates and induces the translocation of TG2 into the nucleus. In addition, the expression and activation of TG2 in liver macrophages was dramatically induced in the lipopolysaccharide-injected and cecal ligation puncture-operated mouse models of sepsis. Based on these findings and recently published research, we have reviewed the current understanding of the relationship between TG2 and sepsis. Following the genetic and pharmacological inhibition of TG2, we also assessed the evidence regarding the use of TG2 as a potential marker and therapeutic target in inflammation and sepsis.
Collapse
|
7
|
Le A, Azouz A, Thomas S, Istaces N, Nguyen M, Goriely S. JNK1 Signaling Downstream of the EGFR Pathway Contributes to Aldara ®-Induced Skin Inflammation. Front Immunol 2021; 11:604785. [PMID: 33613525 PMCID: PMC7892463 DOI: 10.3389/fimmu.2020.604785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023] Open
Abstract
c-Jun N-terminal protein kinase 1 (JNK1) is involved in multiple biological processes but its implication in inflammatory skin diseases is still poorly defined. Herein, we studied the role of JNK1 in the context of Aldara®-induced skin inflammation. We observed that constitutive ablation of JNK1 reduced Aldara®-induced acanthosis and expression of inflammatory markers. Conditional deletion of JNK1 in myeloid cells led to reduced skin inflammation, a finding that was associated with impaired Aldara®-induced inflammasome activation in vitro. Next, we evaluated the specific role of JNK1 in epidermal cells. We observed reduced Aldara®-induced acanthosis despite similar levels of inflammatory markers. Transcriptomic and epigenomic analysis of keratinocytes revealed the potential involvement of JNK1 in the EGFR signaling pathway. Finally, we show that inhibition of the EGFR pathway reduced Aldara®-induced acanthosis. Taken together, these data indicate that JNK1 plays a dual role in the context of psoriasis by regulating the production of inflammatory cytokines by myeloid cells and the sensitivity of keratinocytes to EGFR ligands. These results suggest that JNK1 could represent a valuable therapeutic target in the context of psoriasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Stanislas Goriely
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
8
|
Chermnykh ES, Alpeeva EV, Vorotelyak EA. Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer. Cells 2020; 9:cells9091996. [PMID: 32872587 PMCID: PMC7563467 DOI: 10.3390/cells9091996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.
Collapse
|