1
|
Men J, Wang X, Zhou Y, Huang Y, Zheng Y, Wang Y, Yang S, Chen N, Yan N, Duan X. Neurodegenerative diseases: Epigenetic regulatory mechanisms and therapeutic potential. Cell Signal 2025; 131:111715. [PMID: 40089090 DOI: 10.1016/j.cellsig.2025.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Neurodegenerative diseases (NDDs) are a class of diseases in which the progressive loss of subtype-specific neurons leads to dysfunction. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), among others. Previous studies have demonstrated that the pathogenesis of NDDs involves various mechanisms, including genetic factors, oxidative stress, apoptosis, and the immune response. Recent studies have shown that epigenetic regulation mediates the interactions between DNA methylation, chromatin remodeling, histone modification, and non-coding RNAs, thus affecting gene transcription. A growing body of research links epigenetic modifications to crucial pathways involved in the occurrence and development of NDDs. Epigenetics has also been found to regulate and maintain nervous system function, and its imbalance is closely related to the occurrence and development of NDDs. The present review summarizes focuses on the role of epigenetic modifications in the pathogenesis of NDDs and provides an overview of the key genes regulated by DNA methylation, histone modification, and non-coding RNAs in NDDs. Further, the current research status of epigenetics in NDDs is summarized and the potential application of epigenetics in the clinical diagnosis and treatment of NDDs is discussed.
Collapse
Affiliation(s)
- Jianbing Men
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Xinyue Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yunnuo Zhou
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yumeng Huang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yue Zheng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yingze Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Shuang Yang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Nan Chen
- Liaoning Provincial Health Service Center,Shenyang 110034, PR China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, PR China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China.
| |
Collapse
|
2
|
Liu X, Feng J, Guo M, Chen C, Zhao T, Sun X, Zhang Y. Resetting the aging clock through epigenetic reprogramming: Insights from natural products. Pharmacol Ther 2025; 270:108850. [PMID: 40221101 DOI: 10.1016/j.pharmthera.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Epigenetic modifications play a critical role in regulating gene expression under various physiological and pathological conditions. Epigenetic modifications reprogramming is a recognized hallmark of aging and a key component of the aging clock used to differentiate between chronological and biological age. The potential for prospective diagnosis and regulatory capabilities position epigenetic modifications as an emerging drug target to extend longevity and alleviate age-related organ dysfunctions. In the past few decades, numerous preclinical studies have demonstrated the therapeutic potential of natural products in various human diseases, including aging, with some advancing to clinical trials and clinical application. This review highlights the discovery and recent advancements in the aging clock, as well as the potential use of natural products as anti-aging therapeutics by correcting disordered epigenetic reprogramming. Specifically, the focus is on the imbalance of histone modifications, alterations in DNA methylation patterns, disrupted ATP-dependent chromatin remodeling, and changes in RNA modifications. By exploring these areas, new insights can be gained into aging prediction and anti-aging interventions.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Madi Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Laboratory -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
3
|
Liu A, Zhu XJ, Sun WD, Bi SZ, Zhang CY, Lai SY, Li JH. Nicotinamide N-methyltransferase as a potential therapeutic target for neurodegenerative disorders: Mechanisms, challenges, and future directions. Exp Neurol 2025; 389:115253. [PMID: 40221009 DOI: 10.1016/j.expneurol.2025.115253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by progressive neuronal loss and functional decline, posing significant global health challenges. Emerging evidence highlights nicotinamide N-methyltransferase (NNMT), a cytosolic enzyme regulating nicotinamide (NAM) methylation, as a pivotal player in NDs through its dual impact on epigenetic regulation and metabolic homeostasis. This review synthesizes current knowledge on NNMT's role in disease pathogenesis, focusing on its epigenetic modulation via DNA hypomethylation and histone modifications, alongside its disruption of NAD+ synthesis and homocysteine (Hcy) metabolism. Elevated NNMT activity depletes NAD+, exacerbating mitochondrial dysfunction and impairing energy metabolism, while increased Hcy levels drive oxidative stress, neuroinflammation, and aberrant protein aggregation (e.g., Aβ, tau, α-synuclein). Notably, NNMT overexpression in AD and PD correlates with neuronal hypomethylation and neurotoxicity, as observed in postmortem brain studies and transgenic models. Mechanistically, NNMT consumes S-adenosylmethionine (SAM), limiting methyl donor availability for DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs), thereby altering gene expression patterns critical for neuronal survival. Concurrently, NNMT-mediated NAD+ depletion disrupts sirtuin activity (e.g., SIRT1) and mitochondrial biogenesis, accelerating axonal degeneration. Therapeutic strategies targeting NNMT, such as RNA interference (RNAi), small-molecule inhibitors and exercise therapy, show promise in preclinical models by restoring NAD+ levels and reducing Hcy toxicity. However, challenges persist in achieving cellular specificity, optimizing blood-brain barrier penetration, and mitigating off-target effects. This review underscores NNMT's potential as a multifactorial therapeutic target, bridging metabolic and epigenetic dysregulation in NDs. Future research should prioritize elucidating tissue-specific NNMT interactions, refining inhibitor pharmacokinetics, and validating translational efficacy in clinical trials. Addressing these gaps could pave the way for novel disease-modifying therapies to combat the rising burden of neurodegeneration.
Collapse
Affiliation(s)
- An Liu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Wei-Dong Sun
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Shuang-Zhou Bi
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Chen-Ying Zhang
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Shi-Yan Lai
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.
| |
Collapse
|
4
|
Nguyen HD, Vu GH, Hoang LT, Kim MS. Elucidation of toxic effects of 1,2-diacetylbenzene: an in silico study. Forensic Toxicol 2025; 43:33-45. [PMID: 39298088 DOI: 10.1007/s11419-024-00702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 09/21/2024]
Abstract
PURPOSE We aimed to explore the metabolite products of 1,2-diacetylbenzene (DAB) and investigate their harmful effects, physicochemical properties, and biological activities, along with those of DAB itself. METHODS Key approaches included MetaTox, PASS online, ADMESWISS, ADMETlab 2.0, molecular docking, and molecular dynamic simulation to identify metabolites, toxic effects, Lipinski's rule criteria, absorption, distribution, metabolism, and excretion properties, interactions with cytochrome (CYP) 450 isoforms, and the stability of the DAB-cytochrome complex. RESULTS A total of 13 metabolite products from DAB were identified, involving Phase I reactions (aliphatic hydroxylation, epoxidation, oxidative dehydrogenation, and hydrogenation) and Phase II reactions (oxidative sulfation and methylation). Molecular dynamics and modeling revealed a stable interaction between CYP1A2 and DAB, suggesting the involvement of CYP1A2 in DAB metabolism. All studied compounds adhered to Lipinski's rule, indicating their potential as inducers or activators of toxic mechanisms. The physicochemical parameters and pharmacokinetics of the investigated compounds were consistent with their harmful effects, which included neurotoxic, nephrotoxic, endocrine disruptor, and hepatotoxic consequences due to their high gastrointestinal absorption and ability to cross the blood-brain barrier. Various CYP450 isoforms exhibited different functions, and the compounds were found to act as superoxide dismutase inhibitors, neuropeptide Y2 antagonists, glutaminase inhibitors, and activators of caspases 3 and 8. DAB and its metabolites were also associated with apoptosis, oxidative stress, and neuroendocrine disruption. CONCLUSION The toxic effects of DAB and its metabolites were predicted in this study. Further research is warranted to explore their effects on other organs, such as the liver and kidneys, and to validate our findings.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, 70433, USA.
| | - Giang Huong Vu
- Department of Public Heath, Hong Bang Health Center, Hai Phong, Vietnam
| | - Linh Thuy Hoang
- College of Pharmacy, California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
5
|
Kumari S, Gupta S, Sukhija R, Gurjar S, Dubey SK, Taliyan R. Neuroprotective potential of Epigenetic modulators, its regulation and therapeutic approaches for the management of Parkinson's disease. Eur J Pharmacol 2024; 985:177123. [PMID: 39536854 DOI: 10.1016/j.ejphar.2024.177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The progressive degeneration of dopaminergic neurons in the substantia nigra region of the brain leads to a deficiency of dopamine and, ultimately, the onset of Parkinson's disease (PD). Since there is currently no cure for PD, patients all around the world are dealing with symptomatic management. PD progression is influenced by multiple elements, such as environmental, biological, chemical, genetic, and epigenetic factors. Epigenetics is gaining increased attention due to its role in controlling the expression of genes that contribute to PD. Recent advancements in our understanding of the brain network and its related conditions have shown that alterations in gene expression may occur independently of genetic abnormalities. Therefore, a thorough investigation has been carried out to explore the significance of epigenetics in all degenerative disorders. Epigenetic modifications are essential for regulating cellular homeostasis. Therefore, a deeper understanding of these modifications might provide valuable insights into many diseases and potentially serve as targets for therapeutic interventions. This review article focuses on diverse epigenetic alterations linked to the progression of PD. These abnormalities are supported by numerous research on the control of gene expression and encompass all the epigenetic processes. The beginning of PD is intricately associated with aberrant DNA methylation mechanisms. DNA methyltransferases are the enzymes that create and preserve various DNA methylation patterns. Integrating epigenetic data with existing clinical methods for diagnosing PD may aid in discovering potential curative medicines and novel drug development approaches. This article solely addresses the importance of epigenetic modulators in PD, primarily the mechanisms of DNMTs, their roles in the development of PD, and their therapeutic approaches; it bypasses other PD therapies.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Sakshi Gupta
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Rajesh Sukhija
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Shaifali Gurjar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | | | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| |
Collapse
|
6
|
Miranda Furtado CL, Hansen M, Kogure GS, Ribeiro VB, Taylor N, Racy Soares M, Ferriani RA, Aston KI, Jenkins T, dos Reis RM. Resistance and aerobic training increases genome-wide DNA methylation in women with polycystic ovary syndrome. Epigenetics 2024; 19:2305082. [PMID: 38245873 PMCID: PMC10802204 DOI: 10.1080/15592294.2024.2305082] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Physical activity is a first-line treatment for polycystic ovary syndrome (PCOS). Resistance or aerobic exercise improves metabolic complications, reproductive outcomes, and quality of life in PCOS. DNA methylation reprogramming during exercise may be the major modifier behind these changes. We sought to evaluate genome-wide DNA methylation changes after supervised resistance and aerobic exercise in women with PCOS. Exercises were performed in 56 women with PCOS (resistance, n = 30; aerobic, n = 26), for 16 weeks (wks), three times per week, in 50-minute to one-hour sessions. Anthropometric indices and hormonal and metabolic parameters were measured before and after training. Genome-wide leukocyte DNA methylation was analysed by Infinium Human MethylationEPIC 850K BeadChip microarrays (Illumina). Both resistance and aerobic exercise improved anthropometric indices, metabolic dysfunction, and hyperandrogenism in PCOS after the training programme, but no differences were observed between the two exercises. Resistance and aerobic exercise increased genome-wide DNA methylation, although resistance changed every category in the CpG island context (islands, shores, shelve, and open sea), whereas aerobic exercise altered CpG shores and the open sea. Using a stringent FDR (>40), 6 significantly differentially methylated regions (DMRs) were observed in the resistance exercise cohort and 14 DRMs in the aerobic cohort, all of which were hypermethylated. The increase in genome-wide DNA methylation may be related to the metabolic and hormonal changes observed in PCOS after resistance and aerobic exercise. Since the mammalian genome is hypermethylated globally to prevent genomic instability and ageing, resistance and aerobic exercise may promote health and longevity through environmentally induced epigenetic changes.
Collapse
Affiliation(s)
- Cristiana Libardi Miranda Furtado
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Experimental Biology Center, Graduate Program in Medical Sciences, University of Fortaleza, Fortaleza, Ceará, Brazil
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Megan Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Gislaine Satyko Kogure
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Victor Barbosa Ribeiro
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Nathanael Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Murilo Racy Soares
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kenneth Ivan Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Timothy Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rosana Maria dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
7
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera I, Corzo L, Naidoo V. Therapeutic Options in Alzheimer's Disease: From Classic Acetylcholinesterase Inhibitors to Multi-Target Drugs with Pleiotropic Activity. Life (Basel) 2024; 14:1555. [PMID: 39768263 PMCID: PMC11678002 DOI: 10.3390/life14121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD) is a complex/multifactorial brain disorder involving hundreds of defective genes, epigenetic aberrations, cerebrovascular alterations, and environmental risk factors. The onset of the neurodegenerative process is triggered decades before the first symptoms appear, probably due to a combination of genomic and epigenetic phenomena. Therefore, the primary objective of any effective treatment is to intercept the disease process in its presymptomatic phases. Since the approval of acetylcholinesterase inhibitors (Tacrine, Donepezil, Rivastigmine, Galantamine) and Memantine, between 1993 and 2003, no new drug was approved by the FDA until the advent of immunotherapy with Aducanumab in 2021 and Lecanemab in 2023. Over the past decade, more than 10,000 new compounds with potential action on some pathogenic components of AD have been tested. The limitations of these anti-AD treatments have stimulated the search for multi-target (MT) drugs. In recent years, more than 1000 drugs with potential MT function have been studied in AD models. MT drugs aim to address the complex and multifactorial nature of the disease. This approach has the potential to offer more comprehensive benefits than single-target therapies, which may be limited in their effectiveness due to the intricate pathology of AD. A strategy still unexplored is the combination of epigenetic drugs with MT agents. Another option could be biotechnological products with pleiotropic action, among which nosustrophine-like compounds could represent an attractive, although not definitive, example.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (O.M.-I.); (N.C.); (I.C.); (L.C.); (V.N.)
| | | | | | | | | | | |
Collapse
|
8
|
Tokairin K, Ito M, Lee AG, Teo M, He S, Cheng MY, Steinberg GK. Genome-Wide DNA Methylation Profiling Reveals Low Methylation Variability in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01299-w. [PMID: 39356405 DOI: 10.1007/s12975-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disorder that can lead to stroke and neurological dysfunctions. Given the largely sporadic nature and the role of gene-environment interactions in various diseases, we examined epigenetic modifications in MMD. We performed genome-wide DNA methylation using Illumina 850 K Methylation EPIC BeadChip, in two racially distinct adult female cohorts: a non-Asian cohort (13 MMD patients and 7 healthy controls) and an Asian cohort (14 MMD patients and 3 healthy controls). An additional external cohort with both sexes (females: 5 MMD patients and 5 healthy controls, males: 5 MMD patients and 5 healthy controls) was included for validation. Our findings revealed strikingly low DNA methylation variability between MMD patients and healthy controls, in both MMD female cohorts. In the non-Asian cohort, only 6 probes showed increased variability versus 647 probes that showed decreased variability. Similarly, in the Asian cohort, the MMD group also displayed a reduced methylation variability across all 2845 probes. Subsequent analysis showed that these differentially variable probes are located on genes involved in key biological processes such as methylation and transcription, DNA repair, cytoskeletal remodeling, natural killer cell signaling, cellular growth, and migration. These findings mark the first observation of low methylation variability in any disease, contrasting with the high variability observed in other disorders. This reduced methylation variability in MMD may hinder patients' adaptability to environmental shifts, such as hemodynamic stress, thereby influencing vascular homeostasis and contributing to MMD pathology. These findings offer new insights into the mechanisms of MMD and potential treatment strategies.
Collapse
Affiliation(s)
- Kikutaro Tokairin
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaki Ito
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mario Teo
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking, China
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Marchante-Gayón JM, Nicolás Carcelén J, Potes Rodríguez H, Pineda-Cevallos D, Rodas Sánchez L, González-Gago A, Rodríguez-González P, García Alonso JI. Quantification of modified nucleotides and nucleosides by isotope dilution mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:998-1018. [PMID: 37597182 DOI: 10.1002/mas.21865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
Epigenetic modifications are closely related to certain disorders of the organism, including the development of tumors. One of the main epigenetic modifications is the methylation of DNA cytosines, 5-methyl-2'-deoxycycytidine. Furthermore, 5-mdC can be oxidized to form three new modifications, 5-(hydroxymethyl)-2'-deoxycytidine, 5-formyl-2'-deoxycytidine, and 5-carboxy-2'-deoxycytidine. The coupling of liquid chromatography with tandem mass spectrometry has been widely used for the total determination of methylated DNA cytosines in samples of biological and clinical interest. These methods are based on the measurement of the free compounds (e.g., urine) or after complete hydrolysis of the DNA (e.g., tissues) followed by a preconcentration, derivatization, and/or clean-up step. This review highlights the main advances in the quantification of modified nucleotides and nucleosides by isotope dilution using isotopically labeled analogs combined with liquid or gas chromatography coupled to mass spectrometry reported in the last 20 years. The different possible sources of labeled compounds are indicated. Special emphasis has been placed on the different types of chromatography commonly used (reverse phase and hydrophilic interaction liquid chromatography) and the derivatization methods developed to enhance chromatographic resolution and ionization efficiency. We have also revised the application of bidimensional chromatography and indicated significant biological and clinical applications of these determinations.
Collapse
Affiliation(s)
- Juan M Marchante-Gayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Jesús Nicolás Carcelén
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Helí Potes Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Daniela Pineda-Cevallos
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Laura Rodas Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Adriana González-Gago
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Pablo Rodríguez-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Jose I García Alonso
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
10
|
Xu P, Liu B, Chen H, Wang H, Guo X, Yuan J. PAHs as environmental pollutants and their neurotoxic effects. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109975. [PMID: 38972621 DOI: 10.1016/j.cbpc.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are widely present in incompletely combusted air particulate matter <2.5 μm (PM2.5), tobacco and other organic materials, can enter the human body through various routes and are a class of environmental pollutants with neurotoxic effects. PAHs exposure can lead to abnormal development of the nervous system and neurobehavioral abnormalities in animals, including adverse effects on the nervous system of children and adults, such as a reduced learning ability, intellectual decline, and neural tube defects. After PAHs enter cells of the nervous system, they eventually lead to nervous system damage through mechanisms such as oxidative stress, DNA methylation and demethylation, and mitochondrial autophagy, potentially leading to a series of nervous system diseases, such as Alzheimer's disease. Therefore, preventing and treating neurological diseases caused by PAHs exposure are particularly important. From the perspective of the in vitro and in vivo effects of PAHs exposure, as well as its effects on human neurodevelopment, this paper reviews the toxic mechanisms of action of PAHs and the corresponding prevention and treatment methods to provide a relevant theoretical basis for preventing the neurotoxicity caused by PAHs, thereby reducing the incidence of diseases related to the nervous system and protecting human health.
Collapse
Affiliation(s)
- Peixin Xu
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bingchun Liu
- Stem Cell Laboratory / Central Laboratory Of Organ Transplantation / Inner Mongolia Autonomous Region Engineering Laboratory For Genetic Test And Research Of Tumor Cells, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong Chen
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huizeng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Guo
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jianlong Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
11
|
De Plano LM, Saitta A, Oddo S, Caccamo A. Epigenetic Changes in Alzheimer's Disease: DNA Methylation and Histone Modification. Cells 2024; 13:719. [PMID: 38667333 PMCID: PMC11049073 DOI: 10.3390/cells13080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss, imposing a significant burden on affected individuals and their families. Despite the recent promising progress in therapeutic approaches, more needs to be done to understand the intricate molecular mechanisms underlying the development and progression of AD. Growing evidence points to epigenetic changes as playing a pivotal role in the pathogenesis of the disease. The dynamic interplay between genetic and environmental factors influences the epigenetic landscape in AD, altering gene expression patterns associated with key pathological events associated with disease pathogenesis. To this end, epigenetic alterations not only impact the expression of genes implicated in AD pathogenesis but also contribute to the dysregulation of crucial cellular processes, including synaptic plasticity, neuroinflammation, and oxidative stress. Understanding the complex epigenetic mechanisms in AD provides new avenues for therapeutic interventions. This review comprehensively examines the role of DNA methylation and histone modifications in the context of AD. It aims to contribute to a deeper understanding of AD pathogenesis and facilitate the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (S.O.)
| | | | | | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (S.O.)
| |
Collapse
|
12
|
Csoka AB, El Kouhen N, Bennani S, Getachew B, Aschner M, Tizabi Y. Roles of Epigenetics and Glial Cells in Drug-Induced Autism Spectrum Disorder. Biomolecules 2024; 14:437. [PMID: 38672454 PMCID: PMC11048423 DOI: 10.3390/biom14040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by severe deficits in social communication and interaction, repetitive movements, abnormal focusing on objects, or activity that can significantly affect the quality of life of the afflicted. Neuronal and glial cells have been implicated. It has a genetic component but can also be triggered by environmental factors or drugs. For example, prenatal exposure to valproic acid or acetaminophen, or ingestion of propionic acid, can increase the risk of ASD. Recently, epigenetic influences on ASD have come to the forefront of investigations on the etiology, prevention, and treatment of this disorder. Epigenetics refers to DNA modifications that alter gene expression without making any changes to the DNA sequence. Although an increasing number of pharmaceuticals and environmental chemicals are being implicated in the etiology of ASD, here, we specifically focus on the molecular influences of the abovementioned chemicals on epigenetic alterations in neuronal and glial cells and their potential connection to ASD. We conclude that a better understanding of these phenomena can lead to more effective interventions in ASD.
Collapse
Affiliation(s)
- Antonei B. Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
13
|
Hu S, Feng L, Yang Z, Fan X, Gao H, Yang T. A recognition of exosomes as regulators of epigenetic mechanisms in central nervous system diseases. Front Mol Neurosci 2024; 17:1370449. [PMID: 38528957 PMCID: PMC10962328 DOI: 10.3389/fnmol.2024.1370449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Exosomes, vesicular structures originating from cells, participate in the conveyance of proteins and nucleic acids. Presently, the centrality of epigenetic modifications in neurological disorders is widely acknowledged. Exosomes exert influence over various epigenetic phenomena, thereby modulating post-transcriptional regulatory processes contingent upon their constituent makeup. Consequently, the heightened attention directed toward exosomes as instigators of epigenetic alterations has burgeoned in recent years. Notably, exosomes serve as vehicles for delivering methyltransferases to recipient cells. More significantly, non-coding RNAs, particularly microRNAs (miRNAs), represent pivotal contents within exosomes, wielding the capacity to influence the expression of diverse factors within the cerebral milieu. The transfer of these exosomal contents amidst brain cells, encompassing neuronal cells and microglia, assumes a critical role in the genesis and progression of neurological disorders, also, this role is not limited to neurological disorders, it may deal with any human disease, such as cancer, and cardiovascular diseases. This review will concentrate on elucidating the regulation of exosome-induced epigenetic events and its subsequent ramifications for neurological diseases. A more profound comprehension of the involvement of exosome-mediated epigenetic regulation in neurological disorders contributes to a heightened awareness of the etiology and advancement of cerebral afflictions.
Collapse
Affiliation(s)
- Shunxin Hu
- Shandong First Medical University, Tai'an, China
| | - Lei Feng
- Jining First People's Hospital, Jining, China
| | | | - Xuechen Fan
- Jining First People's Hospital, Jining, China
| | | | | |
Collapse
|
14
|
He S, Qu Q, Chen X, Zhao L, Jiao Z, Wan Z, Kwok HF, Qu S. Downregulation of Ambra1 by altered DNA methylation exacerbates dopaminergic neuron damage in a fenpropathrin-induced Parkinson-like mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115995. [PMID: 38245935 DOI: 10.1016/j.ecoenv.2024.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Fenpropathrin (Fen), a volatile pyrethroid insecticide, is used widely for agricultural applications and has been reported to increase the risk of Parkinson's disease (PD). However, the molecular basis, underlying mechanisms, and pathophysiology of Fen-exposed Parkinsonism remain unknown. Recent studies have revealed epigenetic mechanisms underlying PD-related pathway regulation, including DNA methylation. Epigenetic mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. After whole-genome bisulfite sequencing (WGBS) of midbrain tissues from a Fen-exposed PD-like mouse model, we performed an association analysis of DNA methylation and gene expression. Then we successfully screened for the DNA methylation differential gene Ambra1, which is closely related to PD. The hypermethylation-low expression Ambra1 gene aggravated DA neuron damage in vitro and in vivo through the Ambra1/Parkin/LC3B-mediated mitophagy pathway. We administered 5-aza-2'-deoxycytidine (5-Aza-dC) to upregulate Ambra1 expression, thereby reducing Ambra1-mediated mitophagy and protecting DA neurons against Fen-induced damage. In conclusion, these findings elucidate the potential function of Ambra1 under the regulation of DNA methylation, suggesting that the inhibition of DNA methylation may alleviate Fen-exposed neuron damage.
Collapse
Affiliation(s)
- Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Clinic Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Qi Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xi Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhigang Jiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiting Wan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region 999078, China
| | - Shaogang Qu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
15
|
Zou T, Zhou X, Wang Q, Zhao Y, Zhu M, Zhang L, Chen W, Abuliz P, Miao H, Kabinur K, Alimu K. Associations of serum DNA methylation levels of chemokine signaling pathway genes with mild cognitive impairment (MCI) and Alzheimer's disease (AD). PLoS One 2023; 18:e0295320. [PMID: 38039290 PMCID: PMC10691689 DOI: 10.1371/journal.pone.0295320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVE To investigate the associations of serum DNA methylation levels of chemokine signaling pathway genes with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in elderly people in Xinjiang, China, and to screen out genes whose DNA methylation could distinguish AD and MCI. MATERIALS AND METHODS 37 AD, 40 MCI and 80 controls were included in the present study. DNA methylation assay was done using quantitative methylation-specific polymerase chain reaction (qMSP). Genotyping was done using Sanger sequencing. RESULTS DNA methylation levels of ADCY2, MAP2K1 and AKT1 were significantly different among AD, MCI and controls. In the comparisons of each two groups, AKT1 and MAP2K1's methylation was both significantly different between AD and MCI (p < 0.05), whereas MAP2K1's methylation was also significantly different between MCI and controls. Therefore, AKT1's methylation was considered as the candidate serum marker to distinguish AD from MCI, and its association with AD was independent of APOE ε4 allele (p < 0.05). AKT1 hypermethylation was an independent risk factor for AD and MAP2K1 hypomethylation was an independent risk factor for MCI in logistic regression analysis (p < 0.05). CONCLUSION This study found that the serum of AKT1 hypermethylation is related to AD independently of APOE ε4, which was differentially expressed in the Entorhinal Cortex of the brain and was an independent risk factor for AD. It could be used as one of the candidate serum markers to distinguish AD and MCI. Serum of MAP2K1 hypomethylation is an independent risk factor for MCI.
Collapse
Affiliation(s)
- Ting Zou
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Xiaohui Zhou
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Qinwen Wang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yongjie Zhao
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Meisheng Zhu
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Lei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Wei Chen
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Pari Abuliz
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Haijun Miao
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Keyimu Kabinur
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| | - Kader Alimu
- Department of Geriatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Province, China
| |
Collapse
|
16
|
Jeong S, Chokkalla AK, Davis CK, Vemuganti R. Post-stroke depression: epigenetic and epitranscriptomic modifications and their interplay with gut microbiota. Mol Psychiatry 2023; 28:4044-4055. [PMID: 37188778 PMCID: PMC10646155 DOI: 10.1038/s41380-023-02099-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Epigenetic and epitranscriptomic modifications that regulate physiological processes of an organism at the DNA and RNA levels, respectively, are novel therapeutic candidates for various neurological diseases. Gut microbiota and its metabolites are known to modulate DNA methylation and histone modifications (epigenetics), as well as RNA methylation especially N6-methyladenosine (epitranscriptomics). As gut microbiota as well as these modifications are highly dynamic across the lifespan of an organism, they are implicated in the pathogenesis of stroke and depression. The lack of specific therapeutic interventions for managing post-stroke depression emphasizes the need to identify novel molecular targets. This review highlights the interaction between the gut microbiota and epigenetic/epitranscriptomic pathways and their interplay in modulating candidate genes that are involved in post-stroke depression. This review further focuses on the three candidates, including brain-derived neurotrophic factor, ten-eleven translocation family proteins, and fat mass and obesity-associated protein based on their prevalence and pathoetiologic role in post-stroke depression.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
17
|
Martínez-Iglesias O, Naidoo V, Carrera I, Carril JC, Cacabelos N, Cacabelos R. Influence of Metabolic, Transporter, and Pathogenic Genes on Pharmacogenetics and DNA Methylation in Neurological Disorders. BIOLOGY 2023; 12:1156. [PMID: 37759556 PMCID: PMC10525670 DOI: 10.3390/biology12091156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Pharmacogenetics and DNA methylation influence therapeutic outcomes and provide insights into potential therapeutic targets for brain-related disorders. To understand the effect of genetic polymorphisms on drug response and disease risk, we analyzed the relationship between global DNA methylation, drug-metabolizing enzymes, transport genes, and pathogenic gene phenotypes in serum samples from two groups of patients: Group A, which showed increased 5-methylcytosine (5mC) levels during clinical follow-up, and Group B, which exhibited no discernible change in 5mC levels. We identified specific SNPs in several metabolizing genes, including CYP1A2, CYP2C9, CYP4F2, GSTP1, and NAT2, that were associated with differential drug responses. Specific SNPs in CYP had a significant impact on enzyme activity, leading to changes in phenotypic distribution between the two patient groups. Group B, which contained a lower frequency of normal metabolizers and a higher frequency of ultra-rapid metabolizers compared to patients in Group A, did not show an improvement in 5mC levels during follow-up. Furthermore, there were significant differences in phenotype distribution between patient Groups A and B for several SNPs associated with transporter genes (ABCB1, ABCC2, SLC2A9, SLC39A8, and SLCO1B1) and pathogenic genes (APOE, NBEA, and PTGS2). These findings appear to suggest that the interplay between pharmacogenomics and DNA methylation has important implications for improving treatment outcomes in patients with brain-related disorders.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain; (V.N.); (I.C.); (J.C.C.); (N.C.); (R.C.)
| | | | | | | | | | | |
Collapse
|
18
|
Xie J, Wu S, Szadowski H, Min S, Yang Y, Bowman AB, Rochet JC, Freeman JL, Yuan C. Developmental Pb exposure increases AD risk via altered intracellular Ca 2+ homeostasis in hiPSC-derived cortical neurons. J Biol Chem 2023; 299:105023. [PMID: 37423307 PMCID: PMC10413359 DOI: 10.1016/j.jbc.2023.105023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between developmental Pb exposure and Alzheimer's disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking developmental Pb exposure and increased AD risk, however, remains elusive. In this work, we used human iPSC-derived cortical neurons as a model system to study the effects of Pb exposure on AD-like pathogenesis in human cortical neurons. We exposed neural progenitor cells derived from human iPSC to 0, 15, and 50 ppb Pb for 48 h, removed Pb-containing medium, and further differentiated them into cortical neurons. Immunofluorescence, Western blotting, RNA-sequencing, ELISA, and FRET reporter cell lines were used to determine changes in AD-like pathogenesis in differentiated cortical neurons. Exposing neural progenitor cells to low-dose Pb, mimicking a developmental exposure, can result in altered neurite morphology. Differentiated neurons exhibit altered calcium homeostasis, synaptic plasticity, and epigenetic landscape along with elevated AD-like pathogenesis markers, including phosphorylated tau, tau aggregates, and Aβ42/40. Collectively, our findings provide an evidence base for Ca dysregulation caused by developmental Pb exposure as a plausible molecular mechanism accounting for increased AD risk in populations with developmental Pb exposure.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Hailey Szadowski
- Agriculture and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sehong Min
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Aaron B Bowman
- Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer L Freeman
- Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Purdue Center of Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; Purdue Center of Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
19
|
Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian XL, Pu J, Hong H, Wang M, Chen HZ, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J, Ju Z, Liu GH, Pei G, Li J, Zhang C. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2023; 2:lnad033. [PMID: 40040784 PMCID: PMC11879419 DOI: 10.1093/lifemedi/lnad033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 03/06/2025]
Abstract
Aging of the vasculature, which is integral to the functioning of literally all human organs, serves as a fundamental physiological basis for age-related alterations as well as a shared etiological mechanism for various chronic diseases prevalent in the elderly population. China, home to the world's largest aging population, faces an escalating challenge in addressing the prevention and management of these age-related conditions. To meet this challenge, the Aging Biomarker Consortium of China has developed an expert consensus on biomarkers of vascular aging (VA) by synthesizing literature and insights from scientists and clinicians. This consensus provides a comprehensive assessment of biomarkers associated with VA and presents a systemic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the expert panel recommends the most clinically relevant VA biomarkers. For the functional domain, biomarkers reflecting vascular stiffness and endothelial function are highlighted. The structural dimension encompasses metrics for vascular structure, microvascular structure, and distribution. Additionally, proinflammatory factors are emphasized as biomarkers with the humoral dimension. The aim of this expert consensus is to establish a foundation for assessing the extent of VA and conducting research related to VA, with the ultimate goal of improving the vascular health of the elderly in China and globally.
Collapse
Affiliation(s)
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shimin Sun
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena 07743, Germany
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun-Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai 200127, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhen Liang
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
20
|
de la Fuente AG, Pelucchi S, Mertens J, Di Luca M, Mauceri D, Marcello E. Novel therapeutic approaches to target neurodegeneration. Br J Pharmacol 2023; 180:1651-1673. [PMID: 36965025 PMCID: PMC10952850 DOI: 10.1111/bph.16078] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Ageing is the main risk factor common to most primary neurodegenerative disorders. Indeed, age-related brain alterations have been long considered to predispose to neurodegeneration. Although protein misfolding and the accumulation of toxic protein aggregates have been considered as causative events in neurodegeneration, several other biological pathways affected by brain ageing also contribute to pathogenesis. Here, we discuss the evidence showing the involvement of the mechanisms controlling neuronal structure, gene expression, autophagy, cell metabolism and neuroinflammation in the onset and progression of neurodegenerative disorders. Furthermore, we review the therapeutic strategies currently under development or as future approaches designed to normalize these pathways, which may then increase brain resilience to cope with toxic protein species. In addition to therapies targeting the insoluble protein aggregates specifically associated with each neurodegenerative disorder, these novel pharmacological approaches may be part of combined therapies designed to rescue brain function.
Collapse
Affiliation(s)
- Alerie G. de la Fuente
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
- Instituto de Neurociencias CSIC‐UMHAlicanteSpain
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
- Institute of Molecular BiologyLeopold‐Franzens‐Universität InnsbruckInnsbruckAustria
| | - Jerome Mertens
- Institute of Molecular BiologyLeopold‐Franzens‐Universität InnsbruckInnsbruckAustria
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Daniela Mauceri
- Institute of Anatomy and Cell BiologyDepartment of Molecular and Cellular Neuroscience, University of MarburgMarburgGermany
- Department of NeurobiologyInterdisciplinary Centre for Neurosciences (IZN), Heidelberg UniversityHeidelbergGermany
| | - Elena Marcello
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| |
Collapse
|
21
|
Jalgaonkar S, Gajbhiye S, Sayyed M, Tripathi R, Khatri N, Parmar U, Shankar A. S-adenosyl methionine improves motor co-ordination with reduced oxidative stress, dopaminergic neuronal loss, and DNA methylation in the brain striatum of 6-hydroxydopamine-induced neurodegeneration in rats. Anat Rec (Hoboken) 2023; 306:820-830. [PMID: 35476228 DOI: 10.1002/ar.24948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Parkinson's disease (PD) is the most common age-related neurodegenerative disease worldwide. S-adenosyl methionine (SAMe), a methyl donor that plays an important role in DNA methylation, could replenish the cellular antioxidant glutathione (GSH). Herein, we investigated the neuroprotective effects of SAMe in 6-hydroxydopamine (6-OHDA) rat models of PD and elucidated the underlying mechanism. METHODS PD model rats were developed by injecting 6-OHDA stereotaxically into the striatum. In Phase 1 of the study, we performed the neurobehavioral tests, GSH assay, and histopathology to evaluate the neuroprotective effects of SAMe. The animals were treated with SAMe (150 or 300 mg/kg body weight) orally for 28 days. The positive control group received selegiline (5 mg/kg), whereas the disease control group received normal saline. In Phase 2, we evaluated the striatal dopamine levels and performed DNA methylation assay to uncover the mechanism of action of SAMe. In this phase, a higher dose of SAMe (300 mg/kg) was used. RESULTS SAMe (300 mg/kg) treatment for 4 weeks significantly attenuated the abnormal circling behavior in PD rats (p < 0.05). Moreover, SAMe at both doses (150 and 300 mg/kg) enhanced the performance of PD rats in the open field test and stepping test (p < 0.05). SAMe treatment significantly increased the GSH levels, and at high dose, SAMe restricted neuronal loss in the striatum of PD-model rats (p < 0.05). Moreover, SAMe treatment led to a significant recovery in the dopamine levels and improved the DNA methylation status in the dopaminergic neurons (p < 0.05) of PD model rats. CONCLUSION SAMe exhibits antioxidant activity and DNA methylation modulating effects in 6-OHDA model PD rats. Moreover, SAMe prevents neuronal loss in PD rats suggesting that SAMe has therapeutic potential in preventing PD development. The neuroprotective potential of SAMe is greater at high doses.
Collapse
Affiliation(s)
- Sharmila Jalgaonkar
- Department of Pharmacology & Therapeutics, Seth G. S. Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Snehalata Gajbhiye
- Department of Pharmacology & Therapeutics, Seth G. S. Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Mohsin Sayyed
- Department of Pharmacology & Therapeutics, Seth G. S. Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Raakhi Tripathi
- Department of Pharmacology & Therapeutics, Seth G. S. Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Nishtha Khatri
- Department of Pharmacology & Therapeutics, Seth G. S. Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Urwashi Parmar
- Department of Pharmacology & Therapeutics, Seth G. S. Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Arun Shankar
- Department of Pharmacology & Therapeutics, Seth G. S. Medical College and King Edward Memorial Hospital, Mumbai, India
| |
Collapse
|
22
|
Martínez-Iglesias O, Naidoo V, Carril JC, Seoane S, Cacabelos N, Cacabelos R. Gene Expression Profiling as a Novel Diagnostic Tool for Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24065746. [PMID: 36982820 PMCID: PMC10057696 DOI: 10.3390/ijms24065746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
There is a lack of effective diagnostic biomarkers for neurodegenerative disorders (NDDs). Here, we established gene expression profiles for diagnosing Alzheimer’s disease (AD), Parkinson’s disease (PD), and vascular (VaD)/mixed dementia. Patients with AD had decreased APOE, PSEN1, and ABCA7 mRNA expression. Subjects with VaD/mixed dementia had 98% higher PICALM mRNA levels, but 75% lower ABCA7 mRNA expression than healthy individuals. Patients with PD and PD-related disorders showed increased SNCA mRNA levels. There were no differences in mRNA expression for OPRK1, NTRK2, and LRRK2 between healthy subjects and NDD patients. APOE mRNA expression had high diagnostic accuracy for AD, and moderate accuracy for PD and VaD/mixed dementia. PSEN1 mRNA expression showed promising accuracy for AD. PICALM mRNA expression was less accurate as a biomarker for AD. ABCA7 and SNCA mRNA expression showed high-to-excellent diagnostic accuracy for AD and PD, and moderate-to-high accuracy for VaD/mixed dementia. The APOE E4 allele reduced APOE expression in patients with different APOE genotypes. There was no association between PSEN1, PICALM, ABCA7, and SNCA gene polymorphisms and expression. Our study suggests that gene expression analysis has diagnostic value for NDDs and provides a liquid biopsy alternative to current diagnostic methods.
Collapse
|
23
|
Martínez-Iglesias O, Naidoo V, Carrera I, Corzo L, Cacabelos R. Natural Bioactive Products as Epigenetic Modulators for Treating Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:216. [PMID: 37259364 PMCID: PMC9967112 DOI: 10.3390/ph16020216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are major health issues in Western countries. Despite significant efforts, no effective therapeutics for NDDs exist. Several drugs that target epigenetic mechanisms (epidrugs) have been recently developed for the treatment of NDDs, and several of these are currently being tested in clinical trials. Furthermore, various bioproducts have shown important biological effects for the potential prevention and treatment of these disorders. Here, we review the use of natural products as epidrugs to treat NDDs in order to explore the epigenetic effects and benefits of functional foods and natural bioproducts on neurodegeneration.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | | | | | | | | |
Collapse
|
24
|
Martínez-Iglesias O, Naidoo V, Corzo L, Pego R, Seoane S, Rodríguez S, Alcaraz M, Muñiz A, Cacabelos N, Cacabelos R. DNA Methylation as a Biomarker for Monitoring Disease Outcome in Patients with Hypovitaminosis and Neurological Disorders. Genes (Basel) 2023; 14:genes14020365. [PMID: 36833292 PMCID: PMC9956161 DOI: 10.3390/genes14020365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
DNA methylation remains an under-recognized diagnostic biomarker for several diseases, including neurodegenerative disorders. In this study, we examined differences in global DNA methylation (5mC) levels in serum samples from patients during the initial- and the follow-up visits. Each patient underwent a blood analysis and neuropsychological assessments. The analysis of 5mC levels revealed two categories of patients; Group A who, during the follow-up, had increased 5mC levels, and Group B who had decreased 5mC levels. Patients with low Fe-, folate-, and vitamin B12- levels during the initial visit showed increased levels of 5mC after treatment when assessed during the follow-up. During the follow-up, 5mC levels in Group A patients increased after treatment for hypovitaminosis with the nutraceutical compounds Animon Complex and MineraXin Plus. 5mC levels were maintained during the follow-up in Group A patients treated for neurological disorders with the bioproducts AtreMorine and NeoBrainine. There was a positive correlation between 5mC levels and MMSE scores, and an inverse correlation between 5mC and ADAS-Cog scores. This expected correlation was observed in Group A patients only. Our study appears to indicate that 5mC has a diagnostic value as a biomarker across different pathologies.
Collapse
|
25
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
26
|
The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neurosci Rep 2022; 14:28-37. [PMID: 36590248 PMCID: PMC9794904 DOI: 10.1016/j.ibneur.2022.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide studies related to neurological disorders and neurodegenerative diseases have pointed to the role of epigenetic changes such as DNA methylation, histone modification, and noncoding RNAs. DNA methylation machinery controls the dynamic regulation of methylation patterns in discrete brain regions. Objective This review aims to describe the role of DNA methylation in inhibiting and progressing neurological and neurodegenerative disorders and therapeutic approaches. Methods A Systematic search of PubMed, Web of Science, and Cochrane Library was conducted for all qualified studies from 2000 to 2022. Results For the current need of time, we have focused on the DNA methylation role in neurological and neurodegenerative diseases and the expression of genes involved in neurodegeneration such as Alzheimer's, Depression, and Rett Syndrome. Finally, it appears that the various epigenetic changes do not occur separately and that DNA methylation and histone modification changes occur side by side and affect each other. We focused on the role of modification of DNA methylation in several genes associated with depression (NR3C1, NR3C2, CRHR1, SLC6A4, BDNF, and FKBP5), Rett syndrome (MECP2), Alzheimer's, depression (APP, BACE1, BIN1 or ANK1) and Parkinson's disease (SNCA), as well as the co-occurring modifications to histones and expression of non-coding RNAs. Understanding these epigenetic changes and their interactions will lead to better treatment strategies. Conclusion This review captures the state of understanding of the epigenetics of neurological and neurodegenerative diseases. With new epigenetic mechanisms and targets undoubtedly on the horizon, pharmacological modulation and regulation of epigenetic processes in the brain holds great promise for therapy.
Collapse
|
27
|
Martínez-Iglesias O, Naidoo V, Carrera I, Corzo L, Cacabelos R. Nosustrophine: An Epinutraceutical Bioproduct with Effects on DNA Methylation, Histone Acetylation and Sirtuin Expression in Alzheimer's Disease. Pharmaceutics 2022; 14:pharmaceutics14112447. [PMID: 36432638 PMCID: PMC9698419 DOI: 10.3390/pharmaceutics14112447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, causes irreversible memory loss and cognitive deficits. Current AD drugs do not significantly improve cognitive function or cure the disease. Novel bioproducts are promising options for treating a variety of diseases, including neurodegenerative disorders. Targeting the epigenetic apparatus with bioactive compounds (epidrugs) may aid AD prevention treatment. The aims of this study were to determine the composition of a porcine brain-derived extract Nosustrophine, and whether treating young and older trigenic AD mice produced targeted epigenetic and neuroprotective effects against neurodegeneration. Nosustrophine regulated AD-related APOE and PSEN2 gene expression in young and older APP/BIN1/COPS5 mice, inflammation-related (NOS3 and COX-2) gene expression in 3-4-month-old mice only, global (5mC)- and de novo DNA methylation (DNMT3a), HDAC3 expression and HDAC activity in 3-4-month-old mice; and SIRT1 expression and acetylated histone H3 protein levels in 8-9-month-old mice. Mass spectrometric analysis of Nosustrophine extracts revealed the presence of adenosylhomocysteinase, an enzyme implicated in DNA methylation, and nicotinamide phosphoribosyltransferase, which produces the NAD+ precursor, enhancing SIRT1 activity. Our findings show that Nosustrophine exerts substantial epigenetic effects against AD-related neurodegeneration and establishes Nosustrophine as a novel nutraceutical bioproduct with epigenetic properties (epinutraceutical) that may be therapeutically effective for prevention and early treatment for AD-related neurodegeneration.
Collapse
|
28
|
The Role of DNA Methylation in Stroke Recovery. Int J Mol Sci 2022; 23:ijms231810373. [PMID: 36142283 PMCID: PMC9499691 DOI: 10.3390/ijms231810373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations affect the onset of ischemic stroke, brain injury after stroke, and mechanisms of poststroke recovery. In particular, DNA methylation can be dynamically altered by maintaining normal brain function or inducing abnormal brain damage. DNA methylation is regulated by DNA methyltransferase (DNMT), which promotes methylation, DNA demethylase, which removes methyl groups, and methyl-cytosine–phosphate–guanine-binding domain (MBD) protein, which binds methylated DNA and inhibits gene expression. Investigating the effects of modulating DNMT, TET, and MBD protein expression on neuronal cell death and neurorepair in ischemic stroke and elucidating the underlying mechanisms can facilitate the formulation of therapeutic strategies for neuroprotection and promotion of neuronal recovery after stroke. In this review, we summarize the role of DNA methylation in neuroprotection and neuronal recovery after stroke according to the current knowledge regarding the effects of DNA methylation on excitotoxicity, oxidative stress, apoptosis, neuroinflammation, and recovery after ischemic stroke. This review of the literature regarding the role of DNA methylation in neuroprotection and functional recovery after stroke may contribute to the development and application of novel therapeutic strategies for stroke.
Collapse
|
29
|
Ma Q, Oksenberg JR, Didonna A. Epigenetic control of ataxin-1 in multiple sclerosis. Ann Clin Transl Neurol 2022; 9:1186-1194. [PMID: 35903875 PMCID: PMC9380165 DOI: 10.1002/acn3.51618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE ATXN1 encodes the polyglutamine protein ataxin-1, which we have demonstrated exerting an immunomodulatory function in the context of central nervous system (CNS) autoimmunity, in addition to its classical role in the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). In this study, we dissected the contribution of DNA methylation to the regulation of ATXN1 in multiple sclerosis (MS). METHODS We interrogated a DNA methylation dataset previously generated via bisulfate DNA sequencing (BS-seq) in sorted peripheral immune cytotypes (CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes) isolated from untreated MS patients at symptoms onset. RESULTS Here, we report that ATXN1 undergoes hypo-methylation at four distinct regions upon MS, exclusively in B cells. We also highlight how these differentially methylated sites overlap with other regulatory epigenetic marks and MS risk variants. Lastly, we employ luciferase assays to assess the functionality of these regions, showing that the loss of methylation leads to an increase in ATXN1 expression. INTERPRETATION Altogether, these findings provide biological insights into ataxin-1 regulation in the immune system as well as into the molecular mechanisms underlying MS risk.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
- Department of Anatomy and Cell BiologyEast Carolina UniversityGreenvilleNorth Carolina27834USA
| |
Collapse
|
30
|
Lv Y, Zhang C, Jian H, Lou Y, Kang Y, Deng W, Wang C, Wang W, Shang S, Hou M, Shen W, Xie J, Li X, Zhou H, Feng S. Regulating DNA methylation could reduce neuronal ischemia response and apoptosis after ischemia-reperfusion injury. Gene 2022; 837:146689. [PMID: 35750086 DOI: 10.1016/j.gene.2022.146689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important pathophysiological condition that can cause cell injury and large-scale tissue injury in the nervous system. Previous studies have shown that epigenetic regulation may play a role in the pathogenesis of IRI. METHODS In this study, we isolated mouse cortical neurons and constructed an oxygen-glucose deprivation/reoxygenation (OGD) model to explore the change in DNA methylation and its effect on the expression of corresponding genes. RESULTS We found that DNA methylation in neurons increased with hypoxia duration and that hypermethylation of numerous promoters and 3'-untranslated regions increased. We performed Gene Ontology enrichment analysis to study gene function and Kyoto Encyclopedia of Genes and Genomes pathway analysis to identify the pathways associated with gene regulation. The results showed that hypermethylation-related genes expressed after OGD were related to physiological pathways such as neuronal projection, ion transport, growth and development, while hypomethylation-related genes were related to pathological pathways such as the external apoptosis signaling pathway, neuronal death regulation, and regulation of oxidative stress. However, the changes in DNA methylation were specific for certain genes and may have been related to OGD-induced neuronal damage. Importantly, we integrated transcription and DNA methylation data to identify several candidate target genes, including hypomethylated Apoe, Pax6, Bmp4, and Ptch1 and hypermethylated Adora2a, Crhr1, Stxbp1, and Tac1. This study further indicated the effect of DNA methylation on gene function in brain IRI from the perspective of epigenetics, and the identified genes may become new targets for achieving neuroprotection in the brain after IRI.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Chi Zhang
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Weimin Deng
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chaoyu Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wei Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Shenghui Shang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Jing Xie
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China; Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
31
|
Taka N, Asami S, Sakamoto M, Matsui T, Yoshida W. Quantification of Global DNA Hydroxymethylation Level Using UHRF2 SRA-Luciferase Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2022; 94:8618-8624. [DOI: 10.1021/acs.analchem.1c05619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natsumi Taka
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Shoya Asami
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Mikiya Sakamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Toru Matsui
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
32
|
Shen X, Dong N, Xu Y, Han L, Yang R, Liao J, Zhang X, Xie T, Wang Y, Chen C, Liu M, Jiang Y, Yu L, Fang Q. Analyzing Corin–BNP–NEP Protein Pathway Revealing Differential Mechanisms in AF-Related Ischemic Stroke and No AF-Related Ischemic Stroke. Front Aging Neurosci 2022; 14:863489. [PMID: 35615592 PMCID: PMC9125077 DOI: 10.3389/fnagi.2022.863489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background The incidence of atrial fibrillation (AF)-related stroke increases with aging. Natriuretic peptides (NPs) family, including Corin-B type natriuretic peptide (BNP)-neprilysin (NEP) protein levels increased with age and are risk markers of cardiovascular and cerebrovascular diseases, such as AF and cardioembolic stroke. Aging is also linked to epigenetics, specifically DNA methylation. However, only a few studies have investigated the effect of DNA methylation on the NP system. Thus, the present study aimed to investigate whether the Corin-BNP-NEP protein pathway is involved in the pathogenesis of AF-stroke and CpG methylation in the promoter region of the Corin protein gene has an effect on AF-related ischemic stroke. Methods A total of 82 patients hospitalized with acute ischemic strokes were enrolled in this study. The differences in clinical information were compared between the AF-stroke (n = 37) and no AF-stroke groups (n = 45). Plasma-soluble Corin and NEP were detected using an ELISA kit. CpG methylation in the promoter region of the gene was assessed by a next-generation sequencing-based bisulfite sequencing polymerase chain reaction (BSP). Results (1) Patients in AF-stroke were older, had higher initial NIHSS score, 90-day mRs, higher D2-dimer, INR, and APTT, and low TG, TC, and HbA1c (all p < 0.05). (2) Serum levels of Corin and BNP in the AF-stroke group were significantly higher than that in the no AF-stroke group (p < 0.05). No significant difference was detected in the serum levels of NEP between the two groups. (3) The levels of CpG methylation in the promoter region of the Corin protein gene in the AF-stroke group was significantly lower than that in the no AF-stroke group (p < 0.05). The CpG sites with maximal methylation differences between the two groups were CORIN:678, CORIN:682, CORIN:694, and CORIN:700. Conclusion The current findings raise the possibility that the Corin–BNP–NEP protein pathway may be involved in the pathogenesis of AF-related ischemic stroke. Deficient CpG methylation in the promoter region of the Corin protein gene is associated with AF-related ischemic stroke.
Collapse
Affiliation(s)
- Xiaozhu Shen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Geriatrics, Lianyungang Second People’s Hospital, Lianyungang, China
| | - Nan Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Suzhou Industrial Park Xinghai Hospital, Suzhou, China
| | - Yiwen Xu
- Department of General Medicine, Lianyungang Hospital, Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
- *Correspondence: Yiwen Xu,
| | - Lin Han
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Liao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianxian Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xie
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yugang Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengqian Liu
- Department of General Medicine, Lianyungang Hospital, Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Yi Jiang
- Bengbu Medical College, Bengbu, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Qi Fang,
| |
Collapse
|
33
|
Martínez-Iglesias O, Naidoo V, Carrera I, Cacabelos R. Epigenetic Studies in the Male APP/BIN1/COPS5 Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:2446. [PMID: 35269588 PMCID: PMC8909965 DOI: 10.3390/ijms23052446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's Disease (AD) is a major health problem worldwide. The lack of efficacy of existing therapies for AD is because of diagnosis at late stages of the disease, limited knowledge of biomarkers, and molecular mechanisms of AD pathology, as well as conventional drugs that are focused on symptomatic rather than mechanistic features of the disease. The connection between epigenetics and AD, however, may be useful for the development of novel therapeutics or diagnostic biomarkers for AD. The aim of this study was to investigate a pathogenic role for epigenetics and other biomarkers in the male APP/BIN1/COPS5 triple-transgenic (3xTg) mouse model of AD. In the APP/BIN1/COPS5 3xTg-AD mouse hippocampus, sirtuin expression and activity decreased, HDAC3 expression and activity increased, PSEN1 mRNA levels were unchanged, PSEN2 and APOE expression was reduced, and levels of the pro-inflammatory marker IL-6 increased; levels of pro-inflammatory COX-2 and TNFα and apoptotic (NOS3) markers increased slightly, but these were non-significant. In fixed mouse-brain slices, immunoreactivity for CD11b and β-amyloid immunostaining increased. APP/BIN1/COPS5 3xTg-AD mice are a suitable model for evaluating epigenetic changes in AD, the discovery of new epigenetic-related biomarkers for AD diagnosis, and new epidrugs for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Corunna, Spain; (V.N.); (I.C.); (R.C.)
| | | | | | | |
Collapse
|
34
|
Xu JJ, Zhu L, Li HD, Du XS, Li JJ, Yin NN, Meng XM, Huang C, Li J. DNMT3a-mediated methylation of PSTPIP2 enhances inflammation in alcohol-induced liver injury via regulating STAT1 and NF-κB pathway. Pharmacol Res 2022; 177:106125. [PMID: 35149186 DOI: 10.1016/j.phrs.2022.106125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Alcohol-induced liver injury (ALI) is associated with inflammatory responses regulated by macrophages. Activation of macrophages plays a crucial role in ALI while DNA methylation-regulated gene silencing is associated with inflammation processes in macrophages. Proline-Serine-Threonine Phosphatase Interacting Protein 2 (PSTPIP2), which belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs domain family of proteins and plays a role in macrophages. Previous studies have shown that Pstpip2 can be methylated. Herein, its expression was found to be significantly downregulated in primary liver macrophages isolated from EtOH-fed mice and EtOH-induced RAW264.7 cells. Overexpression of PSTPIP2 using liver-specific recombinant AAV serotype 9 (rAAV9)-PSTPIP2 in EtOH-fed mice dramatically alleviated liver injury and inflammatory responses. In addition, silencing of PSTPIP2 aggravated the alcohol-induced inflammatory response in vitro. Mechanistically, PSTPIP2 might affect macrophage-induced inflammatory responses by regulating the STAT1 and NF-κB signaling pathways. The downregulation of PSTPIP2 in ALI may be associated with DNA methylation. Methylation-specific PCR and western blotting analyses showed that EtOH induced abnormal DNA methylation patterns and increased the protein expression levels of DNMT1, DNMT3a, and DNMT3b. The chromatin immunoprecipitation assay showed that DNMT3a could directly bind to the Pstpip2 promoter and act as a principal regulator of PSTPIP2 expression. Moreover, silencing of DNMT3a significantly restored the EtOH-induced low expression of PSTPIP2 and inhibited EtOH-induced inflammation. Overall, these findings provide a detailed understanding of the possible functions and mechanisms of PSTPIP2 in ALI, thus providing new substantive research to elucidate the pathogenesis of ALI and investigate potential targeted treatment strategies.
Collapse
Affiliation(s)
- Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Lin Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Xiao-Sa Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Na-Na Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China.
| |
Collapse
|
35
|
Toledo ARL, Monroy GR, Salazar FE, Lee JY, Jain S, Yadav H, Borlongan CV. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:1184. [PMID: 35163103 PMCID: PMC8834995 DOI: 10.3390/ijms23031184] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.
Collapse
Affiliation(s)
- Alma Rosa Lezama Toledo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Germán Rivera Monroy
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Felipe Esparza Salazar
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| | - Shalini Jain
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Hariom Yadav
- Center for Microbiome Research, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (S.J.); (H.Y.)
| | - Cesario Venturina Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (A.R.L.T.); (G.R.M.); (F.E.S.); (J.-Y.L.)
| |
Collapse
|
36
|
Martínez-Iglesias O, Carrera I, Naidoo V, Cacabelos R. AntiGan: An Epinutraceutical Bioproduct with Antitumor Properties in Cultured Cell Lines. Life (Basel) 2022; 12:97. [PMID: 35054489 PMCID: PMC8780983 DOI: 10.3390/life12010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 01/01/2022] [Indexed: 12/13/2022] Open
Abstract
Novel and effective chemotherapeutic agents are needed to improve cancer treatment. Epidrugs are currently used for cancer therapy but also exhibit toxicity. Targeting the epigenetic apparatus with bioproducts may aid cancer prevention and treatment. To determine whether the lipoprotein marine extract AntiGan shows epigenetic and antitumor effects, cultured HepG2 (hepatocellular carcinoma) and HCT116 (colorectal carcinoma) cell lines were treated with AntiGan (10, 50, 100, and to 500 µg/mL) for 24 h, 48 h, and 72 h. AntiGan (10 µg/mL) reduced cell viability after 48 h and increased Bax expression; AntiGan (10 and 50 µg/mL) increased caspase-3 immunoreactivity in HepG2 and HCT116 cells. AntiGan (10 and 50 µg/mL) attenuated COX-2 and IL-17 expression in both cell lines. AntiGan (10 µg/mL) increased 5mC levels in both cell types and reduced DNMT1 and DNMT3a expression in these cells. AntiGan (10 and 50 µg/mL) promoted DNMT3a immunoreactivity and reduced SIRT1 mRNA expression in both cell types. In HCT116 cells treated with AntiGan (10 µg/mL), SIRT1 immunoreactivity localized to nuclei and the cytoplasm; AntiGan (50 µg/mL) increased cytoplasmic SIRT1 localization in HCT116 cells. AntiGan is a novel antitumoral bioproduct with epigenetic properties (epinutraceutical) for treating liver and colorectal cancer.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Bergondo, Corunna, Spain; (I.C.); (V.N.); (R.C.)
| | | | | | | |
Collapse
|
37
|
Kaur G, Rathod SSS, Ghoneim MM, Alshehri S, Ahmad J, Mishra A, Alhakamy NA. DNA Methylation: A Promising Approach in Management of Alzheimer's Disease and Other Neurodegenerative Disorders. BIOLOGY 2022; 11:90. [PMID: 35053088 PMCID: PMC8773419 DOI: 10.3390/biology11010090] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer's disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer's disease, Parkinson's disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases.
Collapse
Affiliation(s)
- Gagandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; (G.K.); (S.S.S.R.)
| | - Suraj Singh S. Rathod
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; (G.K.); (S.S.S.R.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Kamrup 781101, Assam, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
38
|
Li Y, Cao J, Hao Z, Liu A, Li X, Li H, Xia N, Wang Z, Zhang Z, Bai J, Zhang H. Aspirin ameliorates the cognition impairment in mice following benzo[a]pyrene treatment via down-regulating BDNF IV methylation. Neurotoxicology 2021; 89:20-30. [PMID: 34979192 DOI: 10.1016/j.neuro.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022]
Abstract
Benzo[a]pyrene (B[a]P) is neurotoxic, however, the mechanisms remain unclear and there is no effective prevention. Available evidence suggests a role of DNA methylation in B[a]P-induced neurotoxicity. This study investigated the brain-derived neurotrophic factor (BDNF) IV methylation in the development of and aspirin intervention against B[a]P's neurotoxicity in mice and HT22 cells. Mice were intraperitoneally treated with solvent or B[a]P (0.5, 2, and 10 mg/kg b.w.) for 60 days. An intervention group was treated simultaneously with B[a]P (10 mg/kg, i.p.) and aspirin (10 mg/kg, daily water-drinking). The treated mice showed a dose-dependent cognitive and behavioral impairment, and cerebral cell apoptosis, which were alleviated by aspirin co-treatment. Following B[a]P treatment, DNA methyltransferase (DNMTs) and BDNF IV hypermethylation were increased in the cerebral cortex of mice compared to controls, while significant decreases were found in BDNF IV and BDNF mRNA, and BDNF protein levels. Aspirin co-treatment rescued DNMTs activation and BDNF IV hypermethylation, and mitigated the recession in BDNF mRNA and protein induced by B[a]P treatment. Similar results were shown in HT22 cells. These findings reveal a critical role of BDNF IV methylation in the neurotoxicity of B[a]P, and demonstrate a promising prevention of aspirin against B[a]P-induced cognitive impairment via inhibiting BDNF IV hypermethylation.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Aixiang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Company, Taiyuan, 030003, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zemin Wang
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental Health, Indiana University School of Public Health, 1025 E 7th St, Bloomington, IN, 47405, USA
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology, Shanxi Province, Taiyuan, 030001, Shanxi, China; Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
39
|
Martínez-Iglesias O, Naidoo V, Cacabelos N, Cacabelos R. Epigenetic Biomarkers as Diagnostic Tools for Neurodegenerative Disorders. Int J Mol Sci 2021; 23:13. [PMID: 35008438 PMCID: PMC8745005 DOI: 10.3390/ijms23010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without alterations to the DNA sequence, linking the genome to its surroundings. The accumulation of epigenetic alterations over the lifespan may contribute to neurodegeneration. The aim of the present study was to identify epigenetic biomarkers for improving diagnostic efficacy in patients with neurodegenerative diseases. We analyzed global DNA methylation, chromatin remodeling/histone modifications, sirtuin (SIRT) expression and activity, and the expression of several important neurodegeneration-related genes. DNA methylation, SIRT expression and activity and neuregulin 1 (NRG1), microtubule-associated protein tau (MAPT) and brain-derived neurotrophic factor (BDNF) expression were reduced in buffy coat samples from patients with neurodegenerative disorders. Our data suggest that these epigenetic biomarkers may be useful in clinical practical for the diagnosis, surveillance, and prognosis of disease activity in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (V.N.); (N.C.); (R.C.)
| | | | | | | |
Collapse
|
40
|
Ikram MF, Farhat SM, Mahboob A, Baig S, Yaqinuddin A, Ahmed T. Expression of DnMTs and MBDs in AlCl 3-Induced Neurotoxicity Mouse Model. Biol Trace Elem Res 2021; 199:3433-3444. [PMID: 33174148 DOI: 10.1007/s12011-020-02474-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Alteration in DNA methylation after aluminum exposure has been shown to contribute in pathogenesis of Alzheimer's disease (AD). This study is aimed to determine the effect of Al exposure (42 and 60 days) on learning and memory and the expression of proteins involved in DNA methylation (MBD1, MBD2, MBD3, MeCP2 (methyl CpG binding protein 2), DnMT1 and DnMT3a). Male BALB/c mice were treated with AlCl3 for either 42 days or 60 days. After treatment completion, learning and memory were compared to the control group using novel object recognition test, elevated plus maze test, open field test, and Morris water maze test. The treated animals and their respective controls were sacrificed after cognitive testing and samples from their whole cortex and hippocampus were harvested for gene expression analysis. Mice treated with AlCl3 showed significant cognitive deficit with impaired short-term memory, elevated anxiety, and deterioration in spatial and reference memory. The AlCl3 treatment showed significant reduction in the expression of MBDs in the whole cortex at 60 days of treatment as compared to control. AlCl3-treated animals showed decreased expression of MBDs and DnMT3a in the hippocampus for longer treated animals but strikingly, MBD2 showed significantly increased expression in AlCl3-treated animals at 60 days p ≤ 0.001. In conclusion, this study showed that AlCl3-treated animals showed significant memory and cognitive deficits and it is associated with significant changes in the expression of proteins involved in DNA methylation mechanism. Moreover, different Al exposure duration had slightly different effects.
Collapse
Affiliation(s)
- Muhammad Faisal Ikram
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Medical College, Ziauddin University, Karachi, Pakistan
| | - Syeda Mehpara Farhat
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Aamra Mahboob
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Ahmed Yaqinuddin
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
41
|
Xu H, Li S, Liu YS. Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Front Cell Dev Biol 2021; 9:699374. [PMID: 34262910 PMCID: PMC8273304 DOI: 10.3389/fcell.2021.699374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
42
|
Cacabelos R, Carrera I, Martínez O, Alejo R, Fernández-Novoa L, Cacabelos P, Corzo L, Rodríguez S, Alcaraz M, Nebril L, Tellado I, Cacabelos N, Pego R, Naidoo V, Carril JC. Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Med Res Rev 2021; 41:2841-2886. [PMID: 34106485 DOI: 10.1002/med.21838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Carrera
- Department of Health Biotechnology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Olaia Martínez
- Department of Medical Epigenetics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | | | | | - Pablo Cacabelos
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Susana Rodríguez
- Department of Medical Biochemistry, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Margarita Alcaraz
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Laura Nebril
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Iván Tellado
- Department of Digital Diagnosis, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Rocío Pego
- Department of Neuropsychology, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Vinogran Naidoo
- Department of Neuroscience, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| | - Juan C Carril
- Department of Genomics & Pharmacogenomics, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Spain
| |
Collapse
|
43
|
Differential Epigenetic Signature of Corticospinal Motor Neurons in ALS. Brain Sci 2021; 11:brainsci11060754. [PMID: 34200232 PMCID: PMC8230084 DOI: 10.3390/brainsci11060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Corticospinal motor neurons (CSMN) are an indispensable neuron population for the motor neuron circuitry. They are excitatory projection neurons, which collect information from different regions of the brain and transmit it to spinal cord targets, initiating and controlling motor function. CSMN degeneration is pronounced cellular event in motor neurons diseases, such as amyotrophic lateral sclerosis (ALS). Genetic mutations contribute to only about ten percent of ALS. Thus understanding the involvement of other factors, such as epigenetic controls, is immensely valuable. Here, we investigated epigenomic signature of CSMN that become diseased due to misfolded SOD1 toxicity and TDP-43 pathology, by performing quantitative analysis of 5-methylcytosine (5mC) and 5-hydroxymethycytosine (5hmC) expression profiles during end-stage of the disease in hSOD1G93A, and prpTDP-43A315T mice. Our analysis revealed that expression of 5mC was specifically reduced in CSMN of both hSOD1G93A and prpTDP-43A315T mice. However, 5hmC expression was increased in the CSMN that becomes diseased due to misfolded SOD1 and decreased in CSMN that degenerates due to TDP-43 pathology. These results suggest the presence of a distinct difference between different underlying causes. These differential epigenetic events might modulate the expression profiles of select genes, and ultimately contribute to the different paths that lead to CSMN vulnerability in ALS.
Collapse
|
44
|
Zhang HQ, Wang JY, Li ZF, Cui L, Huang SS, Zhu LB, Sun Y, Yang R, Fan HH, Zhang X, Zhu JH. DNA Methyltransferase 1 Is Dysregulated in Parkinson's Disease via Mediation of miR-17. Mol Neurobiol 2021; 58:2620-2633. [PMID: 33483902 DOI: 10.1007/s12035-021-02298-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Aberrant DNA methylation is closely associated with the pathogenesis of Parkinson's disease (PD). DNA methyltransferases (DNMTs) are the enzymes for establishment and maintenance of DNA methylation patterns. It has not been clearly defined how DNMTs respond in PD and what mechanisms are associated. Models of PD were established by treatment of five different neurotoxins in cells and intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Plasma samples of PD patients were also used. Western blot, real-time PCR, immunostaining, and/or luciferase reporter were employed. DNA methylation was analyzed by the bisulfite sequencing analysis. Protein expression of DNMT1, but not of DNMT3A and DNMT3B, was reduced in the cellular and mouse models of PD. Paradoxically, mRNA levels of DNMT1 were increased in these models. After ruling out the possibility of protein degradation, we screened a set of miRNAs that potentially targeted DNMT1 3'-UTR by luciferase reporters and expression abundancies. miR-17 was identified for further investigation with miR-19a of low expression as a parallel comparison. Although exogenous transfection of either miR-17 or miR-19a mimics could inhibit DNMT1 expression, results of miRNA inhibitors showed that miR-17, but not miR-19a, endogenously regulated DNMT1 and the subsequent DNA methylation. Furthermore, levels of miR-17 were elevated in the neurotoxin-induced PD models and the plasma of PD patients. This study demonstrates that the miR-17-mediated DNMT1 downregulation underlies the aberrant DNA methylation in PD. Our results provide a link bridging environmental insults and epigenetic changes and implicate miR-17 in therapeutical modulation of DNA methylation in PD.
Collapse
Affiliation(s)
- Hong-Qiu Zhang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jian-Yong Wang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhao-Feng Li
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Cui
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shi-Shi Huang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lan-Bing Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yue Sun
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Rui Yang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Hui-Hui Fan
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
45
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
47
|
Xiao X, Liu X, Jiao B. Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer's Disease. Front Neurol 2020; 11:538301. [PMID: 33178099 PMCID: PMC7594522 DOI: 10.3389/fneur.2020.538301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: This review summarizes recent findings on the epigenetics of Alzheimer's disease (AD) and provides therapeutic strategies for AD. Methods: We searched the following keywords: “genetics,” “epigenetics,” “Alzheimer's disease,” “DNA methylation,” “DNA hydroxymethylation,” “histone modifications,” “non-coding RNAs,” and “therapeutic strategies” in PubMed. Results: In this review, we summarizes recent studies of epigenetics in AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs. There are no consistent results of global DNA methylation/hydroxymethylation in AD. Epigenetic genome-wide association studies show that many differentially methylated sites exist in AD. Several studies investigate the role of histone modifications in AD; for example, histone acetylation decreases, whereas H3 phosphorylation increases significantly in AD. In addition, non-coding RNAs, such as microRNA-16 and BACE1-antisense transcript (BACE1-AS), are associated with the pathology of AD. These epigenetic changes provide us with novel insights into the pathogenesis of AD and may be potential therapeutic strategies for AD. Conclusion: Epigenetics is associated with the pathogenesis of AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs, which provide potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
48
|
Sivalingam K, Samikkannu T. Neuroprotective Effect of Piracetam against Cocaine-Induced Neuro Epigenetic Modification of DNA Methylation in Astrocytes. Brain Sci 2020; 10:E611. [PMID: 32899583 PMCID: PMC7565945 DOI: 10.3390/brainsci10090611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023] Open
Abstract
Cocaine abuse is known to alter mitochondrial biogenesis and induce epigenetic modification linked with neuronal dysfunction. Cocaine-induced epigenetic modification of DNA methylation and the mitochondrial genome may affect mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), as epigenetic DNA methylation is key to maintaining genomic integrity in the central nervous system (CNS). However, the impact of cocaine-mediated epigenetic changes in astrocytes has not yet been elucidated. In this study, we explored the neuroprotective effect of piracetam against cocaine-induced epigenetic changes in DNA methylation in astrocytes. To study our hypothesis, we exposed human astrocytes to cocaine alone or in combination with the nootropic drug piracetam. We examined the expression of the DNA methyltransferases (DNMTs) DNMT-1, DNMT-3A, and DNMT-3B; global DNA methylation levels of 5-methycytosine (5-mC); and induction of ten-eleven translocation (TET) enzymes in astrocytes. In addition, we analyzed mtDNA methylation by targeted next-generation bisulfite sequencing. Our data provide evidence that cocaine impairs DNMT activity and thereby has impacts on mtDNA, which might contribute to the neurodegeneration observed in cocaine users. These effects might be at least partially prevented by piracetam, allowing neuronal function to be maintained.
Collapse
Affiliation(s)
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX 78363, USA;
| |
Collapse
|