1
|
Naamneh Elzenaty R, Martinez de Lapiscina I, Kouri C, Sauter KS, Sommer G, Castaño L, Flück CE. Characterization of 35 Novel NR5A1/SF-1 Variants Identified in Individuals With Atypical Sexual Development: The SF1next Study. J Clin Endocrinol Metab 2025; 110:e675-e693. [PMID: 38623954 PMCID: PMC11834716 DOI: 10.1210/clinem/dgae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT Steroidogenic factor 1 (NR5A1/SF-1) is a nuclear receptor that regulates sex development, steroidogenesis, and reproduction. Genetic variants in NR5A1/SF-1 are common among differences of sex development (DSD) and associate with a wide range of phenotypes, but their pathogenic mechanisms remain unclear. OBJECTIVE Novel, likely disease-causing NR5A1/SF-1 variants from the SF1next cohort of individuals with DSD were characterized to elucidate their pathogenic effect. METHODS Different in silico tools were used to predict the impact of novel NR5A1/SF-1 variants on protein function. An extensive literature review was conducted to compare and select the best functional studies for testing the pathogenic effect of the variants in a classic cell culture model. The missense NR5A1/SF-1 variants were tested on the promoter luciferase reporter vector -152CYP11A1_pGL3 in HEK293T cells and assessed for their cytoplasmic/nuclear localization by Western blot. RESULTS Thirty-five novel NR5A1/SF-1 variants were identified in the SF1next cohort. Seventeen missense NR5A1/SF-1 variants were functionally tested. Transactivation assays showed reduced activity for 40% of the variants located in the DNA binding domain and variable activity for variants located elsewhere. Translocation assessment revealed 3 variants (3/17) with affected nuclear translocation. No clear genotype-phenotype, structure-function correlation was found. CONCLUSION Genetic analyses and functional assays do not explain the observed wide phenotype of individuals with these novel NR5A1/SF-1 variants. In 9 individuals, additional likely disease-causing variants in other genes were found, strengthening the hypothesis that the broad phenotype of DSD associated with NR5A1/SF-1 variants may be caused by an oligogenic mechanism.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Rare Endocrine Conditions, Endo-ERN, 1105 Amsterdam, The Netherlands
| | - Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Luis Castaño
- Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Rare Endocrine Conditions, Endo-ERN, 1105 Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, 48903 Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country (UPV-EHU), 48903 Leioa, Spain
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
2
|
Kouri C, Jia RY, Kentistou KA, Gardner EJ, Perry JRB, Flück CE, Ong KK. Population-Based Study of Rare Coding Variants in NR5A1/SF-1. J Endocr Soc 2024; 8:bvae178. [PMID: 39479520 PMCID: PMC11521259 DOI: 10.1210/jendso/bvae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 11/02/2024] Open
Abstract
Background Steroidogenic Factor 1/Nuclear Receptor Subfamily 5 Group A Member 1 (SF-1/NR5A1) is critical for the development and function of sex organs, influencing steroidogenesis and reproduction. While rare deleterious NR5A1/SF-1 variants have been identified in individuals with various differences of sex development (DSD), primary ovarian insufficiency, and infertility, their impact on the general population remains unclear. Methods We analyzed health records and exome sequencing data from up to 420 162 individuals (227 858 women) from the UK Biobank study to assess the impact of rare (frequency < 0.1%) predicted deleterious NR5A1/SF-1 variants on age at menopause and 26 other traits. Results No carriers of rare protein truncating variants in NR5A1/SF-1 were identified. We found that the previously reported association of rare deleterious missense NR5A1/SF-1 variants with earlier age at menopause is driven by variants in the DNA binding domain (DBD) and ligand binding domain (LBD) (combined test: beta = -2.36 years/allele, [95% CI: 3.21, -1.51], N = 107 carriers, P = 4.6 × 10-8). Carriers also had a higher risk of adult obesity (OR = 1.061, [95% CI: 1.003, 1.104], N = 344, P = .015), particularly among women (OR = 1.095 [95% CI: 1.034, 1.163, P = 3.87 × 10-3], N = 176), but not men (OR = 1.019, [95% CI: 0.955, 1.088], P = .57, N = 168). Conclusion Deleterious missense variants in the DBD and LBD likely disrupt NR5A1/SF-1 function. This study broadens the relevance of deleterious NR5A1/SF-1 variants beyond rare DSDs, suggesting the need for extended phenotyping and monitoring of affected individuals.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Department of Pediatrics, Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Raina Y Jia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Christa E Flück
- Department of Pediatrics, Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
3
|
Naamneh Elzenaty R, Kouri C, Martinez de Lapiscina I, Sauter KS, Moreno F, Camats-Tarruella N, Flück CE. NR5A1/SF-1 Collaborates with Inhibin α and the Androgen Receptor. Int J Mol Sci 2024; 25:10109. [PMID: 39337600 PMCID: PMC11432463 DOI: 10.3390/ijms251810109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Steroidogenic factor 1 (SF-1) is a nuclear receptor that regulates steroidogenesis and reproductive development. NR5A1/SF-1 variants are associated with a broad spectrum of phenotypes across individuals with disorders of sex development (DSDs). Oligogenic inheritance has been suggested as an explanation. SF-1 interacts with numerous partners. Here, we investigated a constellation of gene variants identified in a 46,XY severely undervirilized individual carrying an ACMG-categorized 'pathogenic' NR5A1/SF-1 variant in comparison to the healthy carrier father. Candidate genes were revealed by whole exome sequencing, and pathogenicity was predicted by different in silico tools. We found variants in NR1H2 and INHA associated with steroidogenesis, sex development, and reproduction. The identified variants were tested in cell models. Novel SF-1 and NR1H2 binding sites in the AR and INHA gene promoters were found. Transactivation studies showed that wild-type NR5A1/SF-1 regulates INHA and AR gene expression, while the NR5A1/SF-1 variant had decreased transcriptional activity. NR1H2 was found to regulate AR gene transcription; however, the NR1H2 variant showed normal activity. This study expands the NR5A1/SF-1 network of interacting partners, while not solving the exact interplay of different variants that might be involved in revealing the observed DSD phenotype. It also illustrates that understanding complex genetics in DSDs is challenging.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Biobizkaia Health Research Institute, Cruces University Hospital, University of the Basque, 48903 Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endo-ERN, 1081 HV Amsterdam, The Netherlands
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Francisca Moreno
- Department of Pediatrics, Hospital Infantil La Fe, 46026 Valencia, Spain;
| | - Núria Camats-Tarruella
- Growth and Development Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Christa E. Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
4
|
Snipes M, Stokes S, Vidalin A, Moore LD, Schlabritz-Lutsevich N, Maher J. Phenotype-Genotype Discordance and a Case of a Disorder of Sexual Differentiation. Case Rep Genet 2024; 2024:9936936. [PMID: 39050587 PMCID: PMC11268958 DOI: 10.1155/2024/9936936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 05/11/2024] [Indexed: 07/27/2024] Open
Abstract
Discordance between the genetic sex and phenotype seen on ultrasound can identify disorders of sexual development (DSD) that previously escaped detection until puberty. We describe a 46, XY disorder of sexual differentiation caused by a rare mutation in the SF1 gene (OMIM]184757, (NR5A1). The mutation (NR5A1)-c.205C > G (p. Arg69Gly) was discovered after a phenotype-genotype discrepancy was encountered during prenatal care. The baby with 46, XY DSD has female external genitalia but evidence of Y chromosome-related regression of Müllerian structures and the absence of palpable gonads. We discussed the literature on phenotype-genotype discrepancy and the importance of care coordination between the antenatal and postnatal teams to ensure a timely diagnosis of DSD.
Collapse
Affiliation(s)
- Madeline Snipes
- Augusta University, Department of Obstetrics and Gynecology, Augusta, GA, USA
| | - Stephanie Stokes
- Augusta University, Department of Obstetrics and Gynecology, Augusta, GA, USA
| | - Amy Vidalin
- Augusta University, Department of Obstetrics and Gynecology, Augusta, GA, USA
| | - Lee D. Moore
- Texas Tech University Health Science Center, Permian Basin, Odessa, TX, USA
| | | | - James Maher
- Augusta University, Department of Obstetrics and Gynecology, Augusta, GA, USA
| |
Collapse
|
5
|
Margiotti K, Libotte F, Fabiani M, Mesoraca A, Giorlandino C. Digenic Origin of Difference of Sex Development in a Patient Harbouring DHX37 and MAMLD1 Variants. Case Rep Pediatr 2024; 2024:4896940. [PMID: 38962685 PMCID: PMC11221946 DOI: 10.1155/2024/4896940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Background The diagnostic process for identifying variations in sex development (DSD) remains challenging due to the limited availability of evidence pertaining to the association between phenotype and genotype. DSD incidence is reported as 2 in 10,000 births, and the etiology has been attributed to genetic causes. Case Presentation. The present study investigated genetic causes implicated in a case of a 15-year-old 46, XY patient, raised as a girl. Genetic analysis by clinical exome sequencing (CES) showed a digenic inheritance due to two known pathogenic mutations in the DHX37 gene and the MAMLD1 gene, while we excluded variants with pathogenic significance in 209 DSD-related genes. Conclusions Based on our literature review, this is the first case with the combined presence of pathogenic mutations in the MAMLD1 gene and DHX37 gene in a patient with gonadal dysgenesis.
Collapse
Affiliation(s)
- Katia Margiotti
- ALTAMEDICA, Human Genetics Lab, Viale Liegi 45, Rome 00198, Italy
| | | | - Marco Fabiani
- ALTAMEDICA, Human Genetics Lab, Viale Liegi 45, Rome 00198, Italy
| | - Alvaro Mesoraca
- ALTAMEDICA, Human Genetics Lab, Viale Liegi 45, Rome 00198, Italy
| | - Claudio Giorlandino
- ALTAMEDICA, Human Genetics Lab, Viale Liegi 45, Rome 00198, Italy
- ALTAMEDICA, Fetal-Maternal Medical Centre, Department of Prenatal Diagnosis, Viale Liegi 45, Rome 00198, Italy
| |
Collapse
|
6
|
Luppino G, Wasniewska M, Coco R, Pepe G, Morabito LA, Li Pomi A, Corica D, Aversa T. Role of NR5A1 Gene Mutations in Disorders of Sex Development: Molecular and Clinical Features. Curr Issues Mol Biol 2024; 46:4519-4532. [PMID: 38785542 PMCID: PMC11119465 DOI: 10.3390/cimb46050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Disorders/differences of sex development (DSDs) are defined as broad, heterogenous groups of congenital conditions characterized by atypical development of genetic, gonadal, or phenotypic sex accompanied by abnormal development of internal and/or external genitalia. NR5A1 gene mutation is one of the principal genetic alterations implicated in causing DSD. This review outlines the role of NR5A1 gene during the process of gonadal development in humans, provides an overview of the molecular and functional characteristics of NR5A1 gene, and discusses potential clinical phenotypes and additional organ diseases due to NR5A1 mutations. NR5A1 mutations were analyzed in patients with 46,XY DSD and 46,XX DSD both during the neonatal and pubertal periods. Loss of function of the NR5A1 gene causes several different phenotypes, including some associated with disease in additional organs. Clinical phenotypes may vary, even among patients carrying the same NR5A1 variant, indicating that there is no specific genotype-phenotype correlation. Genetic tests are crucial diagnostic tools that should be used early in the diagnostic pathway, as early as the neonatal period, when gonadal dysgenesis is the main manifestation of NR5A1 mutation. NR5A1 gene mutations could be mainly associated with amenorrhea, ovarian failure, hypogonadism, and infertility during puberty. Fertility preservation techniques should be considered as early as possible.
Collapse
Affiliation(s)
- Giovanni Luppino
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
| | - Malgorzata Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Roberto Coco
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
| | - Giorgia Pepe
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Letteria Anna Morabito
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Alessandra Li Pomi
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
7
|
Kouri C, Sommer G, Martinez de Lapiscina I, Elzenaty RN, Tack LJW, Cools M, Ahmed SF, Flück CE. Clinical and genetic characteristics of a large international cohort of individuals with rare NR5A1/SF-1 variants of sex development. EBioMedicine 2024; 99:104941. [PMID: 38168586 PMCID: PMC10797150 DOI: 10.1016/j.ebiom.2023.104941] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Steroidogenic factor 1 (SF-1/NR5A1) is essential for human sex development. Heterozygous NR5A1/SF-1 variants manifest with a broad range of phenotypes of differences of sex development (DSD), which remain unexplained. METHODS We conducted a retrospective analysis on the so far largest international cohort of individuals with NR5A1/SF-1 variants, identified through the I-DSD registry and a research network. FINDINGS Among 197 individuals with NR5A1/SF-1 variants, we confirmed diverse phenotypes. Over 70% of 46, XY individuals had a severe DSD phenotype, while 90% of 46, XX individuals had female-typical sex development. Close to 100 different novel and known NR5A1/SF-1 variants were identified, without specific hot spots. Additionally, likely disease-associated variants in other genes were reported in 32 individuals out of 128 tested (25%), particularly in those with severe or opposite sex DSD phenotypes. Interestingly, 48% of these variants were found in known DSD or SF-1 interacting genes, but no frequent gene-clusters were identified. Sex registration at birth varied, with <10% undergoing reassignment. Gonadectomy was performed in 30% and genital surgery in 58%. Associated organ anomalies were observed in 27% of individuals with a DSD, mainly concerning the spleen. Intrafamilial phenotypes also varied considerably. INTERPRETATION The observed phenotypic variability in individuals and families with NR5A1/SF-1 variants is large and remains unpredictable. It may often not be solely explained by the monogenic pathogenicity of the NR5A1/SF-1 variants but is likely influenced by additional genetic variants and as-yet-unknown factors. FUNDING Swiss National Science Foundation (320030-197725) and Boveri Foundation Zürich, Switzerland.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Institute of Social and Preventive Medicine, University of Bern, Switzerland, University of Bern, Bern 3012, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Research into the Genetics and Control of Diabetes and Other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain; Endo-ERN, Amsterdam 1081 HV, the Netherlands
| | - Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Lloyd J W Tack
- Department of Paediatric Endocrinology, Department of Paediatrics and Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Martine Cools
- Department of Paediatric Endocrinology, Department of Paediatrics and Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Sick Children, Glasgow G51 4TF, UK
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
8
|
Rojas Velazquez MN, Therkelsen S, Pandey AV. Exploring Novel Variants of the Cytochrome P450 Reductase Gene ( POR) from the Genome Aggregation Database by Integrating Bioinformatic Tools and Functional Assays. Biomolecules 2023; 13:1728. [PMID: 38136599 PMCID: PMC10741880 DOI: 10.3390/biom13121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency.
Collapse
Affiliation(s)
- Maria Natalia Rojas Velazquez
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Søren Therkelsen
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Drug Design and Pharmacology, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Amit V. Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
9
|
Tang Y, Chen Y, Wang J, Zhang Q, Wang Y, Xu Y, Li X, Wang J, Wang X. Clinical characteristics and genetic expansion of 46,XY disorders of sex development children in a Chinese prospective study. Endocr Connect 2023; 12:e230029. [PMID: 37493574 PMCID: PMC10503230 DOI: 10.1530/ec-23-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
Diagnosis and management strategy of disorders of sex development (DSD) are difficult and various due to heterogeneous phenotype and genotype. Under widespread use of genomic sequencing technologies, multiple genes and mechanisms have been identified and proposed as genetic causes of 46,XY DSD. In this study, 178 46,XY DSD patients were enrolled and underwent gene sequencing (either whole-exome sequencing or targeted panel gene sequencing). Detailed clinical phenotype and genotype information were summarized which showed that the most common clinical manifestations were micropenis (56.74%, 101/178), cryptorchidism (34.27%, 61/178), and hypospadias (17.42%, 31/178). Androgen synthesis/action disorders and idiopathic hypogonadotropic hypogonadism were the most frequent clinical diagnoses, accounting, respectively, for 40.90 and 21.59%. From all next-generation sequencing results, 103 candidate variants distributed across 32 genes were identified in 88 patients. The overall molecular detection rate was 49.44% (88/178), including 35.96% (64/178) pathogenic/likely pathogenic variants and 13.48% (24/178) variants of uncertain significance. Of all, 19.42% (20/103) variants were first reported in 46,XY DSD patients. Mutation c.680G>A (p.R227Q) on SRD5A2 (steroid 5-alpha-reductase 2) (36.67%, 11/30) was a hotspot mutation in the Chinese population. Novel candidate genes related to DSD (GHR (growth hormone receptor) and PHIP (pleckstrin homology domain-interacting protein)) were identified. Overall, this was a large cohort of 46,XY DSD patients with a common clinical classification and phenotype spectrum of Chinese patients. Targeted gene panel sequencing covered most of the genes contributing to DSD, whereas whole-exome sequencing detected more candidate genes.
Collapse
Affiliation(s)
- Yijun Tang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Martinez de Lapiscina I, Kouri C, Aurrekoetxea J, Sanchez M, Naamneh Elzenaty R, Sauter KS, Camats N, Grau G, Rica I, Rodriguez A, Vela A, Cortazar A, Alonso-Cerezo MC, Bahillo P, Bertholt L, Esteva I, Castaño L, Flück CE. Genetic reanalysis of patients with a difference of sex development carrying the NR5A1/SF-1 variant p.Gly146Ala has discovered other likely disease-causing variations. PLoS One 2023; 18:e0287515. [PMID: 37432935 DOI: 10.1371/journal.pone.0287515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
NR5A1/SF-1 (Steroidogenic factor-1) variants may cause mild to severe differences of sex development (DSD) or may be found in healthy carriers. The NR5A1/SF-1 c.437G>C/p.Gly146Ala variant is common in individuals with a DSD and has been suggested to act as a susceptibility factor for adrenal disease or cryptorchidism. Since the allele frequency is high in the general population, and the functional testing of the p.Gly146Ala variant revealed inconclusive results, the disease-causing effect of this variant has been questioned. However, a role as a disease modifier is still possible given that oligogenic inheritance has been described in patients with NR5A1/SF-1 variants. Therefore, we performed next generation sequencing (NGS) in 13 DSD individuals harboring the NR5A1/SF-1 p.Gly146Ala variant to search for other DSD-causing variants and clarify the function of this variant for the phenotype of the carriers. Panel and whole-exome sequencing was performed, and data were analyzed with a filtering algorithm for detecting variants in NR5A1- and DSD-related genes. The phenotype of the studied individuals ranged from scrotal hypospadias and ambiguous genitalia in 46,XY DSD to opposite sex in both 46,XY and 46,XX. In nine subjects we identified either a clearly pathogenic DSD gene variant (e.g. in AR) or one to four potentially deleterious variants that likely explain the observed phenotype alone (e.g. in FGFR3, CHD7). Our study shows that most individuals carrying the NR5A1/SF-1 p.Gly146Ala variant, harbor at least one other deleterious gene variant which can explain the DSD phenotype. This finding confirms that the NR5A1/SF-1 p.Gly146Ala variant may not contribute to the pathogenesis of DSD and qualifies as a benign polymorphism. Thus, individuals, in whom the NR5A1/SF-1 p.Gly146Ala gene variant has been identified as the underlying genetic cause for their DSD in the past, should be re-evaluated with a NGS method to reveal the real genetic diagnosis.
Collapse
Affiliation(s)
- Idoia Martinez de Lapiscina
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
| | - Chrysanthi Kouri
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Josu Aurrekoetxea
- Biocruces Bizkaia Health Research Institute, Research Group of Medical Oncology, Cruces University Hospital, Barakaldo, Spain
- University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Mirian Sanchez
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
| | - Rawda Naamneh Elzenaty
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kay-Sara Sauter
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Núria Camats
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Vall d'Hebron Research Institute (VHIR), Growth and Development group, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gema Grau
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Amaia Rodriguez
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Amaia Vela
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Alicia Cortazar
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Endocrinology Department, Cruces University Hospital, Barakaldo, Spain
| | | | - Pilar Bahillo
- Department of Pediatrics, Pediatric Endocrinology Unit, x Clinic University Hospital of Valladolid, Valladolid, Spain
| | - Laura Bertholt
- Pediatric Endocrinology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Isabel Esteva
- Endocrinology Section, Gender Identity Unit, Regional University Hospital of Malaga, Malaga, Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- University of the Basque Country (UPV-EHU), Leioa, Spain
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Christa E Flück
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Noveski P, Plaseski T, Dimitrovska M, Plaseska-Karanfilska D. Androgen Insensitivity Syndrome DUE to Non-Coding Variation in the Androgen Receptor Gene: Review of the Literature and Case Report of a Patient with Mosaic c.-547C>T Variant. Balkan J Med Genet 2023; 26:51-56. [PMID: 37576790 PMCID: PMC10413879 DOI: 10.2478/bjmg-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Sexual development (SD) is a complex process with strict spatiotemporal regulation of gene expression. Despite advancements in molecular diagnostics, disorders of sexual development (DSD) have a diagnostic rate of ~50%. Androgen insensitivity syndrome (AIS) represents the most common form of 46,XY DSD, with a spectrum of defects in androgen action. Considering the importance of very strict regulation of the SD, it is reasonable to assume that the genetic cause for proportion of the DSD lies in the non-coding part of the genome that regulates proper gene functioning. Here we present a patient with partial AIS (PAIS) due to a mosaic de novo c.-547C>T pathogenic variant in the 5'UTR of androgen receptor (AR) gene. The same mutation was previously described as inherited, in two unrelated patients with complete AIS (CAIS). Thus, our case further confirms the previous findings that variable gene expressivity could be attributed to mosaicism. Mutations in 5'UTR could create new upstream open reading frames (uORFs) or could disrupt the existing one. A recent systematic genome-wide study identified AR as a member of a subset of genes where modifications of uORFs represents an important disease mechanism. Only a small number of studies are reporting non-coding mutations in the AR gene and our case emphasizes the importance of molecular testing of the entire AR locus in AIS patients. The introduction of new methods for comprehensive molecular testing in routine genetic diagnosis, accompanied with new tools for in sillico analysis could improve the genetic diagnosis of AIS, and DSD in general.
Collapse
Affiliation(s)
- P Noveski
- Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Macedonian Academy of Sciences and Arts, 1000Skopje, Republic of North Macedonia
| | - T Plaseski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre “Mother Teresa“, 1000Skopje, Republic of North Macedonia
| | - M Dimitrovska
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre “Mother Teresa“, 1000Skopje, Republic of North Macedonia
| | - D Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Macedonian Academy of Sciences and Arts, 1000Skopje, Republic of North Macedonia
| |
Collapse
|
12
|
Hattori A, Fukami M. Nuclear Receptor Gene Variants Underlying Disorders/Differences of Sex Development through Abnormal Testicular Development. Biomolecules 2023; 13:691. [PMID: 37189438 PMCID: PMC10135730 DOI: 10.3390/biom13040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Gonadal development is the first step in human reproduction. Aberrant gonadal development during the fetal period is a major cause of disorders/differences of sex development (DSD). To date, pathogenic variants of three nuclear receptor genes (NR5A1, NR0B1, and NR2F2) have been reported to cause DSD via atypical testicular development. In this review article, we describe the clinical significance of the NR5A1 variants as the cause of DSD and introduce novel findings from recent studies. NR5A1 variants are associated with 46,XY DSD and 46,XX testicular/ovotesticular DSD. Notably, both 46,XX DSD and 46,XY DSD caused by the NR5A1 variants show remarkable phenotypic variability, to which digenic/oligogenic inheritances potentially contribute. Additionally, we discuss the roles of NR0B1 and NR2F2 in the etiology of DSD. NR0B1 acts as an anti-testicular gene. Duplications containing NR0B1 result in 46,XY DSD, whereas deletions encompassing NR0B1 can underlie 46,XX testicular/ovotesticular DSD. NR2F2 has recently been reported as a causative gene for 46,XX testicular/ovotesticular DSD and possibly for 46,XY DSD, although the role of NR2F2 in gonadal development is unclear. The knowledge about these three nuclear receptors provides novel insights into the molecular networks involved in the gonadal development in human fetuses.
Collapse
Affiliation(s)
- Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
13
|
Szydlowski M. A clue to the etiology of disorders of sex development from identity-by-descent analysis in dogs with cryptic relatedness. Anim Genet 2023; 54:166-176. [PMID: 36437751 DOI: 10.1111/age.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
Disorders of sex development (DSDs) are discrepancies between sex chromosomes and phenotypical sex. Quite common forms of DSD in canine populations include testicular and ovotesticular XX DSDs with a normal set of sex chromosomes. The objective of this study was to identify genes and putative harmful variants for canine XX DSDs. I have reanalyzed data from the whole-genome sequencing of 11 XX DSD French Bulldogs and six XX DSD American Staffordshire Terriers. Identity-by-descent analysis revealed cryptic relatedness in affected French Bulldogs. Causative genes were sought in chromosomal segments shared identical-by-descent by close relatives. In French Bulldogs, the reanalysis identified 19 regions of importance with a total length of just 65.9 Mb. Variant filtering within the regions implicated AKAP2, PIWIL1, POLR3A and SH2D4B as genes that may be involved in individual cases of testicular and ovotesticular XX DSD in French Bulldogs and American Staffordshire Terriers.
Collapse
Affiliation(s)
- Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
14
|
Novel mutation of MAP3K1 gene in 46,XY DSD with complete gonadal dysgenesis. Taiwan J Obstet Gynecol 2022; 61:903-905. [PMID: 36088066 DOI: 10.1016/j.tjog.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Swyer syndrome, or 46, XY complete gonadal dysgenesis, is a disorder of human sexual development which present with female external genitalia, lack of female reproductive organs, and a 46, XY karyotype. Many genes that participate in human sexual development have been implicated in the pathogenesis of 46, XY gonadal dysgenesis. CASE REPORT A 18-year-old phenotypically female was presented with primary amenorrhea. Surveillance revealed hypergonadotropic hypogonadism, a normal male 46, XY karyotype and absent of functional gonad, which was confirmed by pathological examination of the streak gonad. Whole exome sequencing showed germline mutations of a novel missense variant, c.570G > C, p.Lys190Asn, in exon 2 of MAP3K1 gene. CONCLUSION Given evolutionary conservation of lysine residue at position 190, the amino acid substitution may interfere with interaction between MAP3K1 and RHOA, and contributes to complete gonadal dysgenesis in the context of 46,XY.
Collapse
|
15
|
Abstract
Androgens are essential sex steroid hormones for both sexes. Testosterone (T) is the predominant androgen in males, while in adult females, T concentrations are about 15-fold lower and androgen precursors are converted to estrogens. T is produced primarily in testicular Leydig cells in men, while in women precursors are biosynthesised in the adrenal cortex and ovaries and converted into T in the periphery. The biosynthesis of T occurs via a series of enzymatic reactions in steroidogenic organs. Notably, the more potent androgen, dihydrotestosterone, may be synthesized from T in the classic pathway, however, alternate metabolic pathways also exist. The classic action of androgens on target organs is mediated through the androgen receptor, which regulates nuclear receptor gene transcription. However, the androgen-androgen receptor complex may also interact directly with membrane proteins or signaling molecules to exert more rapid effects. This review summarizes the current knowledge of androgen biosynthesis, mechanisms of action and endocrine effects in human biology, and relates these effects to respective human congenital and acquired disorders.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Switzerland.
| | - Therina du Toit
- Department of Biomedical Research, University of Bern, Switzerland.
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland.
| |
Collapse
|
16
|
Nowacka-Woszuk J, Stachowiak M, Szczerbal I, Szydlowski M, Szabelska-Beresewicz A, Zyprych-Walczak J, Krzeminska P, Nowak T, Lukomska A, Ligocka Z, Biezynski J, Dzimira S, Nizanski W, Switonski M. Whole genome sequencing identifies a missense polymorphism in PADI6 associated with testicular/ovotesticular XX disorder of sex development in dogs. Genomics 2022; 114:110389. [PMID: 35597501 DOI: 10.1016/j.ygeno.2022.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022]
Abstract
Disorders of sex development (DSDs) are congenital malformations defined as discrepancies between sex chromosomes and phenotypical sex. Testicular or ovotesticular XX DSDs are frequently observed in female dogs, while monogenic XY DSDs are less frequent. Here, we applied whole genome sequencing (WGS) to search for causative mutations in XX DSD females in French Bulldogs (FB) and American Staffordshire Terries (AST) and in XY DSD Yorkshire Terries (YT). The WGS results were validated by Sanger sequencing and ddPCR. It was shown that a missense SNP of the PADI6 gene, is significantly associated with the XX DSD (SRY-negative) phenotype in AST (P = 0.0051) and FB (P = 0.0306). On the contrary, we did not find any associated variant with XY DSD in YTs. Our study suggests that the genetic background of the XX DSD may be more complex and breed-specific.
Collapse
Affiliation(s)
- Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Alicja Szabelska-Beresewicz
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Paulina Krzeminska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Tomasz Nowak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Anna Lukomska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Zuzanna Ligocka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Janusz Biezynski
- Department of Surgery, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
| | - Stanislaw Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland
| | - Wojciech Nizanski
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland.
| |
Collapse
|
17
|
Messaoud O, Dutta AK, Cornejo-Olivas MR, Bhuiyan ZA. Editorial: Monogenic vs. Oligogenic Reclassification. Front Genet 2021; 12:821591. [PMID: 34966416 PMCID: PMC8710655 DOI: 10.3389/fgene.2021.821591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Olfa Messaoud
- Biomedical Genomics and Oncogenetics Laboratory, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Atanu Kumar Dutta
- Department of Biochemistry, All India Institute of Medical Sciences, Kalyani, India
| | - Mario Reynaldo Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologica, Lima, Peru.,Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Zahurul A Bhuiyan
- Unité de Recherche Cardiogénétique, Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
18
|
Houston BJ, Riera-Escamilla A, Wyrwoll MJ, Salas-Huetos A, Xavier MJ, Nagirnaja L, Friedrich C, Conrad DF, Aston KI, Krausz C, Tüttelmann F, O’Bryan MK, Veltman JA, Oud MS. A systematic review of the validated monogenic causes of human male infertility: 2020 update and a discussion of emerging gene-disease relationships. Hum Reprod Update 2021; 28:15-29. [PMID: 34498060 PMCID: PMC8730311 DOI: 10.1093/humupd/dmab030] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human male infertility has a notable genetic component, including well-established diagnoses such as Klinefelter syndrome, Y-chromosome microdeletions and monogenic causes. Approximately 4% of all infertile men are now diagnosed with a genetic cause, but a majority (60-70%) remain without a clear diagnosis and are classified as unexplained. This is likely in large part due to a delay in the field adopting next-generation sequencing (NGS) technologies, and the absence of clear statements from field leaders as to what constitutes a validated cause of human male infertility (the current paper aims to address this). Fortunately, there has been a significant increase in the number of male infertility NGS studies. These have revealed a considerable number of novel gene-disease relationships (GDRs), which each require stringent assessment to validate the strength of genotype-phenotype associations. To definitively assess which of these GDRs are clinically relevant, the International Male Infertility Genomics Consortium (IMIGC) has identified the need for a systematic review and a comprehensive overview of known male infertility genes and an assessment of the evidence for reported GDRs. OBJECTIVE AND RATIONALE In 2019, the first standardised clinical validity assessment of monogenic causes of male infertility was published. Here, we provide a comprehensive update of the subsequent 1.5 years, employing the joint expertise of the IMIGC to systematically evaluate all available evidence (as of 1 July 2020) for monogenic causes of isolated or syndromic male infertility, endocrine disorders or reproductive system abnormalities affecting the male sex organs. In addition, we systematically assessed the evidence for all previously reported possible monogenic causes of male infertility, using a framework designed for a more appropriate clinical interpretation of disease genes. SEARCH METHODS We performed a literature search according to the PRISMA guidelines up until 1 July 2020 for publications in English, using search terms related to 'male infertility' in combination with the word 'genetics' in PubMed. Next, the quality and the extent of all evidence supporting selected genes were assessed using an established and standardised scoring method. We assessed the experimental quality, patient phenotype assessment and functional evidence based on gene expression, mutant in-vitro cell and in-vivo animal model phenotypes. A final score was used to determine the clinical validity of each GDR, across the following five categories: no evidence, limited, moderate, strong or definitive. Variants were also reclassified according to the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines and were recorded in spreadsheets for each GDR, which are available at imigc.org. OUTCOMES The primary outcome of this review was an overview of all known GDRs for monogenic causes of human male infertility and their clinical validity. We identified a total of 120 genes that were moderately, strongly or definitively linked to 104 infertility phenotypes. WIDER IMPLICATIONS Our systematic review curates all currently available evidence to reveal the strength of GDRs in male infertility. The existing guidelines for genetic testing in male infertility cases are based on studies published 25 years ago, and an update is far overdue. The identification of 104 high-probability 'human male infertility genes' is a 33% increase from the number identified in 2019. The insights generated in the current review will provide the impetus for an update of existing guidelines, will inform novel evidence-based genetic testing strategies used in clinics, and will identify gaps in our knowledge of male infertility genetics. We discuss the relevant international guidelines regarding research related to gene discovery and provide specific recommendations to the field of male infertility. Based on our findings, the IMIGC consortium recommend several updates to the genetic testing standards currently employed in the field of human male infertility, most important being the adoption of exome sequencing, or at least sequencing of the genes validated in this study, and expanding the patient groups for which genetic testing is recommended.
Collapse
Affiliation(s)
- Brendan J Houston
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia, Spain
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Miguel J Xavier
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Genetics of Male Infertility Initiative (GEMINI)
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Don F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Genetics of Male Infertility Initiative (GEMINI)
- International Male Infertility Genomics Consortium (IMIGC)
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
- Genetics of Male Infertility Initiative (GEMINI)
- International Male Infertility Genomics Consortium (IMIGC)
| | - Csilla Krausz
- Genetics of Male Infertility Initiative (GEMINI)
- International Male Infertility Genomics Consortium (IMIGC)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Centre of Excellence DeNothe, University of Florence, Florence, Italy
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
- International Male Infertility Genomics Consortium (IMIGC)
| | - Moira K O’Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- Genetics of Male Infertility Initiative (GEMINI)
- International Male Infertility Genomics Consortium (IMIGC)
| | - Joris A Veltman
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- International Male Infertility Genomics Consortium (IMIGC)
| | - Manon S Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The aim of this study was to provide a basic overview on human sex development with a focus on involved genes and pathways, and also to discuss recent advances in the molecular diagnostic approaches applied to clinical workup of individuals with a difference/disorder of sex development (DSD). RECENT FINDINGS Rapid developments in genetic technologies and bioinformatics analyses have helped to identify novel genes and genomic pathways associated with sex development, and have improved diagnostic algorithms to integrate clinical, hormonal and genetic data. Recently, massive parallel sequencing approaches revealed that the phenotype of some DSDs might be only explained by oligogenic inheritance. SUMMARY Typical sex development relies on very complex biological events, which involve specific interactions of a large number of genes and pathways in a defined spatiotemporal sequence. Any perturbation in these genetic and hormonal processes may result in atypical sex development leading to a wide range of DSDs in humans. Despite the huge progress in the understanding of molecular mechanisms underlying DSDs in recent years, in less than 50% of DSD individuals, the genetic cause is currently solved at the molecular level.
Collapse
Affiliation(s)
- Idoia Martinez de LaPiscina
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN, Barakaldo, Spain
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Granada ML, Audí L. El laboratorio en el diagnóstico multidisciplinar del desarrollo sexual anómalo o diferente (DSD). ADVANCES IN LABORATORY MEDICINE 2021; 2:481-493. [PMCID: PMC10197318 DOI: 10.1515/almed-2020-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 06/28/2023]
Abstract
Objetivos El desarrollo de las características sexuales femeninas o masculinas acontece durante la vida fetal, determinándose el sexo genético, el gonadal y el sexo genital interno y externo (femenino o masculino). Cualquier discordancia en las etapas de diferenciación ocasiona un desarrollo sexual anómalo o diferente (DSD) que se clasifica según la composición de los cromosomas sexuales del cariotipo. Contenido En este capítulo se abordan la fisiología de la determinación y el desarrollo de las características sexuales femeninas o masculinas durante la vida fetal, la clasificación general de los DSD y su estudio diagnóstico clínico, bioquímico y genético que debe ser multidisciplinar. Los estudios bioquímicos deben incluir, además de las determinaciones bioquímicas generales, análisis de hormonas esteroideas y peptídicas, en condiciones basales o en pruebas funcionales de estimulación. El estudio genético debe comenzar con la determinación del cariotipo al que seguirá un estudio molecular en los cariotipos 46,XX ó 46,XY, orientado a la caracterización de un gen candidato. Además, se expondrán de manera específica los marcadores bioquímicos y genéticos en los DSD 46,XX, que incluyen el desarrollo gonadal anómalo (disgenesias, ovotestes y testes), el exceso de andrógenos de origen fetal (el más frecuente), fetoplacentario o materno y las anomalías del desarrollo de los genitales internos. Perspectivas El diagnóstico de un DSD requiere la contribución de un equipo multidisciplinar coordinado por un clínico y que incluya los servicios de bioquímica y genética clínica y molecular, un servicio de radiología e imagen y un servicio de anatomía patológica.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, España
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, España
| |
Collapse
|
21
|
Granada ML, Audí L. The laboratory in the multidisciplinary diagnosis of differences or disorders of sex development (DSD): III) Biochemical and genetic markers in the 46,XYIV) Proposals for the differential diagnosis of DSD. ADVANCES IN LABORATORY MEDICINE 2021; 2:494-515. [PMID: 37360892 PMCID: PMC10197773 DOI: 10.1515/almed-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/20/2021] [Indexed: 06/28/2023]
Abstract
Objectives 46,XY differences/disorders of sex development (DSD) involve an abnormal gonadal and/or genital (external and/or internal) development caused by lack or incomplete intrauterine virilization, with or without the presence of Müllerian ducts remnants. Content Useful biochemical markers for differential diagnosis of 46,XY DSD include hypothalamic-pituitary-gonadal hormones such as luteinizing and follicle-stimulating hormones (LH and FSH; in baseline or after LHRH stimulation conditions), the anti-Müllerian hormone (AMH), inhibin B, insulin-like 3 (INSL3), adrenal and gonadal steroid hormones (including cortisol, aldosterone, testosterone and their precursors, dihydrotestosterone and estradiol) and the pituitary ACTH hormone. Steroid hormones are measured at baseline or after stimulation with ACTH (adrenal hormones) and/or with HCG (gonadal hormones). Summary Different patterns of hormone profiles depend on the etiology and the severity of the underlying disorder and the age of the patient at diagnosis. Molecular diagnosis includes detection of gene dosage or copy number variations, analysis of candidate genes or high-throughput DNA sequencing of panels of candidate genes or the whole exome or genome. Outlook Differential diagnosis of 46,XX or 46,XY DSD requires a multidisciplinary approach, including patient history and clinical, morphological, imaging, biochemical and genetic data. We propose a diagnostic algorithm suitable for a newborn with DSD that focuses mainly on biochemical and genetic data.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Granada ML, Audí L. The laboratory in the multidisciplinary diagnosis of differences or disorders of sex development (DSD): I) Physiology, classification, approach, and methodologyII) Biochemical and genetic markers in 46,XX DSD. ADVANCES IN LABORATORY MEDICINE 2021; 2:468-493. [PMID: 37360895 PMCID: PMC10197333 DOI: 10.1515/almed-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 06/28/2023]
Abstract
Objectives The development of female or male sex characteristics occurs during fetal life, when the genetic, gonadal, and internal and external genital sex is determined (female or male). Any discordance among sex determination and differentiation stages results in differences/disorders of sex development (DSD), which are classified based on the sex chromosomes found on the karyotype. Content This chapter addresses the physiological mechanisms that determine the development of female or male sex characteristics during fetal life, provides a general classification of DSD, and offers guidance for clinical, biochemical, and genetic diagnosis, which must be established by a multidisciplinary team. Biochemical studies should include general biochemistry, steroid and peptide hormone testing either at baseline or by stimulation testing. The genetic study should start with the determination of the karyotype, followed by a molecular study of the 46,XX or 46,XY karyotypes for the identification of candidate genes. Summary 46,XX DSD include an abnormal gonadal development (dysgenesis, ovotestes, or testes), an androgen excess (the most frequent) of fetal, fetoplacental, or maternal origin and an abnormal development of the internal genitalia. Biochemical and genetic markers are specific for each group. Outlook Diagnosis of DSD requires the involvement of a multidisciplinary team coordinated by a clinician, including a service of biochemistry, clinical, and molecular genetic testing, radiology and imaging, and a service of pathological anatomy.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Granada ML, Audí L. El laboratorio en el diagnóstico multidisciplinar del desarrollo sexual anómalo o diferente (DSD): III) Marcadores bioquímicos y genéticos en los 46,XY IV) Propuestas para el diagnóstico diferencial de los DSD. ADVANCES IN LABORATORY MEDICINE 2021; 2:494-515. [PMID: 37360897 PMCID: PMC10197789 DOI: 10.1515/almed-2020-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/20/2021] [Indexed: 06/28/2023]
Abstract
Objetivos El desarrollo sexual anómalo o diferente (DSD) con cariotipo 46,XY incluye anomalías en el desarrollo gonadal y/o genital (externo y/o interno). Contenido Los marcadores bioquímicos útiles para el diagnóstico diferencial de los DSD con cariotipo 46,XY incluyen las hormonas del eje hipotálamo-hipófiso gonadal como son las gonadotropinas LH y FSH (en condiciones basales o tras la estimulación con LHRH), la hormona anti-Mülleriana, la inhibina B, el factor insulinoide tipo 3 y las hormonas esteroideas de origen suprarrenal (se incluirá la hormona hipofisaria ACTH) y testicular (cortisol, aldosterona y sus precursores, testosterona y sus precursores, dihidrotestosterona y estradiol). Las hormonas esteroideas se analizarán en condiciones basales o tras la estimulación con ACTH (hormonas adrenales) y/o con HCG (hormonas testiculares). Los patrones de variación de las distintas hormonas dependerán de la causa y la edad de cada paciente. El diagnóstico molecular debe incluir el análisis de un gen candidato, un panel de genes o el análisis de un exoma completo. Perspectivas El diagnóstico diferencial de los DSD con cariotipos 46,XX ó 46,XY debe ser multidisciplinar, incluyendo los antecedentes clínicos, morfológicos, de imagen, bioquímicos y genéticos. Se han elaborado numerosos algoritmos diagnósticos.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, España
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III,Barcelona, Catalonia, España
| |
Collapse
|
24
|
Miyado M, Fukami M, Ogata T. MAMLD1 and Differences/Disorders of Sex Development: An Update. Sex Dev 2021; 16:126-137. [PMID: 34695834 DOI: 10.1159/000519298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
MAMLD1 (alias CXorf6) was first documented in 2006 as a causative gene of 46,XY differences/disorders of sex development (DSD). MAMLD1/Mamld1 is expressed in the fetal testis and is predicted to enhance the expression of several Leydig cell-specific genes. To date, hemizygous MAMLD1 variants have been identified in multiple 46,XY individuals with hypomasculinized external genitalia. Pathogenic MAMLD1 variants are likely to cause genital abnormalities at birth and are possibly associated with age-dependent deterioration of testicular function. In addition, some MAMLD1 variants have been identified in 46,XX individuals with ovarian dysfunction. However, recent studies have raised the possibility that MAMLD1 variants cause 46,XY DSD and ovarian dysfunction as oligogenic disorders. Unsolved issues regarding MAMLD1 include the association between MAMLD1 variants and 46,XX testicular DSD, gene-gene interactions in the development of MAMLD1-mediated DSD, and intracellular functions of MAMLD1.
Collapse
Affiliation(s)
- Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
25
|
Kouri C, Sommer G, Flück CE. Oligogenic Causes of Human Differences of Sex Development: Facing the Challenge of Genetic Complexity. Horm Res Paediatr 2021; 96:169-179. [PMID: 34537773 DOI: 10.1159/000519691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deviations of intrauterine sex determination and differentiation and postnatal sex development can result in a very heterogeneous group of differences of sex development (DSD) with a broad spectrum of phenotypes. Variants in genes involved in sexual development cause different types of DSD, but predicting the phenotype from an individual's genotype and vice versa remains challenging. SUMMARY Next Generation Sequencing (NGS) studies suggested that oligogenic inheritance contributes to the broad manifestation of DSD phenotypes. This review will focus on possible oligogenic inheritance in DSD identified by NGS studies with a special emphasis on NR5A1variants as an example of oligogenic origin associated with a broad range of DSD phenotypes. We thoroughly searched the literature for evidence regarding oligogenic inheritance in DSD diagnosis with NGS technology and describe the challenges to interpret contribution of these genes to DSD phenotypic variability and pathogenicity. Key Messages: Variants in common DSD genes like androgen receptor (AR), mitogen-activated protein kinase kinase kinase 1 (MAP3K1), Hydroxy-Delta-5-Steroid Dehydrogenase 3 Beta- And Steroid Delta-Isomerase 2 (HSD3B2), GATA Binding Protein 4 (GATA4), zinc finger protein friend of GATA family member 2 (ZFPM2), 17b-hydroxysteroid dehydrogenase type 3 (HSD17B3), mastermind-like domain-containing protein 1 (MAMLD1), and nuclear receptor subfamily 5 group A member 1 (NR5A1) have been detected in combination with additional variants in related genes in DSD patients with a broad range of phenotypes, implying a role of oligogenic inheritance in DSD, while still awaiting proof. Use of NGS approach for genetic diagnosis of DSD patients can reveal more complex genetic traits supporting the concept of oligogenic cause of DSD. However, assessing the pathomechanistic contribution of multiple gene variants on a DSD phenotype remains an unsolved conundrum.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Grit Sommer
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Luna SE, Wegner DJ, Gale S, Yang P, Hollander A, St Dennis-Feezle L, Nabhan ZM, Ory DS, Cole FS, Wambach JA. Whole exome sequencing and functional characterization increase diagnostic yield in siblings with a 46, XY difference of sexual development (DSD). J Steroid Biochem Mol Biol 2021; 212:105908. [PMID: 33984517 PMCID: PMC8725205 DOI: 10.1016/j.jsbmb.2021.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/23/2022]
Abstract
Pathogenic biallelic variants in HSD17B3 result in 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) deficiency, variable disruption of testosterone production, and phenotypic diversity among 46, XY individuals with differences of sexual development (DSDs). We performed quad whole exome sequencing (WES) on two male siblings with microphallus, perineal hypospadias, and bifid scrotum and their unaffected parents. Both male siblings were compound heterozygous for a rare pathogenic HSD17B3 variant (c.239 G > A, p.R80Q) previously identified among individuals with 17β-HSD3 deficiency and a HSD17B3 variant (c.641A > G, p.E214 G) of uncertain significance. Following WES, the siblings underwent hCG stimulation testing with measurement of testosterone, androstenedione, and dihydrotestosterone which was non-diagnostic. To confirm pathogenicity of the HSD17B3 variants, we performed transient transfection of HEK-293 cells and measured conversion of radiolabeled androstenedione to testosterone. Both HSD17B3 variants decreased conversion of radiolabeled androstenedione to testosterone. As pathogenic HSD17B3 variants are rare causes of 46, XY DSD and hCG stimulation testing may not be diagnostic for 17β-HSD3 deficiency, WES in 46, XY individuals with DSDs can increase diagnostic yield and identify genomic variants for functional characterization of disruption of testosterone production.
Collapse
Affiliation(s)
- Sofia E Luna
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Sarah Gale
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Yang
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Abby Hollander
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Lori St Dennis-Feezle
- Department of Pediatrics, Indiana University School of Medicine and Riley Children's Hospital, Indianapolis, IN, USA
| | - Zeina M Nabhan
- Department of Pediatrics, Indiana University School of Medicine and Riley Children's Hospital, Indianapolis, IN, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA.
| |
Collapse
|
27
|
Bertelloni S, Tyutyusheva N, Valiani M, D'Alberton F, Baldinotti F, Caligo MA, Baroncelli GI, Peroni DG. Disorders/Differences of Sex Development Presenting in the Newborn With 46,XY Karyotype. Front Pediatr 2021; 9:627281. [PMID: 33968844 PMCID: PMC8100517 DOI: 10.3389/fped.2021.627281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Differences/disorders of sex development (DSD) are a heterogeneous group of congenital conditions, resulting in discordance between an individual's sex chromosomes, gonads, and/or anatomic sex. The management of a newborn with suspected 46,XY DSD remains challenging. Newborns with 46,XY DSD may present with several phenotypes ranging from babies with atypical genitalia or girls with inguinal herniae to boys with micropenis and cryptorchidism. A mismatch between prenatal karyotype and female phenotype is an increasing reason for presentation. Gender assignment should be avoided prior to expert evaluation and possibly until molecular diagnosis. The classic diagnostic approach is time and cost-consuming. Today, a different approach may be considered. The first line of investigations must exclude rare life-threatening diseases related to salt wasting crises. Then, the new genetic tests should be performed, yielding increased diagnostic performance. Focused imaging or endocrine studies should be performed on the basis of genetic results in order to reduce repeated and invasive investigations for a small baby. The challenge for health professionals will lie in integrating specific genetic information with better defined clinical and endocrine phenotypes and in terms of long-term evolution. Such advances will permit optimization of counseling of parents and sex assignment. In this regard, society has significantly changed its attitude to the acceptance and expansion beyond strict binary male and female sexes, at least in some countries or cultures. These management advances should result in better personalized care and better long-term quality of life of babies born with 46,XY DSD.
Collapse
Affiliation(s)
- Silvano Bertelloni
- Paediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nina Tyutyusheva
- Paediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Margherita Valiani
- Paediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Fulvia Baldinotti
- Laboratory of Molecular Genetics, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Maria Adelaide Caligo
- Laboratory of Molecular Genetics, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Giampiero I Baroncelli
- Paediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Paediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Audí L, Bertelloni S, Flück CE. Molecular Aspects of Sex Development in Mammals: New Insight for Practice. Int J Mol Sci 2020; 21:E9146. [PMID: 33266346 PMCID: PMC7730320 DOI: 10.3390/ijms21239146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Disorders (or differences) of sex development (DSD) are congenital conditions characterized by atypical development of genetic, gonadal or phenotypic sex [...].
Collapse
Affiliation(s)
- Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, 08035 Catalonia, Spain;
| | - Silvano Bertelloni
- Pediatric and Adolescent Endocrinology, Division of Paediatrics, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Christa E. Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics and Department of BioMedical Research, Bern University Hospital and University of Bern, CH-3010 Bern, Switzerland;
| |
Collapse
|
29
|
Martínez de LaPiscina I, Mahmoud RAA, Sauter KS, Esteva I, Alonso M, Costa I, Rial-Rodriguez JM, Rodríguez-Estévez A, Vela A, Castano L, Flück CE. Variants of STAR, AMH and ZFPM2/FOG2 May Contribute towards the Broad Phenotype Observed in 46,XY DSD Patients with Heterozygous Variants of NR5A1. Int J Mol Sci 2020; 21:E8554. [PMID: 33202802 PMCID: PMC7696449 DOI: 10.3390/ijms21228554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Variants of NR5A1 are often found in individuals with 46,XY disorders of sex development (DSD) and manifest with a very broad spectrum of clinical characteristics and variable sex hormone levels. Such complex phenotypic expression can be due to the inheritance of additional genetic hits in DSD-associated genes that modify sex determination, differentiation and organ function in patients with heterozygous NR5A1 variants. Here we describe the clinical, biochemical and genetic features of a series of seven patients harboring monoallelic variants in the NR5A1 gene. We tested the transactivation activity of novel NR5A1 variants. We additionally included six of these patients in a targeted diagnostic gene panel for DSD and identified a second genetic hit in known DSD-causing genes STAR, AMH and ZFPM2/FOG2 in three individuals. Our study increases the number of NR5A1 variants related to 46,XY DSD and supports the hypothesis that a digenic mode of inheritance may contribute towards the broad spectrum of phenotypes observed in individuals with a heterozygous NR5A1 variation.
Collapse
Affiliation(s)
- Idoia Martínez de LaPiscina
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN. Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.d.L.); (A.R.-E.); (A.V.); (L.C.)
| | - Rana AA Mahmoud
- Department of Pediatrics, Endocrinology Section, Ain Shams University, 38 Abbasia, Nour Mosque, El-Mohamady, Al Waili, Cairo 11591, Egypt;
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland;
| | - Isabel Esteva
- Endocrinology Section, Gender Identity Unit, Regional University Hospital of Malaga, Av. de Carlos Haya, s/n, 29010 Málaga, Spain;
| | - Milagros Alonso
- Pediatric Endocrinology Department, Ramon y Cajal University Hospital, Ctra. de Colmenar Viejo km. 9, 100, 28034 Madrid, Spain;
| | - Ines Costa
- Pediatric Department, Manises Hospital, Avda. Generalitat Valenciana 50, 46940 Manises, Spain;
| | - Jose Manuel Rial-Rodriguez
- Pediatric Endocrinology Department, Nuestra Señora de Candelaria University Hospital, Ctra general del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
| | - Amaia Rodríguez-Estévez
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN. Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.d.L.); (A.R.-E.); (A.V.); (L.C.)
- Pediatric Endocrinology Department, Cruces University Hospital, Plaza de Cruces 12, 48903 Barakaldo, Spain
| | - Amaia Vela
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN. Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.d.L.); (A.R.-E.); (A.V.); (L.C.)
- Pediatric Endocrinology Department, Cruces University Hospital, Plaza de Cruces 12, 48903 Barakaldo, Spain
| | - Luis Castano
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN. Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.d.L.); (A.R.-E.); (A.V.); (L.C.)
- Pediatric Endocrinology Department, Cruces University Hospital, Plaza de Cruces 12, 48903 Barakaldo, Spain
| | - Christa E. Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland;
| |
Collapse
|
30
|
Acién P, Acién M. Disorders of Sex Development: Classification, Review, and Impact on Fertility. J Clin Med 2020; 9:jcm9113555. [PMID: 33158283 PMCID: PMC7694247 DOI: 10.3390/jcm9113555] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, the elements included in both sex determination and sex differentiation are briefly analyzed, exposing the pathophysiological and clinical classification of disorders or anomalies of sex development. Anomalies in sex determination without sex ambiguity include gonadal dysgenesis, polysomies, male XX, and Klinefelter syndrome (dysgenesis and polysomies with a female phenotype; and sex reversal and Klinefelter with a male phenotype). Other infertility situations could also be included here as minor degrees of dysgenesis. Anomalies in sex determination with sex ambiguity should (usually) include testicular dysgenesis and ovotesticular disorders. Among the anomalies in sex differentiation, we include: (1) males with androgen deficiency (MAD) that correspond to those individuals whose karyotype and gonads are male (XY and testes), but the phenotype can be female due to different hormonal abnormalities. (2) females with androgen excess (FAE); these patients have ovaries and a 46,XX karyotype, but present varying degrees of external genital virilization as a result of an enzyme abnormality that affects adrenal steroid biosynthesis and leads to congenital adrenal hyperplasia; less frequently, this can be caused by iatrogenia or tumors. (3) Kallman syndrome. All of these anomalies are reviewed and analyzed herein, as well as related fertility problems.
Collapse
Affiliation(s)
- Pedro Acién
- Department of Gynecology, Miguel Hernández University, San Juan Campus, 03550 San Juan, Alicante, Spain;
- Correspondence: ; Tel.: +34-670-097-518, +34-965-919-385; Fax: +34-965-919-550
| | - Maribel Acién
- Department of Gynecology, Miguel Hernández University, San Juan Campus, 03550 San Juan, Alicante, Spain;
- Obstetrics and Gynecology, San Juan University Hospital, San Juan Campus, 03550 San Juan, Alicante, Spain
| |
Collapse
|