1
|
Mukherjee A, Jodder J, Chowdhury S, Das H, Kundu P. A novel stress-inducible dCas9 system for solanaceous plants. Int J Biol Macromol 2025; 308:142462. [PMID: 40157661 DOI: 10.1016/j.ijbiomac.2025.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Conditional manipulation of gene expression is essential in plant biology, yet a simple stimuli-based inducible system for regulating any plant gene is lacking. Here, we present an innovative stress-inducible CRISPR/dCas9-based gene-regulatory toolkit tailored for intentional gene regulation in solanaceous plants. We have translationally fused the transmembrane domain of a tomato membrane-bound NAC transcription factor with dCas9 to utilize the reversible-tethering-based activation mechanism. This system sequesters dCas9 to the plasma membrane under normal conditions and allows membrane detachment in response to heat induction and NLS-mediated nuclear transfer, enabling stress-inducible gene regulation. Transient assays with tomato codon-optimized dCas9-assisted inducible CRISPR activation and interference systems confirmed their superior ability on transcriptional control, rapid induction, and reversibility after stimulus withdrawal in solanaceous plants. The transformative potential of the toolkit was exemplified by enhancing tomato immunity against bacterial speck disease under elevated temperatures by precisely regulating crucial salicylic acid signalling components, SlCBP60g and SlSARD1. Additionally, it was instrumental in engineering heat-stress tolerance in tomato plants through multiplex activation of heat-responsive transcription factors, SlNAC2 and SlHSFA6b. These findings demonstrate the unprecedented temporal control offered by this novel stress-inducible toolkit over gene-expression dynamics, paving the way for favourable manipulation of complex traits in environmentally-challenged crops.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Jayanti Jodder
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| | - Shreya Chowdhury
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Himadri Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
2
|
Wu Y, Zhong A, Evangelisti A, Sidharta M, Danwei H, Studer L, Zhou T. Leveraging CRISPR activation for rapid assessment of gene editing products in human pluripotent stem cells. Stem Cell Reports 2025:102499. [PMID: 40345204 DOI: 10.1016/j.stemcr.2025.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Verification of genome editing in human pluripotent stem cells (hPSCs), particularly at silent loci, is desirable but challenging, as it often requires complex and time-intensive differentiation to induce their expression. Here, we establish a rapid and effective workflow for verifying genome-edited hPSC lines targeting unexpressed genes using CRISPR-mediated transcriptional activation (CRISPRa). We systematically compared the efficiency of various CRISPRa systems and identified the synergistic activation mediator (SAM) system as the most potent for activating silent genes in hPSCs. Furthermore, combining SAM with TET1, a demethylation module, enhanced the activation of methylated genes. By inducing targeted gene activation in undifferentiated hPSCs using CRISPRa, we successfully verified single- and dual-reporter lines, functionally tested degradation tag (dTAG) knockins, and validated silent gene knockouts within 48 h. This approach bypasses the need to induce target gene expression through differentiation, providing a rapid and effective assay for verifying silent gene editing at the hPSC stage.
Collapse
Affiliation(s)
- Youjun Wu
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Aaron Zhong
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Alessandro Evangelisti
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Mega Sidharta
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Huangfu Danwei
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
3
|
Nayak N, Mehrotra S, Karamchandani AN, Santelia D, Mehrotra R. Recent advances in designing synthetic plant regulatory modules. FRONTIERS IN PLANT SCIENCE 2025; 16:1567659. [PMID: 40241826 PMCID: PMC11999978 DOI: 10.3389/fpls.2025.1567659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Introducing novel functions in plants through synthetic multigene circuits requires strict transcriptional regulation. Currently, the use of natural regulatory modules in synthetic circuits is hindered by our limited knowledge of complex plant regulatory mechanisms, the paucity of characterized promoters, and the possibility of crosstalk with endogenous circuits. Synthetic regulatory modules can overcome these limitations. This article introduces an integrative de novo approach for designing plant synthetic promoters by utilizing the available online tools and databases. The recent achievements in designing and validating synthetic plant promoters, enhancers, transcription factors, and the challenges of establishing synthetic circuits in plants are also discussed.
Collapse
Affiliation(s)
- Namitha Nayak
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| | | | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich Universitätstrasse, Zürich, Switzerland
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences Pilani, Goa, India
| |
Collapse
|
4
|
Verma SS, Sen CK, Srivastava R, Gnyawali SC, Katiyar P, Sahi AK, Kumar M, Rustagi Y, Liu S, Pandey D, Abouhashem AS, Fehme LNW, Kacar S, Mohanty SK, Faden-McCormack J, Murphy MP, Roy S, Wan J, Yoder MC, Singh K. Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing rescues perfusion and diabetic ischemic wound healing. Mol Ther 2025; 33:950-969. [PMID: 39863930 PMCID: PMC11897775 DOI: 10.1016/j.ymthe.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb. In this work, guided by single-cell RNA sequencing of human wound edge, we test the efficacy of gene-targeted therapeutic demethylation intending to improve VEGF-mediated neovascularization. PLCγ2 expression was diminished in all five identified diabetic wound-edge endothelial subclusters encompassing arterial, venous, and capillary cells. Such low expression was associated with hypermethylated PLCγ2 promoter. PLCγ2 promoter was also hypermethylated at murine diabetic ischemic wound edge. To specifically demethylate endothelial PLCγ2 promoter during VEGF therapy, a CRISPR-dCas9-based demethylation cocktail was delivered to the ischemic wound edge using tissue nanotransfection (TNT) technology. Demethylation-based upregulation of PLCγ2 during VEGF therapy improved wound tissue blood flow with an increased abundance of von Willebrand factor (vWF)+/PLCγ2+ vascular tissue elements by activating p44/p42-mitogen-activated protein kinase (MAPK) → hypoxia-inducible factor [HIF]-1α pathway. Taken together, TNT-based delivery of plasmids to demethylate the PLCγ2 gene promoter activity led to significant improvements in VEGF therapy for cutaneous diabetic wounds, resulting in better perfusion and accelerated wound closure.
Collapse
Affiliation(s)
- Sumit S Verma
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajneesh Srivastava
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Surya C Gnyawali
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Parul Katiyar
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ajay K Sahi
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Manishekhar Kumar
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yashika Rustagi
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Diksha Pandey
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ahmed S Abouhashem
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Leila N W Fehme
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sedat Kacar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sujit K Mohanty
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julie Faden-McCormack
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael P Murphy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Center for Computational Biology and Bioinformatics (CCBB), Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mervin C Yoder
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
6
|
Ohtani H, Liu M, Liang G, Jang HJ, Jones PA. Efficient activation of hundreds of LTR12C elements reveals cis-regulatory function determined by distinct epigenetic mechanisms. Nucleic Acids Res 2024; 52:8205-8217. [PMID: 38874474 DOI: 10.1093/nar/gkae498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Long terminal repeats (LTRs), which often contain promoter and enhancer sequences of intact endogenous retroviruses (ERVs), are known to be co-opted as cis-regulatory elements for fine-tuning host-coding gene expression. Since LTRs are mainly silenced by the deposition of repressive epigenetic marks, substantial activation of LTRs has been found in human cells after treatment with epigenetic inhibitors. Although the LTR12C family makes up the majority of ERVs activated by epigenetic inhibitors, how these epigenetically and transcriptionally activated LTR12C elements can regulate the host-coding gene expression remains unclear due to genome-wide alteration of transcriptional changes after epigenetic inhibitor treatments. Here, we specifically transactivated >600 LTR12C elements by using single guide RNA-based dCas9-SunTag-VP64, a site-specific targeting CRISPR activation (CRISPRa) system, with minimal off-target events. Interestingly, most of the transactivated LTR12C elements acquired the H3K27ac-marked enhancer feature, while only 20% were co-marked with promoter-associated H3K4me3 modifications. The enrichment of the H3K4me3 signal was intricately associated with downstream regions of LTR12C, such as internal regions of intact ERV9 or other types of retrotransposons. Here, we leverage an optimized CRISPRa system to identify two distinct epigenetic signatures that define LTR12C transcriptional activation, which modulate the expression of proximal protein-coding genes.
Collapse
Affiliation(s)
- Hitoshi Ohtani
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Minmin Liu
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - H Josh Jang
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
7
|
Nicolas-Martinez EC, Robinson O, Pflueger C, Gardner A, Corbett MA, Ritchie T, Kroes T, van Eyk CL, Scheffer IE, Hildebrand MS, Barnier JV, Rousseau V, Genevieve D, Haushalter V, Piton A, Denommé-Pichon AS, Bruel AL, Nambot S, Isidor B, Grigg J, Gonzalez T, Ghedia S, Marchant RG, Bournazos A, Wong WK, Webster RI, Evesson FJ, Jones KJ, Cooper ST, Lister R, Gecz J, Jolly LA. RNA variant assessment using transactivation and transdifferentiation. Am J Hum Genet 2024; 111:1673-1699. [PMID: 39084224 PMCID: PMC11339655 DOI: 10.1016/j.ajhg.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.
Collapse
Affiliation(s)
- Emmylou C Nicolas-Martinez
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Olivia Robinson
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alison Gardner
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mark A Corbett
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tarin Ritchie
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Thessa Kroes
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Clare L van Eyk
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - David Genevieve
- Montpellier University, Inserm U1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndromes, Genetics Department, Montpellier Hospital, Montpellier, France
| | - Virginie Haushalter
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Amélie Piton
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Anne-Sophie Denommé-Pichon
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Ange-Line Bruel
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Sophie Nambot
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Bertrand Isidor
- CRMRs "Anomalies du Développement et syndromes malformatifs" et "Déficiences Intellectuelles de causes rares", Centre de Génétique, CHU Dijon, Dijon, France; INSERM UMR1231, GAD "Génétique des Anomalies du Développement," FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - John Grigg
- Speciality of Ophthalmology, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| | - Tina Gonzalez
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Sondhya Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Rhett G Marchant
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| | - Adam Bournazos
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Wui-Kwan Wong
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia; Department of Paediatric Neurology, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Richard I Webster
- Department of Paediatric Neurology, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Frances J Evesson
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Kristi J Jones
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia; Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW 2000, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jozef Gecz
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| | - Lachlan A Jolly
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
8
|
Li T, Li S, Kang Y, Zhou J, Yi M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J Transl Med 2024; 22:749. [PMID: 39118151 PMCID: PMC11312220 DOI: 10.1186/s12967-024-05570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It's conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China
| | - Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Yue Kang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
9
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 PMCID: PMC11799355 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Clark T, Waller MA, Loo L, Moreno CL, Denes CE, Neely GG. CRISPR activation screens: navigating technologies and applications. Trends Biotechnol 2024; 42:1017-1034. [PMID: 38493051 DOI: 10.1016/j.tibtech.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) has become an integral part of the molecular biology toolkit. CRISPRa genetic screens are an exciting high-throughput means of identifying genes the upregulation of which is sufficient to elicit a given phenotype. Activation machinery is continually under development to achieve greater, more robust, and more consistent activation. In this review, we offer a succinct technological overview of available CRISPRa architectures and a comprehensive summary of pooled CRISPRa screens. Furthermore, we discuss contemporary applications of CRISPRa across broad fields of research, with the aim of presenting a view of exciting emerging applications for CRISPRa screening.
Collapse
Affiliation(s)
- Teleri Clark
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew A Waller
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Cesar L Moreno
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Christopher E Denes
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
11
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
12
|
Punetha M, Saini S, Chaudhary S, Yadav PS, Whitworth K, Green J, Kumar D, Kues WA. Induced Pluripotent Stem Cells in the Era of Precise Genome Editing. Curr Stem Cell Res Ther 2024; 19:307-315. [PMID: 36880183 DOI: 10.2174/1574888x18666230307115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023]
Abstract
Genome editing has enhanced our ability to understand the role of genetics in a number of diseases by facilitating the development of more precise cellular and animal models to study pathophysiological processes. These advances have shown extraordinary promise in a multitude of areas, from basic research to applied bioengineering and biomedical research. Induced pluripotent stem cells (iPSCs) are known for their high replicative capacity and are excellent targets for genetic manipulation as they can be clonally expanded from a single cell without compromising their pluripotency. Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR/Cas RNA-guided nucleases have rapidly become the method of choice for gene editing due to their high specificity, simplicity, low cost, and versatility. Coupling the cellular versatility of iPSCs differentiation with CRISPR/Cas9-mediated genome editing technology can be an effective experimental technique for providing new insights into the therapeutic use of this technology. However, before using these techniques for gene therapy, their therapeutic safety and efficacy following models need to be assessed. In this review, we cover the remarkable progress that has been made in the use of genome editing tools in iPSCs, their applications in disease research and gene therapy as well as the hurdles that remain in the actual implementation of CRISPR/Cas systems.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Suman Chaudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Prem Singh Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Kristin Whitworth
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jonathan Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Höltystr 10, 31535, Neustadt, Germany
| |
Collapse
|
13
|
Morita S, Horii T, Hatada I. Optimized Protocol for the Regulation of DNA Methylation and Gene Expression Using Modified dCas9-SunTag Platforms. Methods Mol Biol 2024; 2842:155-165. [PMID: 39012594 DOI: 10.1007/978-1-0716-4051-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
DNA methylation, one of the most studied epigenetic modifications, regulates many biological processes. Dysregulation of DNA methylation is implicated in the etiology of several diseases, such as cancer and imprinting diseases. Accordingly, technologies designed to manipulate DNA methylation at specific loci are considered worthwhile and many epigenome editing technologies have been developed, which were based on ZF, TALE, and CRISPR-dCas9. Here, we describe a protocol for the application of a modified dCas9-SunTag system, which increased the efficiency of targeted demethylation and gene activation at specific DNA loci. The original SunTag system consists of 10 copies of the GCN4 peptide separated by 5-amino-acid linkers. To achieve more efficient recruitment of an anti-GCN4 scFv fused to the ten-eleven (TET) 1 hydroxylase, an enzyme that demethylates DNA, we changed the linker length to 22 amino acids. Moreover, we describe the co-recruitment of TET1 and VP64 for efficient gene activation. Since we showed the manipulation of DNA methylation at specific loci and gene activation, its application could lead to its future use in the clinic.
Collapse
Affiliation(s)
- Sumiyo Morita
- Biosignal Genome Resource Center, IMCR, Gunma University, Maebashi, Japan
| | - Takuro Horii
- Biosignal Genome Resource Center, IMCR, Gunma University, Maebashi, Japan
| | - Izuho Hatada
- Biosignal Genome Resource Center, IMCR, Gunma University, Maebashi, Japan.
| |
Collapse
|
14
|
Yoshikawa C, Ariyani W, Kohno D. DNA Methylation in the Hypothalamic Feeding Center and Obesity. J Obes Metab Syndr 2023; 32:303-311. [PMID: 38124554 PMCID: PMC10786209 DOI: 10.7570/jomes23073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Obesity rates have been increasing worldwide for decades, mainly due to environmental factors, such as diet, nutrition, and exercise. However, the molecular mechanisms through which environmental factors induce obesity remain unclear. Several mechanisms underlie the body's response to environmental factors, and one of the main mechanisms involves epigenetic modifications, such as DNA methylation. The pattern of DNA methylation is influenced by environmental factors, and altered DNA methylation patterns can affect gene expression profiles and phenotypes. DNA methylation may mediate the development of obesity caused by environmental factors. Similar to the factors governing obesity, DNA methylation is influenced by nutrients and metabolites. Notably, DNA methylation is associated with body size and weight programming. The DNA methylation levels of proopiomelanocortin (Pomc) and neuropeptide Y (Npy) in the hypothalamic feeding center, a key region controlling systemic energy balance, are affected by diet. Conditional knockout mouse studies of epigenetic enzymes have shown that DNA methylation in the hypothalamic feeding center plays an indispensable role in energy homeostasis. In this review, we discuss the role of DNA methylation in the hypothalamic feeding center as a potential mechanism underlying the development of obesity induced by environmental factors.
Collapse
Affiliation(s)
- Chiharu Yoshikawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
15
|
Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines 2023; 11:biomedicines11051334. [PMID: 37239005 DOI: 10.3390/biomedicines11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-wide demethylation are not suitable for treatment of diseases with specific epimutations and provide a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci. However, a number of challenges, including the dependence on transgenesis for delivery of the fusion constructs, remain issues to be solved. In this review, we detail current and potential approaches to gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
16
|
Sgro A, Cursons J, Waryah C, Woodward EA, Foroutan M, Lyu R, Yeoh GCT, Leedman PJ, Blancafort P. Epigenetic reactivation of tumor suppressor genes with CRISPRa technologies as precision therapy for hepatocellular carcinoma. Clin Epigenetics 2023; 15:73. [PMID: 37120619 PMCID: PMC10149030 DOI: 10.1186/s13148-023-01482-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/09/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Epigenetic silencing of tumor suppressor genes (TSGs) is a key feature of oncogenesis in hepatocellular carcinoma (HCC). Liver-targeted delivery of CRISPR-activation (CRISPRa) systems makes it possible to exploit chromatin plasticity, by reprogramming transcriptional dysregulation. RESULTS Using The Cancer Genome Atlas HCC data, we identify 12 putative TSGs with negative associations between promoter DNA methylation and transcript abundance, with limited genetic alterations. All HCC samples harbor at least one silenced TSG, suggesting that combining a specific panel of genomic targets could maximize efficacy, and potentially improve outcomes as a personalized treatment strategy for HCC patients. Unlike epigenetic modifying drugs lacking locus selectivity, CRISPRa systems enable potent and precise reactivation of at least 4 TSGs tailored to representative HCC lines. Concerted reactivation of HHIP, MT1M, PZP, and TTC36 in Hep3B cells inhibits multiple facets of HCC pathogenesis, such as cell viability, proliferation, and migration. CONCLUSIONS By combining multiple effector domains, we demonstrate the utility of a CRISPRa toolbox of epigenetic effectors and gRNAs for patient-specific treatment of aggressive HCC.
Collapse
Affiliation(s)
- Agustin Sgro
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Joseph Cursons
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Charlene Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Eleanor A Woodward
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Momeneh Foroutan
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC, 3065, Australia
- Melbourne Integrative Genomics/School of Mathematics and Statistics, Faculty of Science, The University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia
| | - George C T Yeoh
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Peter J Leedman
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, Perth, WA, 6009, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, 6009, Australia.
- Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
- School of Human Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
17
|
Zhou L, Yao S. Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. MOLECULAR BIOMEDICINE 2023; 4:10. [PMID: 37027099 PMCID: PMC10080534 DOI: 10.1186/s43556-023-00115-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/04/2023] [Indexed: 04/08/2023] Open
Abstract
Recently, clustered regularly interspaced palindromic repeats (CRISPR)-Cas9 derived editing tools had significantly improved our ability to make desired changes in the genome. Wild-type Cas9 protein recognizes the target genomic loci and induced local double strand breaks (DSBs) in the guidance of small RNA molecule. In mammalian cells, the DSBs are mainly repaired by endogenous non-homologous end joining (NHEJ) pathway, which is error prone and results in the formation of indels. The indels can be harnessed to interrupt gene coding sequences or regulation elements. The DSBs can also be fixed by homology directed repair (HDR) pathway to introduce desired changes, such as base substitution and fragment insertion, when proper donor templates are provided, albeit in a less efficient manner. Besides making DSBs, Cas9 protein can be mutated to serve as a DNA binding platform to recruit functional modulators to the target loci, performing local transcriptional regulation, epigenetic remolding, base editing or prime editing. These Cas9 derived editing tools, especially base editors and prime editors, can introduce precise changes into the target loci at a single-base resolution and in an efficient and irreversible manner. Such features make these editing tools very promising for therapeutic applications. This review focuses on the evolution and mechanisms of CRISPR-Cas9 derived editing tools and their applications in the field of gene therapy.
Collapse
Affiliation(s)
- Lifang Zhou
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Meng X, Wu T, Lou Q, Niu K, Jiang L, Xiao Q, Xu T, Zhang L. Optimization of CRISPR-Cas system for clinical cancer therapy. Bioeng Transl Med 2023; 8:e10474. [PMID: 36925702 PMCID: PMC10013785 DOI: 10.1002/btm2.10474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is a genetic disease caused by alterations in genome and epigenome and is one of the leading causes for death worldwide. The exploration of disease development and therapeutic strategies at the genetic level have become the key to the treatment of cancer and other genetic diseases. The functional analysis of genes and mutations has been slow and laborious. Therefore, there is an urgent need for alternative approaches to improve the current status of cancer research. Gene editing technologies provide technical support for efficient gene disruption and modification in vivo and in vitro, in particular the use of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. Currently, the applications of CRISPR-Cas systems in cancer rely on different Cas effector proteins and the design of guide RNAs. Furthermore, effective vector delivery must be met for the CRISPR-Cas systems to enter human clinical trials. In this review article, we describe the mechanism of the CRISPR-Cas systems and highlight the applications of class II Cas effector proteins. We also propose a synthetic biology approach to modify the CRISPR-Cas systems, and summarize various delivery approaches facilitating the clinical application of the CRISPR-Cas systems. By modifying the CRISPR-Cas system and optimizing its in vivo delivery, promising and effective treatments for cancers using the CRISPR-Cas system are emerging.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Tian‐gang Wu
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qiu‐yue Lou
- Anhui Provincial Center for Disease Control and PreventionHefeiPeople's Republic of China
| | - Kai‐yuan Niu
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
- Department of OtolaryngologyThe Third Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Jiang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qing‐zhong Xiao
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural ProductsAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceHefeiChina
| | - Lei Zhang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
- Department of PeriodontologyAnhui Stomatology Hospital Affiliated to Anhui Medical UniversityHefeiChina
| |
Collapse
|
19
|
Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. Int J Mol Sci 2023; 24:ijms24054778. [PMID: 36902207 PMCID: PMC10003136 DOI: 10.3390/ijms24054778] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The advancement in epigenetics research over the past several decades has led to the potential application of epigenome-editing technologies for the treatment of various diseases. In particular, epigenome editing is potentially useful in the treatment of genetic and other related diseases, including rare imprinted diseases, as it can regulate the expression of the epigenome of the target region, and thereby the causative gene, with minimal or no modification of the genomic DNA. Various efforts are underway to successfully apply epigenome editing in vivo, such as improving target specificity, enzymatic activity, and drug delivery for the development of reliable therapeutics. In this review, we introduce the latest findings, summarize the current limitations and future challenges in the practical application of epigenome editing for disease therapy, and introduce important factors to consider, such as chromatin plasticity, for a more effective epigenome editing-based therapy.
Collapse
|
20
|
Morita S, Horii T, Hatada I. Regulation of Gene Expression Using dCas9-SunTag Platforms. Methods Mol Biol 2023; 2577:189-195. [PMID: 36173574 DOI: 10.1007/978-1-0716-2724-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Regulating gene expression is important for basic research and therapeutic applications. The epigenome is a record of genetic modifications such as DNA methylation and histone modifications, and epigenetic changes can play a key role in modifying gene expression. With the advent of genome editing technologies, it has become possible to manipulate the epigenome of specific genomic regions to control gene expression. In particular, CRISPR-Cas9 systems have been used widely for epigenome editing due to their high efficiency, versatility, specificity, and ease of use. Here, we describe a protocol for the upregulation of specific genes using the dCas9-SunTag system.
Collapse
Affiliation(s)
- Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
21
|
Horii T, Morita S, Hatada I. Generation of Epigenetic Disease Model Mice by Targeted Demethylation of the Epigenome. Methods Mol Biol 2023; 2577:255-268. [PMID: 36173579 DOI: 10.1007/978-1-0716-2724-2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigenetic regulatory mechanisms play an important role in gene silencing and genome stability; therefore, epigenetic mutations cause a variety of diseases. Analysis of the epigenome by next-generation sequencers has revealed many epigenetic mutations in various diseases such as cancer, obesity, diabetes, autism, allergies, immune diseases, and imprinting diseases. Unfortunately, it has been difficult to identify the causative epigenetic mutations because there has been no method to generate animals with target-specific epigenetic mutations. However, it has become possible to generate such animals due to the recent development of epigenome editing technology. Here, we introduce the generation of epigenome-edited mice by target-specific DNA demethylation.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
22
|
Martella A. CRISPR, epigenetics, and cancer. EPIGENETIC CANCER THERAPY 2023:687-707. [DOI: 10.1016/b978-0-323-91367-6.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Ding X, Yu L, Chen L, Li Y, Zhang J, Sheng H, Ren Z, Li Y, Yu X, Jin S, Cao J. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants. Cells 2022; 11:3045. [PMID: 36231007 PMCID: PMC9564188 DOI: 10.3390/cells11193045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Genome editing technology has become one of the hottest research areas in recent years. Among diverse genome editing tools, the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins system (CRISPR/Cas system) has exhibited the obvious advantages of specificity, simplicity, and flexibility over any previous genome editing system. In addition, the emergence of Cas9 mutants, such as dCas9 (dead Cas9), which lost its endonuclease activity but maintains DNA recognition activity with the guide RNA, provides powerful genetic manipulation tools. In particular, combining the dCas9 protein and transcriptional activator to achieve specific regulation of gene expression has made important contributions to biotechnology in medical research as well as agriculture. CRISPR/dCas9 activation (CRISPRa) can increase the transcription of endogenous genes. Overexpression of foreign genes by traditional transgenic technology in plant cells is the routine method to verify gene function by elevating genes transcription. One of the main limitations of the overexpression is the vector capacity constraint that makes it difficult to express multiple genes using the typical Ti plasmid vectors from Agrobacterium. The CRISPRa system can overcome these limitations of the traditional gene overexpression method and achieve multiple gene activation by simply designating several guide RNAs in one vector. This review summarizes the latest progress based on the development of CRISPRa systems, including SunTag, dCas9-VPR, dCas9-TV, scRNA, SAM, and CRISPR-Act and their applications in plants. Furthermore, limitations, challenges of current CRISPRa systems and future prospective applications are also discussed.
Collapse
Affiliation(s)
- Xiao Ding
- Institute of Cotton, Shanxi Agricultural University, Yuncheng 044000, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luo Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinlun Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyan Sheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengwei Ren
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlong Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohan Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinglin Cao
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China
| |
Collapse
|
24
|
Activation of stably silenced genes by recruitment of a synthetic de-methylating module. Nat Commun 2022; 13:5582. [PMID: 36151095 PMCID: PMC9508233 DOI: 10.1038/s41467-022-33181-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Stably silenced genes that display a high level of CpG dinucleotide methylation are refractory to the current generation of dCas9-based activation systems. To counter this, we create an improved activation system by coupling the catalytic domain of DNA demethylating enzyme TET1 with transcriptional activators (TETact). We show that TETact demethylation-coupled activation is able to induce transcription of suppressed genes, both individually and simultaneously in cells, and has utility across a number of cell types. Furthermore, we show that TETact can effectively reactivate embryonic haemoglobin genes in non-erythroid cells. We anticipate that TETact will expand the existing CRISPR toolbox and be valuable for functional studies, genetic screens and potential therapeutics. Stably silenced genes with methylated CpG at the promoter are refractory to current CRISPR activation systems. Here the authors create a more robust activation system, TETact that recruits DNA-demethylating TET1 with transcriptional activators.
Collapse
|
25
|
Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. PLANT PHYSIOLOGY 2022; 188:1811-1824. [PMID: 35134247 PMCID: PMC8968285 DOI: 10.1093/plphys/kiac033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions in biology and crop development. While there are several platforms to choose from, many of the recent advances in sequence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a vector for different modular catalytic domains (effector domains) to control a gene's expression or alter epigenetic marks such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target multiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to create synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA targeting technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different CRISPR-dCas systems used in plants.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
26
|
Locus-Specific DNA Methylation Editing in Melanoma Cell Lines Using a CRISPR-Based System. Cancers (Basel) 2021; 13:cancers13215433. [PMID: 34771597 PMCID: PMC8582460 DOI: 10.3390/cancers13215433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary DNA methylation is an important modification of the genome that is implicated in the pathogenesis of numerous human diseases, including cancer. DNA methylation changes can alter the expression of critical genes, predisposing to disease progression. Existing techniques that can modify DNA methylation to investigate disease etiology are severely limited with regard to specificity, which means that establishing a causal link between DNA methylation changes and disease progression is difficult. The advent of CRISPR-based technologies has provided a powerful tool for more specific editing of DNA methylation. Here, we describe a comprehensive protocol for the design and application of a CRISPR-dCas9-based tool for editing DNA methylation at a target locus in human melanoma cell lines alongside protocols for downstream techniques used to evaluate subsequent methylation and gene expression changes in methylation-edited cells. Furthermore, we demonstrate highly efficacious methylation and demethylation of the EBF3 promoter across a panel of melanoma cell lines. Abstract DNA methylation is a key epigenetic modification implicated in the pathogenesis of numerous human diseases, including cancer development and metastasis. Gene promoter methylation changes are widely associated with transcriptional deregulation and disease progression. The advent of CRISPR-based technologies has provided a powerful toolkit for locus-specific manipulation of the epigenome. Here, we describe a comprehensive global workflow for the design and application of a dCas9-SunTag-based tool for editing the DNA methylation locus in human melanoma cells alongside protocols for downstream techniques used to evaluate subsequent methylation and gene expression changes in methylation-edited cells. Using transient system delivery, we demonstrate both highly efficacious methylation and demethylation of the EBF3 promoter, which is a putative epigenetic driver of melanoma metastasis, achieving up to a 304.00% gain of methylation and 99.99% relative demethylation, respectively. Furthermore, we employ a novel, targeted screening approach to confirm the minimal off-target activity and high on-target specificity of our designed guide RNA within our target locus.
Collapse
|
27
|
Martella A, Fisher DI. Regulation of Gene Expression and the Elucidative Role of CRISPR-Based Epigenetic Modifiers and CRISPR-Induced Chromosome Conformational Changes. CRISPR J 2021; 4:43-57. [PMID: 33616442 DOI: 10.1089/crispr.2020.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In complex multicellular systems, gene expression is regulated at multiple stages through interconnected complex molecular pathways and regulatory networks. Transcription is the first step in gene expression and is subject to multiple layers of regulation in which epigenetic mechanisms such as DNA methylation, histone tail modifications, and chromosomal conformation play an essential role. In recent years, CRISPR-Cas9 systems have been employed to unearth this complexity and provide new insights on the contribution of chromatin dysregulation in the development of genetic diseases, as well as new tools to prevent or reverse this dysregulation. In this review, we outline the recent development of a variety of CRISPR-based epigenetic editors for targeted DNA methylation/demethylation, histone modification, and three-dimensional DNA conformational change, highlighting their relative performance and impact on gene regulation. Finally, we provide insights on the future developments aimed to accelerate our understanding of the causal relationship between epigenetic marks, genome organization, and gene regulation.
Collapse
Affiliation(s)
- Andrea Martella
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - David I Fisher
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
28
|
Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res 2021; 48:12453-12482. [PMID: 33196851 PMCID: PMC7736826 DOI: 10.1093/nar/gkaa1000] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Chromatin adopts different configurations that are regulated by reversible covalent modifications, referred to as epigenetic marks. Epigenetic inhibitors have been approved for clinical use to restore epigenetic aberrations that result in silencing of tumor-suppressor genes, oncogene addictions, and enhancement of immune responses. However, these drugs suffer from major limitations, such as a lack of locus selectivity and potential toxicities. Technological advances have opened a new era of precision molecular medicine to reprogram cellular physiology. The locus-specificity of CRISPR/dCas9/12a to manipulate the epigenome is rapidly becoming a highly promising strategy for personalized medicine. This review focuses on new state-of-the-art epigenome editing approaches to modify the epigenome of neoplasms and other disease models towards a more 'normal-like state', having characteristics of normal tissue counterparts. We highlight biomolecular engineering methodologies to assemble, regulate, and deliver multiple epigenetic effectors that maximize the longevity of the therapeutic effect, and we discuss limitations of the platforms such as targeting efficiency and intracellular delivery for future clinical applications.
Collapse
Affiliation(s)
- Agustin Sgro
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.,The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|