1
|
Hu Y, Lu N, Bao K, Liu S, Li R, Huang G. Swords and shields: the war between Candidatus Liberibacter asiaticus and citrus. FRONTIERS IN PLANT SCIENCE 2025; 15:1518880. [PMID: 39840363 PMCID: PMC11747508 DOI: 10.3389/fpls.2024.1518880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025]
Abstract
Citrus Huanglongbing (HLB) represents a significant threat to the citrus industry, mainly caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas). In this review, we summarize recent advances in understanding the relationship between citrus and CLas, particularly examining the functions of Sec-dependent effectors (SDEs) and non-classically secreted proteins (ncSPs) in virulence, as well as their targeted interactions with citrus. We further investigate the impact of SDEs on various physiological processes, including systemic acquired resistance (SAR), reactive oxygen species (ROS) accumulation, vesicle trafficking, callose deposition, cell death, autophagy, chlorosis and flowering. Additionally, we focus on the functional research on specific disease-resistant genes in citrus and the molecular mechanisms underlying disease resistance. Finally, we discuss the existing gaps and unresolved questions regarding citrus-CLas interactions, proposing potential solutions to facilitate the development of HLB-resistant citrus varieties.
Collapse
Affiliation(s)
- Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Nannan Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Kaiqiang Bao
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shuting Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| |
Collapse
|
2
|
Tiwari T, Robertson C, El-Mohtar C, Grosser J, Vashisth T, Mou Z, Dutt M. Genetic and physiological characteristics of CsNPR3 edited citrus and their impact on HLB tolerance. Front Genome Ed 2024; 6:1485529. [PMID: 39698041 PMCID: PMC11652141 DOI: 10.3389/fgeed.2024.1485529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Huanglongbing (HLB) disease, caused by Candidatus Liberibacter asiaticus (CaLas), severely impacts citrus production, and currently, there is no cure. Developing HLB-resistant or tolerant cultivars is crucial, with modifying defense-related genes being a promising approach to managing HLB. NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) is a positive regulator of systemic acquired resistance (SAR), which enhances resistance to pathogens, whereas NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 3 (NPR3) is a negative regulator of SAR. To unambiguously address the role of CsNPR3 in HLB, we introduced mutations into the CsNPR3 gene in sweet orange (Citrus sinensis L. Osbeck) through genome editing and assessed their effects on morphology, physiology, and resistance/tolerance to HLB. Several genome-edited 'Hamlin' sweet orange trees harboring frameshift-inducing insertions or deletions were identified. After confirming the genome editing using Sanger sequencing, selected lines were grafted onto C-146 trifoliate hybrid rootstocks for clonal propagation. The progenies were then infected with CaLas using a no-choice Asian Citrus Psyllid (ACP) feeding assay. Evaluation of the genetic and physiological characteristics of CsNPR3-edited citrus trees under greenhouse conditions revealed that the edited trees exhibited greater vigor than the wild-type trees, despite the lack of significant differences in CaLas titers. Although further field evaluation is needed, our findings indicate that CsNPR3 contributes to HLB-caused tree deterioration and demonstrate that editing CsNPR3 can enhance tolerance to HLB.
Collapse
Affiliation(s)
- Trishna Tiwari
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| | - Cecile Robertson
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Choaa El-Mohtar
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Jude Grosser
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| | - Tripti Vashisth
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Manjul Dutt
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Li J, Wang YZ, Gmitter FG, Wang Y. Identifying the earliest citrus responses to Candidatus Liberibacter asiaticus infection: a temporal metabolomics study. FRONTIERS IN PLANT SCIENCE 2024; 15:1455344. [PMID: 39574442 PMCID: PMC11579704 DOI: 10.3389/fpls.2024.1455344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
The global citrus industry faces a great threat from Huanglongbing (HLB), a destructive disease caused by 'Candidatus Liberibacter asiaticus' (CLas) that induces significant economic losses without any known cure. Understanding how citrus plants defend against HLB, particularly at the early stages of infection, is crucial for developing long-term solutions. This study investigated the earliest metabolic responses of fresh citrus leaves to CLas infection using untargeted metabolomics and machine learning models. HLB-tolerant and HLB-sensitive cultivars were compared to analyze their biochemical reactions within 48 hours post-infection. HESI/Q-Orbitrap MS analysis identified temporal differential metabolites, revealing distinct metabolic pathways activated in response to CLas infection. Both cultivars responded by increasing specific metabolite concentrations, such as flavonoids, within 2 hours post-infection, but the HLB-tolerant cultivar maintained higher levels throughout the 48-hour period. This early metabolic activity could influence long-term plant health by enhancing disease resistance and reducing pathogen impact. These findings provide potential biomarkers for breeding HLB-resistant cultivars and offer valuable insights for developing sustainable management strategies to mitigate the impact of HLB on the citrus industry, ensuring its long-term productivity and economic viability.
Collapse
Affiliation(s)
| | | | | | - Yu Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences,
University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
4
|
Wang H, Chen Q, Feng W. The Emerging Role of 2OGDs as Candidate Targets for Engineering Crops with Broad-Spectrum Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1129. [PMID: 38674537 PMCID: PMC11054871 DOI: 10.3390/plants13081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases caused by pathogens result in a marked decrease in crop yield and quality annually, greatly threatening food production and security worldwide. The creation and cultivation of disease-resistant cultivars is one of the most effective strategies to control plant diseases. Broad-spectrum resistance (BSR) is highly preferred by breeders because it confers plant resistance to diverse pathogen species or to multiple races or strains of one species. Recently, accumulating evidence has revealed the roles of 2-oxoglutarate (2OG)-dependent oxygenases (2OGDs) as essential regulators of plant disease resistance. Indeed, 2OGDs catalyze a large number of oxidative reactions, participating in the plant-specialized metabolism or biosynthesis of the major phytohormones and various secondary metabolites. Moreover, several 2OGD genes are characterized as negative regulators of plant defense responses, and the disruption of these genes via genome editing tools leads to enhanced BSR against pathogens in crops. Here, the recent advances in the isolation and identification of defense-related 2OGD genes in plants and their exploitation in crop improvement are comprehensively reviewed. Also, the strategies for the utilization of 2OGD genes as targets for engineering BSR crops are discussed.
Collapse
Affiliation(s)
- Han Wang
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghe Chen
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Wanzhen Feng
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| |
Collapse
|
5
|
Gill RA, Li X, Duan S, Xing Q, Müller-Xing R. Citrus threat huanglongbing (HLB) - Could the rootstock provide the cure? FRONTIERS IN PLANT SCIENCE 2024; 15:1330846. [PMID: 38405591 PMCID: PMC10885694 DOI: 10.3389/fpls.2024.1330846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Affiliation(s)
- Rafaqat A. Gill
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Xianglian Li
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Shuo Duan
- China-USA Citrus Huanglongbing Joint Laboratory (A Joint Laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Qian Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Ralf Müller-Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Zuo S, Xu L, Zhang H, Jiang M, Wu S, Zhang LH, Zhou X, Wang J. FlgI Is a Sec-Dependent Effector of Candidatus Liberibacter asiaticus That Can Be Blocked by Small Molecules Identified Using a Yeast Screen. PLANTS (BASEL, SWITZERLAND) 2024; 13:318. [PMID: 38276775 PMCID: PMC10819201 DOI: 10.3390/plants13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofan Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (L.X.); (H.Z.); (M.J.); (S.W.); (L.-H.Z.)
| | - Junxia Wang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (L.X.); (H.Z.); (M.J.); (S.W.); (L.-H.Z.)
| |
Collapse
|
7
|
Zavaliev R, Dong X. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Mol Cell 2024; 84:131-141. [PMID: 38103555 PMCID: PMC10929286 DOI: 10.1016/j.molcel.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Nonexpressor of pathogenesis-related genes 1 (NPR1) was discovered in Arabidopsis as an activator of salicylic acid (SA)-mediated immune responses nearly 30 years ago. How NPR1 confers resistance against a variety of pathogens and stresses has been extensively studied; however, only in recent years have the underlying molecular mechanisms been uncovered, particularly NPR1's role in SA-mediated transcriptional reprogramming, stress protein homeostasis, and cell survival. Structural analyses ultimately defined NPR1 and its paralogs as SA receptors. The SA-bound NPR1 dimer induces transcription by bridging two TGA transcription factor dimers, forming an enhanceosome. Moreover, NPR1 orchestrates its multiple functions through the formation of distinct nuclear and cytoplasmic biomolecular condensates. Furthermore, NPR1 plays a central role in plant health by regulating the crosstalk between SA and other defense and growth hormones. In this review, we focus on these recent advances and discuss how NPR1 can be utilized to engineer resistance against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
8
|
Gao C, Li C, Li Z, Liu Y, Li J, Guo J, Mao J, Fang F, Wang C, Deng X, Zheng Z. Comparative transcriptome profiling of susceptible and tolerant citrus species at early and late stage of infection by " Candidatus Liberibacter asiaticus". FRONTIERS IN PLANT SCIENCE 2023; 14:1191029. [PMID: 37389294 PMCID: PMC10301834 DOI: 10.3389/fpls.2023.1191029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
Citrus Huanglongbing (HLB), caused by "Candidatus Liberibacter asiaticus" (CLas), is the most destructive disease threatening global citrus industry. Most commercial cultivars were susceptible to HLB, although some showed tolerant to HLB phenotypically. Identifying tolerant citrus genotypes and understanding the mechanism correlated with tolerance to HLB is essential for breeding citrus variety tolerance/resistance to HLB. In this study, the graft assay with CLas-infected bud were performed in four citrus genotypes, including Citrus reticulata Blanco, C. sinensis, C. limon, and C. maxima. HLB tolerance was observed in C. limon and C. maxima, while C. Blanco and C. sinensis were susceptible to HLB. The time-course transcriptomic analysis revealed a significant variation in differentially expressed genes (DEGs) related to HLB between susceptible and tolerant cultivar group at early and late infection stage. Functional analysis of DEGs indicated that the activation of genes involved in SA-mediated defense response, PTI, cell wall associated immunity, endochitinase, phenylpropanoid and alpha-linolenic/linoleic lipid metabolism played an important in the tolerance of C. limon and C. maxima to HLB at early infection stage. In addition, the overactive plant defense combined with the stronger antibacterial activity (antibacterial secondary and lipid metabolism) and the suppression of pectinesterase were contributed to the long-term tolerance to HLB in C. limon and C. maxima at late infection stage. Particularly, the activation of ROS scavenging genes (catalases and ascorbate peroxidases) could help to reduce HLB symptoms in tolerant cultivars. In contrast, the overexpression of genes involved in oxidative burst and ethylene metabolism, as well as the late inducing of defense related genes could lead to the early HLB symptom development in susceptible cultivars at early infection stage. The weak defense response and antibacterial secondary metabolism, and the induce of pectinesterase were responsible for sensitivity to HLB in C. reticulata Blanco and C. sinensis at late infection stage. This study provided new insights into the tolerance/sensitivity mechanism against HLB and valuable guidance for breeding of HLB-tolerant/resistant cultivars.
Collapse
Affiliation(s)
- Chenying Gao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cuixiao Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ziyi Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yaoxin Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiaming Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Jiana Mao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Nakandala U, Masouleh AK, Smith MW, Furtado A, Mason P, Constantin L, Henry RJ. Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes. HORTICULTURE RESEARCH 2023; 10:uhad058. [PMID: 37213680 PMCID: PMC10199705 DOI: 10.1093/hr/uhad058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 05/23/2023]
Abstract
Recent advances in genome sequencing and assembly techniques have made it possible to achieve chromosome level reference genomes for citrus. Relatively few genomes have been anchored at the chromosome level and/or are haplotype phased, with the available genomes of varying accuracy and completeness. We now report a phased high-quality chromosome level genome assembly for an Australian native citrus species; Citrus australis (round lime) using highly accurate PacBio HiFi long reads, complemented with Hi-C scaffolding. Hifiasm with Hi-C integrated assembly resulted in a 331 Mb genome of C. australis with two haplotypes of nine pseudochromosomes with an N50 of 36.3 Mb and 98.8% genome assembly completeness (BUSCO). Repeat analysis showed that more than 50% of the genome contained interspersed repeats. Among them, LTR elements were the predominant type (21.0%), of which LTR Gypsy (9.8%) and LTR copia (7.7%) elements were the most abundant repeats. A total of 29 464 genes and 32 009 transcripts were identified in the genome. Of these, 28 222 CDS (25 753 genes) had BLAST hits and 21 401 CDS (75.8%) were annotated with at least one GO term. Citrus specific genes for antimicrobial peptides, defense, volatile compounds and acidity regulation were identified. The synteny analysis showed conserved regions between the two haplotypes with some structural variations in Chromosomes 2, 4, 7 and 8. This chromosome scale, and haplotype resolved C. australis genome will facilitate the study of important genes for citrus breeding and will also allow the enhanced definition of the evolutionary relationships between wild and domesticated citrus species.
Collapse
Affiliation(s)
- Upuli Nakandala
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Ardashir Kharabian Masouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Malcolm W Smith
- Department of Agriculture and Fisheries, Bundaberg Research Station, Bundaberg, Queensland 4670, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Patrick Mason
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Lena Constantin
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
10
|
de Oliveira Dorta S, Attílio LB, Zanardi OZ, Lopes JRS, Machado MA, Freitas-Astúa J. Genetic transformation of 'Hamlin' and 'Valencia' sweet orange plants expressing the cry11A gene of Bacillus thuringiensis as another tool to the management of Diaphorina citri (Hemiptera: Liviidae). J Biotechnol 2023; 368:60-70. [PMID: 37088156 DOI: 10.1016/j.jbiotec.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the vector of Candidatus Liberibacter spp., the bacteria associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. HLB management has heavily counted on insecticide applications to control the ACP, although there are efforts towards more sustainable alternatives. In previous work, our group assessed the potential bioactivity of different strains of Bacillus thuringiensis (Eubacteriales: Bacillaceae) (Bt) containing cry/cyt genes as feasible tools to control ACP nymphs. Here, we report an attempt to use the cry11A gene from Bt to produce transgenic sweet orange plants using two promoters. For the genetic transformation, 'Hamlin' and 'Valencia' sweet orange seedlings were used as sources of explants. Transgenic plants were detected by polymerase chain reaction (PCR) with specific primers, and the transgene copy number was confirmed by Southern blot analyses. Transcript expression levels were determined by qPCR. Mortality assays of D. citri nymphs were carried out in a greenhouse, and the effect of the events tested ranged from 22 to 43% at the end of the five-day exposure period. To our knowledge, this is the first manuscript reporting the production of citrus plants expressing the Bt cry11A gene for the management of D. citri nymphs.
Collapse
Affiliation(s)
- Sílvia de Oliveira Dorta
- Programa de Pós-Graduação em Microbiologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil; Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil.
| | - Lísia Borges Attílio
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil; Laboratório de Insetos Vetores de Fitopatógenos, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil
| | - Odimar Zanuzo Zanardi
- Departamento de Ensino, Pesquisa e Extensão, Instituto Federal de Santa Catarina (IFSC), 89.900-000, São Miguel do Oeste, Santa Catarina, Brasil
| | - João Roberto Spotti Lopes
- Laboratório de Insetos Vetores de Fitopatógenos, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil
| | - Marcos Antonio Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil
| | - Juliana Freitas-Astúa
- Embrapa Mandioca e Fruticultura, 44.380-000, Cruz das Almas, Bahia, Brazil; Unidade Laboratorial de Referência em Biologia Molecular Aplicada/Instituto Biológico (ULRBMA/IB), 04.014-900, São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Estrella-Maldonado H, González-Cruz C, Matilde-Hernández C, Adame-García J, Santamaría JM, Santillán-Mendoza R, Flores-de la Rosa FR. Insights into the Molecular Basis of Huanglongbing Tolerance in Persian Lime ( Citrus latifolia Tan.) through a Transcriptomic Approach. Int J Mol Sci 2023; 24:ijms24087497. [PMID: 37108662 PMCID: PMC10144405 DOI: 10.3390/ijms24087497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Huanglongbing (HLB) is a vascular disease of Citrus caused by three species of the α-proteobacteria "Candidatus Liberibacter", with "Candidatus Liberibacter asiaticus" (CLas) being the most widespread and the one causing significant economic losses in citrus-producing regions worldwide. However, Persian lime (Citrus latifolia Tanaka) has shown tolerance to the disease. To understand the molecular mechanisms of this tolerance, transcriptomic analysis of HLB was performed using asymptomatic and symptomatic leaves. RNA-Seq analysis revealed 652 differentially expressed genes (DEGs) in response to CLas infection, of which 457 were upregulated and 195 were downregulated. KEGG analysis revealed that after CLas infection, some DEGs were present in the plant-pathogen interaction and in the starch and sucrose metabolism pathways. DEGs present in the plant-pathogen interaction pathway suggests that tolerance against HLB in Persian lime could be mediated, at least partly, by the ClRSP2 and ClHSP90 genes. Previous reports documented that RSP2 and HSP90 showed low expression in susceptible citrus genotypes. Regarding the starch and sucrose metabolism pathways, some genes were identified as being related to the imbalance of starch accumulation. On the other hand, eight biotic stress-related genes were selected for further RT-qPCR analysis to validate our results. RT-qPCR results confirmed that symptomatic HLB leaves had high relative expression levels of the ClPR1, ClNFP, ClDR27, and ClSRK genes, whereas the ClHSL1, ClRPP13, ClPDR1, and ClNAC genes were expressed at lower levels than those from HLB asymptomatic leaves. Taken together, the present transcriptomic analysis contributes to the understanding of the CLas-Persian lime interaction in its natural environment and may set the basis for developing strategies for the integrated management of this important Citrus disease through the identification of blanks for genetic improvement.
Collapse
Affiliation(s)
- Humberto Estrella-Maldonado
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| | - Carlos González-Cruz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| | - Cristian Matilde-Hernández
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| | - Jacel Adame-García
- Tecnológico Nacional de México, Campus Úrsulo Galván, Km 4.5 Carretera Cd. Cardel-Chachalacas, Úrsulo Galván C.P. 91667, Veracruz, Mexico
| | - Jorge M Santamaría
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ricardo Santillán-Mendoza
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| | - Felipe Roberto Flores-de la Rosa
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| |
Collapse
|
12
|
Wang B, Wang J, Yang T, Wang J, Dai Q, Zhang F, Xi R, Yu Q, Li N. The transcriptional regulatory network of hormones and genes under salt stress in tomato plants ( Solanum lycopersicum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1115593. [PMID: 36814758 PMCID: PMC9939653 DOI: 10.3389/fpls.2023.1115593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Salt stress has become one of the main limiting factors affecting the normal growth and development of tomatoes as well as fruit quality and yields. To further reveal the regulatory relationships between tomato hormones under salt stress, the interaction between hormones and TF and the genome-wide gene interaction network were analyzed and constructed. After salt treatment, the levels of ABA, SA, and JA were significantly increased, the levels of GA were decreased, and IAA and tZ showed a trend of first increasing and then decreasing. The expression patterns of hormone biosynthesis and signal transduction related genes were analyzed based on RNA-seq analysis, the co-expression network of hormones and genome-wide co-expression networks were constructed using weighted gene co-expression network analysis (WGCNA). The expression patterns of specific transcription factors under salt stress were also systematically analyzed and identified 20 hormone-related candidate genes associated with salt stress. In conclusion, we first revealed the relationship between hormones and genes in tomatoes under salt stress based on hormone and transcriptome expression profiles and constructed a gene regulatory network. A transcriptional regulation model of tomato consisted of six types of hormones was also proposed. Our study provided valuable insights into the molecular mechanisms regulating salt tolerance in tomatoes.
Collapse
Affiliation(s)
- Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Jinxin Wang
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qi Dai
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Fulin Zhang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Rui Xi
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
13
|
Soares JM, Weber KC, Qiu W, Mahmoud LM, Grosser JW, Dutt M. Overexpression of the salicylic acid binding protein 2 (SABP2) from tobacco enhances tolerance against Huanglongbing in transgenic citrus. PLANT CELL REPORTS 2022; 41:2305-2320. [PMID: 36107199 DOI: 10.1007/s00299-022-02922-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of the salicylic acid binding protein 2 (SABP2) gene from Tobacco results in enhanced tolerance to Huanglongbing (HLB; citrus greening disease) in transgenic sweet oranges. Huanglongbing (HLB), the most destructive citrus disease, is caused by Candidatus Liberibacter asiaticus (CaLas). Currently, no cure for this disease exists, and all commercially planted cultivars are highly susceptible. Salicylic Acid Binding Protein 2 (SABP2) is a well-characterized protein essential for establishing systemic acquired resistance (SAR) in tobacco. The constitutive over expression of SABP2 from tobacco (NtSABP2) in 'Hamlin' sweet orange resulted in the production of several transgenic lines with variable transcript levels. Transient expression of the NtSABP2-EGFP fusion protein in Nicotiana benthamiana plants demonstrated that NtSABP2 was cytosolic in its subcellular localization. In a long-term field study, we identified a SABP2 transgenic line with significantly reduced HLB symptoms that maintained a consistently low CaLas titer. Transcriptome analysis of this selected transgenic line demonstrated upregulation of several genes related to plant defense and SAR pathways. Genes, such as NPR family genes and those coding for monooxygenases and lipoxygenases, were upregulated in the 35S-NtSABP2 overexpressing line and might be candidates for incorporation into our citrus improvement program.
Collapse
Affiliation(s)
- Juliana M Soares
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Kyle C Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Wenming Qiu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lamiaa M Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
14
|
Dutt M, Mahmoud LM, Nehela Y, Grosser JW, Killiny N. The Citrus sinensis TILLER ANGLE CONTROL 1 (CsTAC1) gene regulates tree architecture in sweet oranges by modulating the endogenous hormone content. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111401. [PMID: 35905898 DOI: 10.1016/j.plantsci.2022.111401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Citrus is a major fruit crop cultivated on a global scale. Citrus trees are long lived perennials with a large canopy. Understanding the genetic control of tree architecture could provide tools for breeding and selection of citrus cultivars suitable for high density planting with improved light exposure. Tree architecture is modulated by the TILLER ANGLE CONTROL 1 (TAC1) gene which plays an important role in the regulation of the shoot angle. Herein, we used CRISPR/Cas9 technology to knockout the CsTAC1 gene for the biochemical and molecular analysis of its function. Nine transgenic lines were obtained, and five edited plants were confirmed based on T7EI mismatch detection assay and Sanger sequencing. The transgenic citrus lines exhibited pleiotropic phenotypes, including differences in branch angle and stem growth. Additionally, silencing CsTAC1 led to enhanced CsLAZY1 transcript levels in the tested lines. Analysis of the phytohormonal profile revealed that TAC1-edited plants exhibited lower auxin contents and increased cytokinin levels in the leaves compared to the wild-type plants. The GA7 gibberellin level was enhanced in most of the edited lines. Collectively, TAC1 affects branch angle in association with hormone signals in citrus.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA.
| | - Lamiaa M Mahmoud
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Yasser Nehela
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31512, Egypt
| | - Jude W Grosser
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA
| | - Nabil Killiny
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
15
|
Zhang J, Lei W, Meng Y, Zhou C, Zhang B, Yuan J, Wang M, Xu D, Meng X, Chen W. Expression of PEI-coated gold nanoparticles carrying exogenous gene in periwinkle mesophyll cells and its practice in Huanglongbing research. iScience 2022; 25:104479. [PMID: 35712078 PMCID: PMC9192802 DOI: 10.1016/j.isci.2022.104479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Huanglongbing (HLB) is a devastating disease of citrus, which is mostly caused by Candidatus Liberibacter asiaticus (CLas). To realize the specific application of nano-transgenic technology in HLB, AuNPs-PEI (Gold Nanoparticles-Polyethylenimine) was used to carry foreign genes into the leaves of periwinkle (Catharanthus roseus) by infiltration. Here, we demonstrated that NPR1-GFP protein expression was observed from the 12th hour to the 10th day after infiltrating AuNPs-PEI-pNPR1 (Arabidopsis thaliana nonexpressor of pathogenesis-related gene 1)-GFP. Fluorescence of mCherry was observed 6 h after AuNPs-PEI-pNLS (nuclear localization signal sequence)-mCherry infiltration and fluorescence of FAM was observed in the nucleus 4 h after AuNPs-PEI-FAM-siRNANPR1 infiltration. In addition, NPR1-GFP expression in CLas-infected periwinkle leaves was significantly higher than that in healthy periwinkle leaves after infiltration. Our work confirmed that the expression of exogenous NPR1-GFP could reduce the CLas titers by promoting the expression of PR (pathogenesis related) genes and ICS (isochorismate synthase) gene. AuNPs-PEI-FAM-siRNANPR1 entered the nucleus within 4 h after infiltration AuNPs-PEI-pNLS-mCherry expressed the corresponding protein within 6 h AuNPs-PEI-pNPR1-GFP continued to express the corresponding protein for 14 days After AuNPs-PEI-pNPR1-GFP infiltration for 2 days, CLas titer decreased significantly
Collapse
|
16
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
17
|
Peng W, Yang Y, Xu J, Peng E, Dai S, Dai L, Wang Y, Yi T, Wang B, Li D, Song N. TALE Transcription Factors in Sweet Orange ( Citrus sinensis): Genome-Wide Identification, Characterization, and Expression in Response to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 12:814252. [PMID: 35126435 PMCID: PMC8811264 DOI: 10.3389/fpls.2021.814252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Three-amino-acid-loop-extension (TALE) transcription factors comprise one of the largest gene families in plants, in which they contribute to regulation of a wide variety of biological processes, including plant growth and development, as well as governing stress responses. Although sweet orange (Citrus sinensis) is among the most commercially important fruit crops cultivated worldwide, there have been relatively few functional studies on TALE genes in this species. In this study, we investigated 18 CsTALE gene family members with respect to their phylogeny, physicochemical properties, conserved motif/domain sequences, gene structures, chromosomal location, cis-acting regulatory elements, and protein-protein interactions (PPIs). These CsTALE genes were classified into two subfamilies based on sequence homology and phylogenetic analyses, and the classification was equally strongly supported by the highly conserved gene structures and motif/domain compositions. CsTALEs were found to be unevenly distributed on the chromosomes, and duplication analysis revealed that segmental duplication and purifying selection have been major driving force in the evolution of these genes. Expression profile analysis indicated that CsTALE genes exhibit a discernible spatial expression pattern in different tissues and differing expression patterns in response to different biotic/abiotic stresses. Of the 18 CsTALE genes examined, 10 were found to be responsive to high temperature, four to low temperature, eight to salt, and four to wounding. Moreover, the expression of CsTALE3/8/12/16 was induced in response to infection with the fungal pathogen Diaporthe citri and bacterial pathogen Candidatus Liberibacter asiaticus, whereas the expression of CsTALE15/17 was strongly suppressed. The transcriptional activity of CsTALE proteins was also verified in yeast, with yeast two-hybrid assays indicating that CsTALE3/CsTALE8, CsTALE3/CsTALE11, CsTALE10/CsTALE12, CsTALE14/CsTALE8, CsTALE14/CsTALE11 can form respective heterodimers. The findings of this study could lay the foundations for elucidating the biological functions of the TALE family genes in sweet orange and contribute to the breeding of stress-tolerant plants.
Collapse
Affiliation(s)
- Weiye Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Jing Xu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Erping Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Suming Dai
- Horticulture College, Hunan Agricultural University, Changsha, China
- National Center for Citrus Improvement Changsha, Changsha, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Tuyong Yi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Dazhi Li
- Horticulture College, Hunan Agricultural University, Changsha, China
- National Center for Citrus Improvement Changsha, Changsha, China
| | - Na Song
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| |
Collapse
|
18
|
Weber KC, Mahmoud LM, Stanton D, Welker S, Qiu W, Grosser JW, Levy A, Dutt M. Insights into the mechanism of Huanglongbing tolerance in the Australian finger lime ( Citrus australasica). FRONTIERS IN PLANT SCIENCE 2022; 13:1019295. [PMID: 36340410 PMCID: PMC9634478 DOI: 10.3389/fpls.2022.1019295] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/22/2022] [Indexed: 05/13/2023]
Abstract
The Australian finger lime (Citrus australasica) is tolerant to Huanglongbing (HLB; Citrus greening). This species can be utilized to develop HLB tolerant citrus cultivars through conventional breeding and biotechnological approaches. In this report, we conducted a comprehensive analysis of transcriptomic data following a non-choice infection assay to understand the CaLas tolerance mechanisms in the finger lime. After filtering 3,768 differentially expressed genes (DEGs), 2,396 were downregulated and 1,372 were upregulated in CaLas-infected finger lime compared to CaLas-infected HLB-susceptible 'Valencia' sweet orange. Comparative analyses revealed several DEGs belonging to cell wall, β-glucanase, proteolysis, R genes, signaling, redox state, peroxidases, glutathione-S-transferase, secondary metabolites, and pathogenesis-related (PR) proteins categories. Our results indicate that the finger lime has evolved specific redox control systems to mitigate the reactive oxygen species and modulate the plant defense response. We also identified candidate genes responsible for the production of Cys-rich secretory proteins and Pathogenesis-related 1 (PR1-like) proteins that are highly upregulated in infected finger lime relative to noninfected and infected 'Valencia' sweet orange. Additionally, the anatomical analysis of phloem and stem tissues in finger lime and 'Valencia' suggested better regeneration of phloem tissues in finger lime in response to HLB infection. Analysis of callose formation following infection revealed a significant difference in the production of callose plugs between the stem phloem of CaLas+ 'Valencia' sweet orange and finger lime. Understanding the mechanism of resistance will help the scientific community design strategies to protect trees from CaLas infection and assist citrus breeders in developing durable HLB tolerant citrus varieties.
Collapse
Affiliation(s)
- Kyle C. Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Lamiaa M. Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Daniel Stanton
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Stacy Welker
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Wenming Qiu
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Manjul Dutt,
| |
Collapse
|
19
|
Dutt M, Mahmoud LM, Chamusco K, Stanton D, Chase CD, Nielsen E, Quirico M, Yu Q, Gmitter FG, Grosser JW. Utilization of somatic fusion techniques for the development of HLB tolerant breeding resources employing the Australian finger lime (Citrus australasica). PLoS One 2021; 16:e0255842. [PMID: 34375348 PMCID: PMC8354479 DOI: 10.1371/journal.pone.0255842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
The Australian finger lime is a unique citrus species that has gained importance due to its unique fruit characteristics and perceived tolerance to Huanglongbing (HLB), an often-fatal disease of citrus trees. In this study, we developed allotetraploid finger lime hybrids and cybrids by utilizing somatic cell fusion techniques to fuse diploid ‘OLL8’ sweet orange or ‘Page’ tangelo callus-derived protoplasts with finger lime (FL) mesophyll-derived protoplasts. Six somatic fusions were regenerated from the ‘OLL8’ + FL fusion, while three putative cybrids were regenerated from the ‘Page’ + FL fusion. Ploidy levels and nuclear-expressed sequence tag derived simple sequence repeat (EST-SSR) markers confirmed the somatic hybrid production, and mitochondrial DNA primer sets confirmed the cybrid nature. Several trees produced by the somatic fusion remained HLB negative even after 6 years of growth in an HLB-endemic environment. Pathogenesis related (PR) and other genes that are often upregulated in HLB-tolerant trees were also upregulated in our somatic fusions. These newly developed somatic fusions and cybrids could potentially be used as breeding parents to develop the next generation of improved HLB-tolerant rootstocks and scions.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
- * E-mail:
| | - Lamiaa M. Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
- Faculty of Agriculture, Pomology Department, Mansoura University, Mansoura, Egypt
| | - Karen Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States of America
| | - Daniel Stanton
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States of America
| | - Ethan Nielsen
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Maria Quirico
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| |
Collapse
|
20
|
Mahmoud LM, Huyck PJ, Vincent CI, Gmitter FG, Grosser JW, Dutt M. Physiological Responses and Gene Expression Patterns in Open-Pollinated Seedlings of a Pummelo-Mandarin Hybrid Rootstock Exposed to Salt Stress and Huanglongbing. PLANTS 2021; 10:plants10071439. [PMID: 34371641 PMCID: PMC8309399 DOI: 10.3390/plants10071439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/04/2023]
Abstract
Huanglongbing (HLB), caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CaLas), is the primary biotic stress causing significant economic damage to the global citrus industry. Among the abiotic stresses, salinity affects citrus production worldwide, especially in arid and coastal regions. In this study, we evaluated open-pollinated seedlings of the S10 (a diploid rootstock produced from a cross between two siblings of the Hirado Buntan Pink pummelo (Citrus maxima (Burm.) Merr.) with the Shekwasha mandarin (Citrus reticulata Blanco)) for their ability to tolerate HLB and salinity stresses. In a greenhouse study, ‘Valencia’ sweet orange (either HLB-positive or negative) was grafted onto six clonally propagated lines generated from the screened seedlings in the greenhouse and the trees were irrigated with 150 mM NaCl after eight months of successful grafting and detection of CaLas in the leaf petioles. Cleopatra mandarin was used as a salt-tolerant and HLB-sensitive rootstock control. CaLas infection was monitored using a quantitative polymerase chain reaction before and after NaCl treatments. Following three months of NaCl treatment, ‘Valencia’ leaves on the S10 rootstock seedlings recorded lower levels of chlorophyll content compared to Cleopatra under similar conditions. Malondialdehyde content was higher in HLB-infected ‘Valencia’ grafted onto Cleopatra than in the S10 lines. Several plant defense-related genes were significantly upregulated in the S10 lines. Antioxidant and Na+ co-transporter genes were differentially regulated in these lines. Based on our results, selected S10 lines have potential as salt-tolerant rootstocks of ‘Valencia’ sweet orange under endemic HLB conditions. However, it is necessary to propagate selected lines through tissue culture or cuttings because of the high percentage of zygotic seedlings derived from S10.
Collapse
Affiliation(s)
- Lamiaa M. Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
- Pomology Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Patrick J. Huyck
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
| | - Christopher I. Vincent
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA; (L.M.M.); (P.J.H.); (C.I.V.); (F.G.G.J.); (J.W.G.)
- Correspondence:
| |
Collapse
|
21
|
Duan J, Li X, Zhang J, Cheng B, Liu S, Li H, Zhou Q, Chen W. Cocktail Therapy of Fosthiazate and Cupric-Ammoniun Complex for Citrus Huanglongbing. FRONTIERS IN PLANT SCIENCE 2021; 12:643971. [PMID: 33868341 PMCID: PMC8044827 DOI: 10.3389/fpls.2021.643971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
Huanglongbing (HLB) is a destructive citrus bacterial disease caused by Candidatus Liberibacter asiaticus (Ca.Las) and cannot be cured by current pesticides. Root lesion and Tylenchulus semipenetrans juveniles were observed in HLB-affected citrus tree roots. We hypothesize that root treatment with fosthiazate (FOS) and Cupric-Ammonium Complex (CAC) will improve the root growth and inhibit HLB. CAC is a broad spectrum fungicide and can promote growth of crops. FOS kills Tylenchulus semipenetrans and protects roots from damage by harmful bacteria such as Ca.Las. After 90 days of combination treatment of FOS and CAC through root drenches, the citrus grew new roots and its leaves changed their color to green. The inhibition rate of Ca.Las reached more than 90%. During treatment process, the chlorophyll content and the root vitality increased 396 and 151%, respectively, and starch accumulation decreased by 88%. Transmission electron microscopy (TEM) and plant tissue dyeing experiments showed that more irregular swollen starch granules existed in the chloroplast thylakoid system of the HLB-infected leaves. This is due to the blocking of their secretory tissue by starch. TEM and flow cytometry experiments in vitro showed the synergistic effects of FOS and CAC. A transcriptome analysis revealed that the treatment induced the differential expression of the genes which involved 103 metabolic pathways. These results suggested that the cocktail treatment of FOS and CAC may effectively kill various pathogens including Ca.Las on citrus root and thus effectively control HLB.
Collapse
Affiliation(s)
- Jingwei Duan
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xue Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Junzhe Zhang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Baoping Cheng
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Shuhan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Zou X, Zhao K, Liu Y, Du M, Zheng L, Wang S, Xu L, Peng A, He Y, Long Q, Chen S. Overexpression of Salicylic Acid Carboxyl Methyltransferase ( CsSAMT1) Enhances Tolerance to Huanglongbing Disease in Wanjincheng Orange ( Citrus sinensis (L.) Osbeck). Int J Mol Sci 2021; 22:ijms22062803. [PMID: 33802058 PMCID: PMC7999837 DOI: 10.3390/ijms22062803] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) disease or citrus greening is caused by Candidatus Liberibacter asiaticus (Las) and is the most devastating disease in the global citrus industry. Salicylic acid (SA) plays a central role in regulating plant defenses against pathogenic attack. SA methyltransferase (SAMT) modulates SA homeostasis by converting SA to methyl salicylate (MeSA). Here, we report on the functions of the citrus SAMT (CsSAMT1) gene from HLB-susceptible Wanjincheng orange (Citrus sinensis (L.) Osbeck) in plant defenses against Las infection. The CsSAMT1 cDNA was expressed in yeast. Using in vitro enzyme assays, yeast expressing CsSAMT1 was confirmed to specifically catalyze the formation of MeSA using SA as a substrate. Transgenic Wanjincheng orange plants overexpressing CsSAMT1 had significantly increased levels of SA and MeSA compared to wild-type controls. HLB resistance was evaluated for two years and showed that transgenic plants displayed significantly alleviated symptoms including a lack of chlorosis, low bacterial counts, reduced hyperplasia of the phloem cells, and lower levels of starch and callose compared to wild-type plants. These data confirmed that CsSAMT1 overexpression confers an enhanced tolerance to Las in citrus fruits. RNA-seq analysis revealed that CsSAMT1 overexpression significantly upregulated the citrus defense response by enhancing the transcription of disease resistance genes. This study provides insight for improving host resistance to HLB by manipulation of SA signaling in citrus fruits.
Collapse
|
23
|
Peng A, Zou X, He Y, Chen S, Liu X, Zhang J, Zhang Q, Xie Z, Long J, Zhao X. Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis. PLANT CELL REPORTS 2021; 40:529-541. [PMID: 33386424 DOI: 10.1007/s00299-020-02648-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 05/21/2023]
Abstract
Overexpression of CiNPR4 enhanced resistance of transgenic citrus plants to Huanglongbing by perceiving the salicylic acid and jasmonic acid signals and up-regulating the transcriptional activities of plant-pathogen interaction genes. Developing transgenic citrus plants with enhanced immunity is an efficient strategy to control citrus Huanglongbing (HLB). Here, a nonexpressor of pathogenesis-related gene 1 (NPR1) like gene from HLB-tolerant 'Jackson' grapefruit (Citrus paradisi Macf.), CiNPR4, was introduced into 'Wanjincheng' orange (Citrus sinensis Obseck). CiNPR4 expression was determined in transgenic citrus plants using quantitative real-time PCR analyses. The Candidatus Liberibacter asiaticus (CLas) pathogen of HLB was successfully transmitted to transgenic citrus plants by grafting infected buds. HLB symptoms developed in transgenic and wild-type (WT) plants by 9 months after inoculation. A CLas population analysis showed that 26.9% of transgenic lines exhibited significantly lower CLas titer levels compared with the CLas-infected WT plants at 21 months after inoculation. Lower starch contents and anatomical aberration levels in the phloem were observed in transgenic lines having enhanced resistance compared with CLas-infected WT plants. CiNPR4 overexpression changed the jasmonic acid, but not salicylic acid, level. Additionally, the jasmonic acid and salicylic acid levels increased after CLas infection. Transcriptome analyses revealed that the enhanced resistance of transgenic plants to HLB resulted from the up-regulated transcriptional activities of plant-pathogen interaction-related genes.
Collapse
Affiliation(s)
- Aihong Peng
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China.
| | - Yongrui He
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| | - Xiaofeng Liu
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| | - Jingyun Zhang
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| | - Qingwen Zhang
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| | - Zhu Xie
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| | - Junhong Long
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University, National Citrus Engineering Research Center, Chongqing, 400712, People's Republic of China
| |
Collapse
|
24
|
Poles L, Licciardello C, Distefano G, Nicolosi E, Gentile A, La Malfa S. Recent Advances of In Vitro Culture for the Application of New Breeding Techniques in Citrus. PLANTS (BASEL, SWITZERLAND) 2020; 9:E938. [PMID: 32722179 PMCID: PMC7465985 DOI: 10.3390/plants9080938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Citrus is one of the most important fruit crops in the world. This review will discuss the recent findings related to citrus transformation and regeneration protocols of juvenile and adult explants. Despite the many advances that have been made in the last years (including the use of inducible promoters and site-specific recombination systems), transformation efficiency, and regeneration potential still represent a bottleneck in the application of the new breeding techniques in commercial citrus varieties. The influence of genotype, explant type, and other factors affecting the regeneration and transformation of the most used citrus varieties will be described, as well as some examples of how these processes can be applied to improve fruit quality and resistance to various pathogens and pests, including the potential of using genome editing in citrus. The availability of efficient regeneration and transformation protocols, together with the availability of the source of resistance, is made even more important in light of the fast diffusion of emerging diseases, such as Huanglongbing (HLB), which is seriously challenging citriculture worldwide.
Collapse
Affiliation(s)
- Lara Poles
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy;
| | - Concetta Licciardello
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy;
| | - Gaetano Distefano
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| | - Elisabetta Nicolosi
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| | - Alessandra Gentile
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, China
| | - Stefano La Malfa
- Food and Environment (Di3A), Department of Agriculture, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy; (L.P.); (G.D.); (E.N.); (S.L.M.)
| |
Collapse
|