1
|
Mi Y, Wei D, Du B, Zhang R, Li J, Huang S, Zhang B, Ren J, Wu X. Effect of type 2 diabetes mellitus microenvironment on osteogenic capacity of bone marrow mesenchymal stem cells. Int Immunopharmacol 2025; 157:114724. [PMID: 40300360 DOI: 10.1016/j.intimp.2025.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Type 2 diabetes mellitus (T2DM) often leads to delayed bone regeneration such as slow healing of fractures and bone defects. The number, status and osteogenic differentiation capacity of bone marrow mesenchymal stem cells (BMSCs) are extremely important in bone healing and bone regeneration. The T2DM microenvironment can have irreversible negative effects on BMSCs. In this paper, we review the molecular expression and altered proliferation, migration, and osteogenic differentiation capacity of BMSCs in the microenvironment of T2DM, it provides a new perspective to restore the normal function of T2DM-BMSCs, so as to save the damaged bone regeneration capacity.
Collapse
Affiliation(s)
- Yanling Mi
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Danni Wei
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Bingli Du
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ran Zhang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Jiadi Li
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Shuo Huang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Binbin Zhang
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Juan Ren
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Xiuping Wu
- Shanxi Medical University, School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| |
Collapse
|
2
|
Li X, Hu T, Li R, Li Y, Lin Y, Wang Y, Liu W, Wang Y. Effect of gene CRTC2 on the differentiation of subcutaneous precursor adipocytes in goats. Anim Biosci 2025; 38:873-883. [PMID: 39483012 PMCID: PMC12062811 DOI: 10.5713/ab.24.0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE The aim of this study was to obtain goat CRTC2 gene sequence and elucidate its biological properties, and further study the impact of overexpression and interference of CRTC2 on the cell differentiation of goat subcutaneous precursor adipocytes. METHODS The sequence of goat CRTC2 was cloned by reverse transcription (RT)-polymerase chain reaction (PCR) and its molecular characterization was analyzed. The expression of CRTC2 gene in goat tissues and subcutaneous precursor adipocytes differentiated from 0 to 120 h was examined by quantitative real-time PCR (qRT-PCR). The effects of CRTC2 on the subcutaneous precursor adipocyte differentiation were investigated by using liposome transfection, Bodipy, Oil Red O staining and qPCR. RESULTS The results showed that the cloned goat CRTC2 gene was 2363 bp long (coding sequence [CDS] 2082 bp), encoding 693 amino acids. The relative expression levels of CRTC2 gene were highest in liver and then in kidney (p<0.05). During differentiation, the highest expression of CRTC2 in subcutaneous precursor adipocytes was observed at 120 of differentiating (p<0.01). In addition, we found that overexpression of CRTC2 significantly increased the expression of lipid metabolism-related genes (C/EBPα, C/EBPβ, PPARγ, DGAT1, DGAT2, ACC, FASN, SREBP1, AP2, LPL, ATGL) and promoted lipid accumulation. We then chemically synthesized goat CRTC2 small interfering RNA and transfected it into goat subcutaneous precursor adipocytes. The results revealed that SiRNA-mediated interference with CRTC2 significantly inhibited its differentiation and suppressed lipid droplet aggregation. CONCLUSION So, this study indicates that CRTC2 is a positive regulator that promoting cell differentiation of subcutaneous adipocyte in goats, which lays the foundation for an in-depth study of the role of CRTC2 in lipid deposition in goats.
Collapse
Affiliation(s)
- Xuening Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu,
China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu,
China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu,
China
| | - Tingting Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu,
China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu,
China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu,
China
| | - Ruiwen Li
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu,
China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu,
China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu,
China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu,
China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu,
China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu,
China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu,
China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu,
China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu,
China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu,
China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu,
China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu,
China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu,
China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu,
China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu,
China
| |
Collapse
|
3
|
Ratajczak-Pawłowska AE, Szymczak-Tomczak A, Hryhorowicz S, Zawada A, Skoracka K, Rychter AM, Skrzypczak-Zielińska M, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Relationship of visfatin with obesity and osteoporosis in patients with inflammatory bowel disease: a narrative review. Front Immunol 2025; 16:1533955. [PMID: 40170859 PMCID: PMC11959099 DOI: 10.3389/fimmu.2025.1533955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 04/03/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) is an increasingly prevalent condition in developed countries. Alongside the growing number of patients, there is a rising incidence of disease-related complications, including osteoporosis. While well-established risk factors for low bone mineral density in IBD-such as low body mass or steroid therapy-are widely recognized, other contributing factors warrant further investigation. One such factor is visfatin, a proinflammatory adipokine encoded by the NAMPT gene. Objectives This review aimed to explore the association between visfatin level, bone health, and obesity among patients with inflammatory bowel disease. Key findings Although visfatin is primarily associated with metabolic syndrome, it may also influence bone mineral density by affecting osteoblast and osteoclast differentiation and function. Additionally, some studies have identified a correlation between visfatin levels and bone mineral density. A deeper understanding of visfatin's role in osteoporosis development may contribute to the identification of novel therapeutic strategies. Therefore, lower bone mineral density in inflammatory bowel disease may be associated with obesity and visfatin levels. However, visfatin concentrations depend on many factors, including genetics, immunology, and nutritional factors, which may affect visfatin levels. Implications Current research highlights visfatin as both a potential biomarker and a therapeutic target for osteoporosis treatment. Nevertheless, limited studies have specifically examined the relationship between visfatin and bone mineral density in IBD. Further research is required to clarify this association and to explore how variations in visfatin levels impact bone density in IBD patients.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak-Pawłowska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Poznan, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Ryszard Słomski
- Institute of Medical Sciences, College of Social and Media Culture in Torun, Torun, Poland
- Laboratory of Molecular Genetics, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Bessot A, Röhl J, Emmerich M, Klotz A, Ravichandran A, Meinert C, Waugh D, McGovern J, Gunter J, Bock N. ECM-mimicking hydrogel models of human adipose tissue identify deregulated lipid metabolism in the prostate cancer-adipocyte crosstalk under antiandrogen therapy. Mater Today Bio 2025; 30:101424. [PMID: 39866784 PMCID: PMC11764633 DOI: 10.1016/j.mtbio.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/28/2025] Open
Abstract
Antiandrogen therapies are effectively used to treat advanced prostate cancer, but eventually cancer adaptation drives unresolved metastatic castration-resistant prostate cancer (mCRPC). Adipose tissue influences metabolic reprogramming in cancer and was proposed as a contributor to therapy resistance. Using extracellular matrix (ECM)-mimicking hydrogel coculture models of human adipocytes and prostate cancer cells, we show that adipocytes from subcutaneous or bone marrow fat have dissimilar responses under the antiandrogen Enzalutamide. We demonstrate that androgen receptor (AR)-dependent cancer cells (LNCaP) are more influenced by human adipocytes than AR-independent cells (C4-2B), with altered lipid metabolism and adipokine secretion. This response changes under Enzalutamide, with increased AR expression and adipogenic and lipogenic genes in cancer cells and decreased lipid content and gene dysregulation associated with insulin resistance in adipocytes. This is in line with the metabolic syndrome that men with mCRPC under Enzalutamide experience. The all-human, all-3D, models presented here provide a significant advance to dissect the role of fat in therapy response for mCRPC.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia
| | - Joan Röhl
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, 4226, Australia
| | - Maria Emmerich
- School of Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany
| | - Anton Klotz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Akhilandeshwari Ravichandran
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, QUT, Brisbane, QLD 4000, Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET), QUT, Brisbane, QLD 4000, Australia
| | | | - David Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5005, Australia
| | - Jacqui McGovern
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET), QUT, Brisbane, QLD 4000, Australia
| | - Jenni Gunter
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Zheng Q, Lin R, Wang D, Chen R, Xu W. The association of lipids and novel non-statin lipid-lowering drug target with osteoporosis: evidence from genetic correlations and Mendelian randomization. BMC Musculoskelet Disord 2025; 26:107. [PMID: 39893413 PMCID: PMC11787747 DOI: 10.1186/s12891-024-08160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND It remains controversial whether lipids affect osteoporosis (OP) or bone mineral density (BMD), and causality has not been established. This study aimed to investigate the genetic associations between lipids, novel non-statin lipid-lowering drug target genes, and OP and BMD. METHODS Mendelian randomization (MR) method was used to explore the genetic associations between 179 lipid species and OP, BMD. Drug-target MR analysis was used to explore the causal associations between angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C3 (APOC3) inhibitors on BMD. RESULTS The IVW results with Bonferroni correction indicated that triglyceride (TG) (51:3) (OR = 1.0029; 95% CI: 1.0014-1.0045; P = 0.0002) and TG (56:6) (OR = 1.0021; 95% CI: 1.0008-1.0033; P = 0.0011) were associated with an increased risk of OP; TG (51:2) (OR = 0.9543; 95% CI: 0.9148-0.9954; P = 0.0298) was associated with decreased BMD; and ANGPTL3 inhibitor (OR = 1.1342; 95% CI: 1.0393-1.2290; P = 0.0093) and APOC3 inhibitor (OR = 1.0506; 95% CI: 1.0155-1.0857; P = 0.0058) was associated with increased BMD. CONCLUSIONS MR analysis indicated causal associations between genetically predicted TGs and OP and BMD. Drug-target MR analysis showed that ANGPTL3 and APOC3 have the potential to serve as novel non-statin lipid-lowering drug targets to treat or prevent OP.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
- Department of Orthopedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, 100044, China
| | - Rongsheng Chen
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Department of Orthopedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
- Department of Orthopedics, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
6
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
Suárez LJ, Hasturk H, Tubero Euzebio Alves V, Díaz-Baez D, Van Dyke T, Kantarci A. Overexpression of the receptor for resolvin E1 (ERV1) prevents early alveolar bone loss in leptin receptor deficiency-induced diabetes. J Periodontol 2024; 95:1190-1200. [PMID: 39031577 DOI: 10.1002/jper.24-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND This study was designed to test the hypothesis that the leptin receptor (LepR) regulates changes in periodontal tissues and that the overexpression of the receptor for resolvin E1 (ERV1) prevents age- and diabetes-associated alveolar bone loss. METHODS LepR-deficient transgenic (TG) mice were cross-bred with those overexpressing ERV1 (TG) to generate double-TG mice. In total, 95 mice were divided into four experimental groups: wild type (WT), TG, LepR deficient (db/db), and double transgenic (db/db TG). The groups were followed from 4 weeks up to 16 weeks of age. The natural progression of periodontal disease without any additional method of periodontitis induction was assessed by macroscopic and histomorphometric analyses. Osteoclastic activity was measured by tartrate-resistant acid phosphatase (TRAP) staining. RESULTS At 4 weeks, ERV1 overexpression prevented weight gain. From Week 8 onward, there was a significant increase in the weight of db/db mice with or without ERV1 overexpression compared to the WT mice, accompanied by an increase in glucose levels. By 8 weeks of age, the percentage of bone loss in the LepR deficiency groups was significantly greater compared to WT mice. ERV1 overexpression in the db/db TG mice prevented early alveolar bone loss; however, it did not impact the development of diabetic bone loss in aging mice after the onset of weight gain and diabetes. CONCLUSIONS The findings suggest that the overexpression of ERV1 prevents LepR-associated alveolar bone loss during the early phases of periodontal disease by delaying weight gain, diabetes onset, and associated inflammation; however, LepR deficiency increases susceptibility to naturally occurring inflammatory alveolar bone loss as the animal ages, associated with excess weight gain, onset of diabetes, and excess inflammation.
Collapse
Affiliation(s)
- Lina J Suárez
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| | | | | | - Thomas Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ok CY, Kwon RJ, Jang HO, Bae MK, Bae SK. Visfatin Enhances RANKL-Induced Osteoclastogenesis In Vitro: Synergistic Interactions and Its Role as a Mediator in Osteoclast Differentiation and Activation. Biomolecules 2024; 14:1500. [PMID: 39766208 PMCID: PMC11673010 DOI: 10.3390/biom14121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Visfatin, an adipokine secreted by various cell types, plays multifaceted pathophysiological roles in inflammatory conditions, including obesity, which is closely associated with osteoclastogenesis, a key process underlying bone loss and increased osteoporosis (OP) risk. However, the role of visfatin in osteoclastogenesis remains controversial. This study was conducted to investigate the effects of visfatin on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation from precursor cells in vitro. Our results demonstrated that although visfatin exhibited a modest osteoclast-inductive effect relative to that of RANKL, co-stimulation of bone marrow-derived macrophages (BMDMs) with visfatin and RANKL led to significantly enhanced osteoclast differentiation and activation compared to individual stimulation. Neutralization of visfatin activity using blocking antibodies before differentiation markedly suppressed RANKL-induced osteoclastogenesis, as evidenced by a near-complete absence of tartrate-resistant acid phosphatase-positive multinucleated osteoclasts, decreased levels of nuclear factor of activated T cells cytoplasmic 1 and osteoclast-specific proteins, inhibition of nuclear factor-κB and mitogen-activated protein kinase signaling pathways, and a decrease in resorption pit formation. Our findings underscore the critical role of visfatin in RANKL-induced osteoclastogenesis in vitro and highlight the RANKL/visfatin signaling axis as a potential therapeutic target for destructive bone loss-related diseases.
Collapse
Affiliation(s)
- Chang Youp Ok
- Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (C.Y.O.); (H.-O.J.)
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ryuk Jun Kwon
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Hye-Ock Jang
- Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (C.Y.O.); (H.-O.J.)
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Soo-Kyung Bae
- Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (C.Y.O.); (H.-O.J.)
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
9
|
Wang X, Jia Q, Yu L, Huang J, Wang X, Zhou L, Mijiti W, Xie Z, Dong S, Xie Z, Ma H. Filamin B knockdown impairs differentiation and function in mouse pre-osteoblasts via aberrant transcription and alternative splicing. Heliyon 2024; 10:e39334. [PMID: 39498024 PMCID: PMC11533582 DOI: 10.1016/j.heliyon.2024.e39334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Objective Filamin B (FLNB) encodes an actin-binding protein that is known to function as a novel RNA-binding protein involved in cell movement and signal transduction and plays a pivotal role in bone growth. This study aimed to investigate possible FLNB function in the skeletal system by characterizing the effecs of FLNB knockdown in mouse preosteoblast cells. Methods Stable FLNB MC3T3-E1 knockdown cells were constructed for RNA-seq and alternative splicing event (ASE) analysis of genes involved in osteoblast differentiation and function that may be regulated by FLNB. Standard transwell, MTT, ALP, qPCR, Western blot, and alizarin red staining assays were used to assess functional changes of FLNB-knockdown MC3T3-E1 cells. Results Analysis of differentially expressed genes (DEGs) in FLNB knockdown cells revealed enrichment for genes related to osteoblast proliferation, differentiation and migration, such as ITGA10, Cebpβ, Grem1, etc. Alternative splicing (AS) analysis showed changes in the predominant mRNA isoforms of skeletal development-related genes, especially Tpx2 and Evc. Functional asslysis indicated that proliferation, migration, and differentiation were all inhibited upon FLNB knockdown in MC3T3-E1 cells compared to that in vector control cells. Conclusions FLNB participates in regulating the transcription and AS of genes required for osteoblast development and function, consequently affecting growth and development in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Qiyu Jia
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Jinyong Huang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Xin Wang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Lijun Zhou
- School of Public Health, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Wubulikasimu Mijiti
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zhenzi Xie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Shiming Dong
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zengru Xie
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
10
|
Wang N, Lin Z, Gao L, Wang B, Wei K, Zhang M, Li Y, Xue P. Liraglutide reduces bone marrow adipogenesis by miR-150-5p/ GDF11 axis in diabetic rats. Eur J Pharmacol 2024; 978:176793. [PMID: 38960061 DOI: 10.1016/j.ejphar.2024.176793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
In recent years, a common-used antidiabetic drug, liraglutide, was identified with extra effects on lipid metabolism. Its effects against excessive lipid deposition in bone marrow were gained much attention but not well established. Our aim in the present study is to explore the interaction of miRNAs-mRNAs altered by liraglutide administration during bone marrow adipogenesis in diabetes. To establish the diabetic animal model, rats were treated with high fat diet (HFD) and STZ injection. We then identified the lowering effect of liraglutide on lipids metabolism in the diabetes. During this process, high-throughput sequencing and bioinformatics analyses on miRNAs extracted from bone marrow mesenchymal stem cells (BMSCs) were conducted after liraglutide administration. We then identified five differentially expressed miRNAs (miRNA-150-5p, miRNA-129-5p, miRNA-201-3p, miRNA-201-5p, and miRNA-214-5p). The expressions of the DE miRNAs were verified as temporal specific expression patterns in Day 3 and in Day 7. Among them, miRNA-150-5p expression was more stable and consistent with the sequencing data. Of interest, miR-150-5p overexpression facilitated adipogenesis of BMSCs. But this promotion was alleviated by liraglutide. The predicted target gene of miR-150-5p, GDF11, was validated to be involved in liraglutide alleviated BMSCs' lipid accumulation in diabetes. In vitro, liraglutide increased the GDF11 expression, rescued its down-expression by siGDF11 and inhibit the adipogenesis of BMSCs cultured in high glucose medium. In vivo, liraglutide reversed the HFD-STZ induced excessive lipid droplets by up-regulation of GDF11 expression, which was discounted by agomiR-150-5p injection. Above all, liraglutide might alleviate bone marrow fat accumulation via inactivating miR-150-5p/GDF11 axis in diabetes.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Zhe Lin
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; Department of Orthopedic Surgery, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Liu Gao
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Bin Wang
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Kangxu Wei
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Menghan Zhang
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Yukun Li
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Peng Xue
- Department of Endocrinology, The Hebei Medical University Third Hospital, Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China; NHC Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Qiaoxi District, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
| |
Collapse
|
11
|
Yan H, Li Z, Zhang Z. Exploring the pharmacological mechanism of Xianlingubao against diabetic osteoporosis based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e39138. [PMID: 39093780 PMCID: PMC11296417 DOI: 10.1097/md.0000000000039138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Xianlinggubao formula (XLGB), is a traditional Chinese compound Medicine that has been extensively used in osteoarthritis and aseptic osteonecrosis, but its curative effect on diabetic osteoporosis (DOP) and its pharmacological mechanisms remains not clear. The aim of the present study was to investigate the possible mechanism of drug repurposing of XLGB in DOP therapy. We acquired XLGB active compounds from the traditional Chinese medicine systems pharmacology and traditional Chinese medicines integrated databases and discovered potential targets for these compounds by conducting target fishing using the traditional Chinese medicine systems pharmacology and Swiss Target Prediction databases. Gene Cards and Online Mendelian Inheritance in Man® database were used to identify the DOP targets. Overlapping related targets between XLGB and DOP was selected to build a protein-protein interaction network. Next, the Metascape database was utilized to enrich the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. In addition, Auto-Dock Vina software was used to verify drug and target binding. In total, 48 hub targets were obtained as the candidate targets responsible for DOP therapy. The anti-DOP effect mediated by XLGB was primarily centralized on the advanced glycation end products (AGEs)-receptor for AGE signaling pathway in diabetic complications and osteoclast differentiation. In addition, AKT serine/threonine kinase 1, tumor necrosis factor, Interleukin-6, vascular endothelial growth factor A and peroxisome proliferator activated receptor gamma, which were considered as potential therapeutic targets. Furthermore, molecular docking results confirm the credibility of the predicted therapeutic targets. This study elucidates that XLGB may through regulating AGEs formation and osteoclast differentiation as well as angiogenesis and adipogenesis against DOP. And this study provides new promising points to find the exact regulatory mechanisms of XLGB mediated anti-DOP effect.
Collapse
Affiliation(s)
- Huili Yan
- Department of Clinical Laboratory, Changzhi People’s Hospital, Changzhi, China
| | - Zongying Li
- Department of Clinical Laboratory, Changzhi People’s Hospital, Changzhi, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Maroni P, Pesce NA, Lombardi G. RNA-binding proteins in bone pathophysiology. Front Cell Dev Biol 2024; 12:1412268. [PMID: 38966428 PMCID: PMC11222650 DOI: 10.3389/fcell.2024.1412268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Noemi Anna Pesce
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
13
|
Zhong Y, Zhou X, Pan Z, Zhang J, Pan J. Role of epigenetic regulatory mechanisms in age-related bone homeostasis imbalance. FASEB J 2024; 38:e23642. [PMID: 38690719 DOI: 10.1096/fj.202302665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Alterations to the human organism that are brought about by aging are comprehensive and detrimental. Of these, an imbalance in bone homeostasis is a major outward manifestation of aging. In older adults, the decreased osteogenic activity of bone marrow mesenchymal stem cells and the inhibition of bone marrow mesenchymal stem cell differentiation lead to decreased bone mass, increased risk of fracture, and impaired bone injury healing. In the past decades, numerous studies have reported the epigenetic alterations that occur during aging, such as decreased core histones, altered DNA methylation patterns, and abnormalities in noncoding RNAs, which ultimately lead to genomic abnormalities and affect the expression of downstream signaling osteoporosis treatment and promoter of fracture healing in older adults. The current review summarizes the impact of epigenetic regulation mechanisms on age-related bone homeostasis imbalance.
Collapse
Affiliation(s)
- Yunyu Zhong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zijian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Di Paola A, Marrapodi MM, Di Martino M, Giliberti G, Di Feo G, Rana D, Ahmed S, Argenziano M, Rossi F, Roberti D. Bone Health Impairment in Patients with Hemoglobinopathies: From Biological Bases to New Possible Therapeutic Strategies. Int J Mol Sci 2024; 25:2902. [PMID: 38474150 DOI: 10.3390/ijms25052902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Hemoglobinopathies are monogenic disorders affecting hemoglobin synthesis. Thalassemia and sickle cell disease (SCD) are considered the two major hemoglobinopathies. Thalassemia is a genetic disorder and one of the major hemoglobinopathies determined by an impairment of globin chain production, which causes an alteration of erythropoiesis, an improvement in hemolysis, and an alteration of iron homoeostasis. In SCD, the mutations are on the β-globin chain of hemoglobin which results in a substitution of glutamic acid by valine with consequent formation of Hemoglobin S (HbS). Several factors are involved in bone metabolism alteration in patients with hemoglobinopathies, among them hormonal deficiency, bone marrow hyperplasia, iron overload, inflammation, and increased bone turnover. Bone metabolism is the result of balance maintenance between bone deposition and bone resorption, by osteoblasts (OBs) and osteoclasts (OCs). An impairment of this balance is responsible for the onset of bone diseases, such as osteoporosis (OP). Therefore, here we will discuss the alteration of bone metabolism in patients with hemoglobinopathies and the possible therapeutic strategies to contain and/or counteract bone health impairment in these patients, taking into consideration not only the pharmacological treatments already used in the clinical armamentarium, but also the new possible therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Martina Di Martino
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giulia Giliberti
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppe Di Feo
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Deeksha Rana
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Shakeel Ahmed
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Maura Argenziano
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
16
|
Yang M, Zhu L. Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2688. [PMID: 38473934 DOI: 10.3390/ijms25052688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an ongoing inflammatory condition that affects the joints and can lead to severe damage to cartilage and bones, resulting in significant disability. This condition occurs when the immune system becomes overactive, causing osteoclasts, cells responsible for breaking down bone, to become more active than necessary, leading to bone breakdown. RA disrupts the equilibrium between osteoclasts and osteoblasts, resulting in serious complications such as localized bone erosion, weakened bones surrounding the joints, and even widespread osteoporosis. Antibodies against the receptor activator of nuclear factor-κB ligand (RANKL), a crucial stimulator of osteoclast differentiation, have shown great effectiveness both in laboratory settings and actual patient cases. Researchers are increasingly focusing on osteoclasts as significant contributors to bone erosion in RA. Given that RA involves an overactive immune system, T cells and B cells play a pivotal role by intensifying the immune response. The imbalance between Th17 cells and Treg cells, premature aging of T cells, and excessive production of antibodies by B cells not only exacerbate inflammation but also accelerate bone destruction. Understanding the connection between the immune system and osteoclasts is crucial for comprehending the impact of RA on bone health. By delving into the immune mechanisms that lead to joint damage, exploring the interactions between the immune system and osteoclasts, and investigating new biomarkers for RA, we can significantly improve early diagnosis, treatment, and prognosis of this condition.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
17
|
Yang Q, Wei Z, Wei X, Zhang J, Tang Y, Zhou X, Liu P, Dou C, Luo F. The age-related characteristics in bone microarchitecture, osteoclast distribution pattern, functional and transcriptomic alterations of BMSCs in mice. Mech Ageing Dev 2023; 216:111877. [PMID: 37820882 DOI: 10.1016/j.mad.2023.111877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Deteriorated age-related bone loss is the hallmarks of skeletal aging. However, how the aging of bone marrow mesenchymal stem cells (BMSCs) and osteoclasts are linked to the bone microstructure degeneration is not yet very clear. In this study, the characteristics of age-related bone loss, distribution patterns of osteoclasts, functional and transcriptomic alterations of BMSCs, hub genes responsible for BMSCs senescence, were analyzed. Our study revealed an age-related declined trends in trabecular and cortical bones of femur, tibia and lumbar vertebra in mice, which was accompanied by a shift from the trabecular to cortical bones in osteoclasts. Additionally, middle-aged or aged mice exhibited remarkably reduced dynamic bone formation capacities, along with reversed osteogenic-adipogenic differentiation potentials in BMSCs. Finally, transcriptomic analysis indicated that aging-related signaling pathways were significantly activated in BMSCs from aged mice (e.g., cellular senescence, p53 signaling pathway, etc.). Also, weighted correlation network analysis (WGCNA) and venn diagram analysis based on our RNA-Seq data and GSE35956 dataset revealed the critical role of PTPN1 in BMSCs senescence. Targeted inhibition of PTP1B with AAV-Ptpn1-RNAi dramatically postponed age-related bone loss in middle-aged mice. Collectively, our study has uncovered the age-dependent cellular characteristics in BMSCs and osteoclasts underlying progressive bone loss with advancing age.
Collapse
Affiliation(s)
- QianKun Yang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - ZhiYuan Wei
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - XiaoYu Wei
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhou
- Cadet Brigade 4, College of Basic Medicine, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Pan Liu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
18
|
Liu K, Zheng J, Wang Y, Li Y, Xiong Y, Wang Y, Cheng J, Huang X, Zhang L, Lin Y. Effect of TEA domain transcription factor 1 ( TEAD1) on the differentiation of intramuscular preadipocytes in goats. Anim Biotechnol 2023; 34:3589-3598. [PMID: 36866843 DOI: 10.1080/10495398.2023.2178932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
TEA domain transcription factor 1 (TEAD1), also called TEF-1, acts as a transcriptional enhancer to regulate muscle-specific gene expression. However, the role of TEAD1 in regulating intramuscular preadipocyte differentiation in goats is unclear. The aim of this study was to obtain the sequence of TEAD1 gene and elucidate the effect of TEAD1 on goat intramuscular preadipocyte differentiation in vitro and its possible mechanism. The results showed that the goat TEAD1 gene CDS region sequence was 1311 bp. TEAD1 gene was widely expressed in goat tissues, with the highest expression in brachial triceps (p < 0.01). The expression of TEAD1 gene in goat intramuscular adipocytes at 72 h was extremely significantly higher than that at 0 h (p < 0.01). Overexpression of goat TEAD1 inhibited the accumulation of lipid droplets in goat intramuscular adipocyte. The relative expression of differentiation marker genes SREBP1, PPARγ, C/EBPβ were significantly down-regulated (all p < 0.01), but PREF-1 was significantly up-regulated (p < 0.01). Binding analysis showed that there were multiple binding sites between the DNA binding domain of goat TEAD1 and the promoter binding region of SREBP1, PPARγ, C/EBPβ and PREF-1. In conclusion, TEAD1 negatively regulates the differentiation of goat intramuscular preadipocytes.
Collapse
Affiliation(s)
- Kehan Liu
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Jianying Zheng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Yong Wang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Yanyan Li
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Yan Xiong
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Youli Wang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Jie Cheng
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Xinzhu Huang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Liyi Zhang
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Ministry of Education/Sichuan Province, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
19
|
Zhang J, Ye F, Ye A, He B. Lysyl oxidase inhibits BMP9-induced osteoblastic differentiation through reducing Wnt/β-catenin via HIF-1a repression in 3T3-L1 cells. J Orthop Surg Res 2023; 18:911. [PMID: 38031108 PMCID: PMC10688138 DOI: 10.1186/s13018-023-04251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) is a promising growth factor in bone tissue engineering, while the detailed molecular mechanism underlying BMP9-oriented osteogenesis remains unclear. In this study, we investigated the effect of lysyl oxidase (Lox) on the BMP9 osteogenic potential via in vivo and in vitro experiments, as well as the underlying mechanism. METHODS PCR assay, western blot analysis, histochemical staining, and immunofluorescence assay were used to quantify the osteogenic markers level, as well as the possible mechanism. The mouse ectopic osteogenesis assay was used to assess the impact of Lox on BMP9-induced bone formation. RESULTS Our findings suggested that Lox was obviously upregulated by BMP9 in 3T3-L1 cells. BMP9-induced Runx2, OPN, and mineralization were all enhanced by Lox inhibition or knockdown, while Lox overexpression reduced their expression. Additionally, the BMP9-induced adipogenic makers were repressed by Lox inhibition. Inhibition of Lox resulted in an increase in c-Myc mRNA and β-catenin protein levels. However, the increase in BMP9-induced osteoblastic biomarkers caused by Lox inhibition was obviously reduced when β-catenin knockdown. BMP9 upregulated HIF-1α expression, which was further enhanced by Lox inhibition or knockdown, but reversed by Lox overexpression. Lox knockdown or HIF-1α overexpression increased BMP9-induced bone formation, although the enhancement caused by Lox knockdown was largely diminished when HIF-1α was knocked down. Lox inhibition increased β-catenin levels and decreased SOST levels, which were almost reversed by HIF-1α knockdown. CONCLUSION Lox may reduce the BMP9 osteoblastic potential by inhibiting Wnt/β-catenin signaling via repressing the expression HIF-1α partially.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - FangLin Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - AiHua Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - BaiCheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, People's Republic of China.
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
20
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
21
|
Wang Y, Liu H, Zhang Z. Recent Advance in Regulatory Effect of GRP120 on Bone Metabolism. Aging Dis 2023; 14:1714-1727. [PMID: 37196107 PMCID: PMC10529742 DOI: 10.14336/ad.2023.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 05/19/2023] Open
Abstract
The link between fatty acids and bone metabolism is complex and can be direct and indirect. This link has been reported in different types of bone cells and various stages of bone metabolism. G-protein coupled receptor 120 (GPR120), also called free fatty acid receptor 4 (FFAR4), is a member of the recently discovered G protein-coupled receptor family that can interact with both long-chain saturated fatty acids (C14-C18) and long-chain unsaturated fatty acids (C16-C22). Research shows that GPR120 regulates processes in different types of bone cells, directly or indirectly affecting bone metabolism. Our research reviewed the literature on the effects of GPR120 on bone marrow mesenchymal stem cells (BMMSCs), osteoblasts, osteoclasts, and chondrocytes, focusing on the research findings regarding the mechanism by which GPR120 alters specific bone metabolic diseases-osteoporosis and osteoarthritis. The data reviewed here provide a basis for clinical and basic research into the role of GPR120 on bone metabolic diseases.
Collapse
Affiliation(s)
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Shang J, Yu Z, Xiong C, Zhang J, Gong J, Yu C, Huang Y, Zhou X. Resistin targets TAZ to promote osteogenic differentiation through PI3K/AKT/mTOR pathway. iScience 2023; 26:107025. [PMID: 37389179 PMCID: PMC10300212 DOI: 10.1016/j.isci.2023.107025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Osteogenic differentiation (OD) of bone marrow mesenchymal stem cells (BMSCs) contributes significantly to the regeneration of bone defects. Resistin, an adipose tissue-specific secretory factor, has been shown to involve many different functions, including metabolism, inflammation, cancer, and bone remodeling. However, the effects and mechanisms of resistin on OD of BMSCs remain unclear. Herein, we demonstrated that resistin was highly expressed in BMSCs with OD. Upregulation of resistin contributed to the progression of OD of BMSCs by activating PI3K/AKT/mTOR signaling pathway. In addition, resistin facilitated OD by targeting transcriptional co-activator with PDZ-binding motif (TAZ). In a rat femoral condyle bone defect model, local injection of resistin significantly promoted bone repair and improved bone formation. This work contributes to better understanding the mechanism of resistin directly involved in the OD and might provide a new therapeutic strategy for bone defect regeneration.
Collapse
Affiliation(s)
- JingJing Shang
- Department of Pharmacy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Department of Graduate School, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Chengwei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Junjie Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Jinhong Gong
- Department of Pharmacy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Changlin Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai 811800, China
| |
Collapse
|
23
|
Yan Z, Ruan B, Wang S, Du T, Shao X, Chen G, Wang L, Zhai D, Zhu S, Lu Z, Cao X. RNA-binding Protein QKI Inhibits Osteogenic Differentiation Via Suppressing Wnt Pathway. Arch Med Res 2023; 54:102853. [PMID: 37460362 DOI: 10.1016/j.arcmed.2023.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Dysregulation of MSCs differentiation is associated with many pathophysiological processes. Genetically modified MSCs transplantation helps restore bone loss efficiently. METHODS BMSCs-specific QKI overexpressing and knockdown mice were built to explore QKI's role in bone formation and fat accumulation. Primary BMSCs with QKI overexpression and knockout were subjected to osteogenic and adipogenic differentiation. ALP staining and oil red O staining were performed to evaluate the differences between the groups. RNA immunoprecipitation was performed to identify the QKI-related pathway. QKI deficient BMSCs were transplanted into mice with glucocorticoid-induced osteoporosis to evaluate its therapeutic potential. RESULTS Mice harboring BMSC-specific transgenic QKI exhibited reduced bone mass, while BMSC-specific QKI-deficient mice showed an increase in bone mass. Osteogenic differentiation of QKI deficient BMSCs was promoted and adipogenic differentiation was inhibited, while QKI overexpression in BMSCs displayed the opposite effects. To define the underlying mechanisms, RIP sequencing was performed. Wnt pathway-related genes were the putative direct target mRNAs of QKI, Canonical Wnt pathway activation was involved in QKI's effects on osteogenic differentiation. RNA immunoprecipitation quantitative real-time Polymerase Chain Reaction (PCR) and RNA fluorescence in situ hybridization experiments further validated that QKI repressed the expressions of Wnt5b, Fzd7, Dvl3 and β-catenin via direct binding to their putative mRNA specific sites. Glucocorticoid-induced osteoporotic mice transplanted with QKI deficient BMSCs exhibited less bone loss compared with mice transplanted with control BMSCs. CONCLUSIONS QKI suppressed BMSCs osteogenic differentiation by downregulating the expressions of Wnt5b, Fzd7, Dvl3 and β-catenin. Loss of QKI in BMSCs transplantation may provide a new strategy for the treatment of orthopedic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Zhao Yan
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Banjun Ruan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianshu Du
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaolong Shao
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China
| | - Dongsheng Zhai
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China
| | - Shu Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaorui Cao
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
24
|
Feixiang L, Yanchen F, Xiang L, Yunke Z, Jinxin M, Jianru W, Zixuan L. The mechanism of oxytocin and its receptors in regulating cells in bone metabolism. Front Pharmacol 2023; 14:1171732. [PMID: 37229246 PMCID: PMC10203168 DOI: 10.3389/fphar.2023.1171732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide known to affect social behavior and cognition. The epigenetic modification of the oxytocin receptor (OTR) via DNA methylation stimulates parturition and breast milk secretion and inhibits craniopharyngioma, breast cancer, and ovarian cancer growth significantly as well as directly regulates bone metabolism in their peripheral form rather than the central form. OT and OTR can be expressed on bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), osteocytes, chondrocytes, and adipocytes. OB can synthesize OT under the stimulation of estrogen as a paracrine-autocrine regulator for bone formation. OT/OTR, estrogen, and OB form a feed-forward loop through estrogen mediation. The osteoclastogenesis inhibitory factor (OPG)/receptor activator of the nuclear factor kappa-B ligand (RANKL) signaling pathway is crucially required for OT and OTR to exert anti-osteoporosis effect. Downregulating the expression of bone resorption markers and upregulating the expression of the bone morphogenetic protein, OT could increase BMSC activity and promote OB differentiation instead of adipocytes. It could also stimulate the mineralization of OB by motivating OTR translocation into the OB nucleus. Moreover, by inducing intracytoplasmic Ca2+ release and nitric oxide synthesis, OT could regulate the OPG/RANKL ratio in OB and exert a bidirectional regulatory effect on OC. Furthermore, OT could increase the activity of osteocytes and chondrocytes, which helps increase bone mass and improve bone microstructure. This paper reviews recent studies on the role of OT and OTR in regulating cells in bone metabolism as a reference for their clinical use and research based on their reliable anti-osteoporosis effects.
Collapse
Affiliation(s)
- Liu Feixiang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Feng Yanchen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Zhang Yunke
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Miao Jinxin
- Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wang Jianru
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lin Zixuan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Sun H, Meng S, Chen J, Wan Q. Effects of Hyperlipidemia on Osseointegration of Dental Implants and Its Strategies. J Funct Biomater 2023; 14:jfb14040194. [PMID: 37103284 PMCID: PMC10145040 DOI: 10.3390/jfb14040194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Hyperlipidemia refers to the abnormal increase in plasma lipid level exceeding the normal range. At present, a large number of patients require dental implantation. However, hyperlipidemia affects bone metabolism, promotes bone loss, and inhibits the osseointegration of dental implants through the mutual regulation of adipocytes, osteoblasts, and osteoclasts. This review summarized the effects of hyperlipidemia on dental implants and addressed the potential strategies of dental implants to promote osseointegration in a hyperlipidemic environment and to improve the success rate of dental implants in patients with hyperlipidemia. We summarized topical drug delivery methods to solve the interference of hyperlipidemia in osseointegration, which were local drug injection, implant surface modification and bone-grafting material modification. Statins are the most effective drugs in the treatment of hyperlipidemia, and they also encourage bone formation. Statins have been used in these three methods and have been found to be positive in promoting osseointegration. Directly coating simvastatin on the rough surface of the implant can effectively promote osseointegration of the implant in a hyperlipidemic environment. However, the delivery method of this drug is not efficient. Recently, a variety of efficient methods of simvastatin delivery, such as hydrogels and nanoparticles, have been developed to boost bone formation, but few of them were applied to dental implants. Applicating these drug delivery systems using the three aforementioned ways, according to the mechanical and biological properties of materials, could be promising ways to promote osseointegration under hyperlipidemic conditions. However, more research is needed to confirm.
Collapse
|
26
|
Freiberger RN, López CAM, Sviercz FA, Cevallos C, Guano AD, Jarmoluk P, Quarleri J, Delpino MV. B. abortus Infection Promotes an Imbalance in the Adipocyte-Osteoblast Crosstalk Favoring Bone Resorption. Int J Mol Sci 2023; 24:5617. [PMID: 36982692 PMCID: PMC10054538 DOI: 10.3390/ijms24065617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Osteoarticular injury is the most common presentation of active brucellosis in humans. Osteoblasts and adipocytes originate from mesenchymal stem cells (MSC). Since those osteoblasts are bone-forming cells, the predilection of MSC to differentiate into adipocytes or osteoblasts is a potential factor involved in bone loss. In addition, osteoblasts and adipocytes can be converted into each other according to the surrounding microenvironment. Here, we study the incumbency of B. abortus infection in the crosstalk between adipocytes and osteoblasts during differentiation from its precursors. Our results indicate that soluble mediators present in culture supernatants from B. abotus-infected adipocytes inhibit osteoblast mineral matrix deposition in a mechanism dependent on the presence of IL-6 with the concomitant reduction of Runt-related transcription factor 2 (RUNX-2) transcription, but without altering organic matrix deposition and inducing nuclear receptor activator ligand kβ (RANKL) expression. Secondly, B. abortus-infected osteoblasts stimulate adipocyte differentiation with the induction of peroxisome proliferator-activated receptor γ (PPAR-γ) and CCAAT enhancer binding protein β (C/EBP-β). We conclude that adipocyte-osteoblast crosstalk during B. abortus infection could modulate mutual differentiation from its precursor cells, contributing to bone resorption.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - María Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Paraguay 2155, piso 11, Buenos Aires C1121 ABG, Argentina
| |
Collapse
|
27
|
Wen J, Bao Z, Li L, Liu Y, Wei B, Ye X, Xu H, Cui L, Li X, Shen G, Fang Y, Zeng H, Shen Z, Guo E, Jin H, Wu L. Qiangguyin inhibited fat accumulation in OVX mice through the p38 MAPK signaling pathway to achieve anti-osteoporosis effects. Biomed Pharmacother 2023; 158:114122. [PMID: 36566522 DOI: 10.1016/j.biopha.2022.114122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common bone disease characterized by decreased bone density and increased bone fragility due to decreased estrogen levels. Qiangguyin (QGY) is transformed from the famous traditional Chinese medicine BuShen Invigorating Blood Decoction. In this study, we used QGY to treat PMOP. We observed that QGY significantly reduced fat accumulation in the chondro-osseous junction. However, its specific mechanism of action remains unclear. To determine the specific molecular mechanism of QGY, we explored the pharmacological mechanism by which QGY reduces fat accumulation in the chondro-osseous junction through network pharmacological analysis. The active components and targets related to PMOP and QGY were screened from different databases, forming a composition-target-disease network. Next, a comprehensive analysis platform including protein-protein interaction (PPI) network, Gene Ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were established. The results revealed that QGY inhibits adipogenic differentiation by activating the mitogen-activated protein kinase (MAPK) signaling pathway, thus reducing the accumulation of fat in the chondro-osseous junction. For further verification. In vitro and in vivo experiments were carried out. Our data showed that QGY significantly reversed the high expression of fatty acid binding protein 4 (FABP4) and peroxisome proliferator-activated receptor γ (PPARγ). Further, QGY prevents fat accumulation by inhibiting the expression of p38. In summary, the results of this study suggested that QGY-induced phenotypic changes are related to the activation of the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jingyuan Wen
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengsheng Bao
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lunxin Li
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingquan Liu
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Wei
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoang Ye
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huihui Xu
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Longkang Cui
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuefei Li
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gaobo Shen
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Fang
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hanbing Zeng
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhe Shen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Enping Guo
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Lianguo Wu
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
28
|
C/EBPβ expression decreases in cervical cancer and leads to tumorigenesis. BMC Cancer 2023; 23:79. [PMID: 36694148 PMCID: PMC9872280 DOI: 10.1186/s12885-023-10543-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cervical cancer is currently estimated to be the fourth most common cancer among women worldwide and the leading cause of cancer-related deaths in some of the world's poorest countries. C/EBPβ has tumor suppressor effects because it is necessary for oncogene-induced senescence. However, C/EBPβ also has an oncogenic role. The specific role of C/EBPβ in cervical cancer as a tumor suppressor or oncoprotein is unclear. OBJECTIVE To explore the role of the C/EBPβ protein in cervical tumorigenesis and progression. METHODS Quantitative RT-PCR was used to analyze C/EBPβ (15 cervical cancer tissue samples and 15 corresponding normal cervical tissue samples), miR-661, and MTA1 mRNA expression in clinical samples (10 cervical cancer tissue samples and 10 corresponding normal cervical tissue samples). Immunohistochemistry was used to analyze C/EBPβ (381 clinical samples), Ki67 (80 clinical samples) and PCNA ( 60 clinical samples) protein expression. MALDI-TOF MassARRAY was used to analyze C/EBPβ gene methylation (13 cervical cancer tissues and 13 corresponding normal cervical tissues). Cell proliferation was analyzed by CCK-8 in cervical cancer cell lines. Western blotting and immunohistochemistry were performed to detect C/EBPβ protein expression levels, and mRNA expression was analyzed by quantitative RT-PCR analysis. Flow cytometry was performed to measure cell cycle distribution and cell apoptosis. Colony formation, Transwell, cell invasion, and wound healing assays were performed to detect cell migration and invasion. RESULTS C/EBPβ protein expression was significantly reduced in cervical cancer tissues compared with cervicitis tissues (P < 0.01). Ki67 protein and PCNA protein expression levels were significantly higher in cervical cancer tissues compared with cervicitis tissues. The rate of C/EBPβ gene promoter methylation of CpG12, 13, 14 and CpG19 in cervical cancer tissues was significantly increased compared with normal cervical tissue (P < 0.05). In addition, C/EBPβ was overexpressed in cervical cancer cells and this overexpression inhibited cell proliferation, migration, invasion, arrested cells in S phase, and promoted apoptosis. CONCLUSIONS We have demonstrated that C/EBPβ decreased in cervical cancer tissues and overexpression of the C/EBPβ gene in cervical cancer cells could inhibit proliferation, invasion and migration.
Collapse
|
29
|
Deng X, Deng L, Xu M, Sun Y, Yang M. Effects of SIRT1 on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Type 2 Diabetic Patients. Endocr Metab Immune Disord Drug Targets 2023; 23:1077-1086. [PMID: 36624641 DOI: 10.2174/1871530323666230109124631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) are at high risk for osteoporosis. SIRT1 plays an important regulatory role in the occurrence and development of diabetes mellitus; however, it is still not clear whether SIRT1 is directly related to the osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) in T2DM patients. METHODS We obtained BMSCs from patients with T2DM and healthy volunteers to determine the effect of SIRT1 expression on the osteogenic capacity of BMSCs. As a result, SIRT1 expression in BMSCs in T2DM was significantly lower compared to healthy volunteers, but the proliferative capacity of BMSCs in the T2DM group was not significantly different from that of healthy volunteers. RESULTS During osteogenic differentiation, the expression of SIRT1 in MSCs from T2DM patients was significantly decreased, and the osteogenic differentiation ability of MSCs from T2DM patients was significantly lower than healthy volunteers. After intervention with resveratrol, the expression of SIRT1 increased significantly, and the apoptotic rate of MSCs in T2DM patients decreased significantly. Moreover, resveratrol promoted osteoblast differentiation of MSCs. CONCLUSION Our study confirmed that the expression of SIRT1 is directly related to the osteogenic potential of BMSCs in patients with T2DM. Resveratrol promoted the osteogenic differentiation of BMSCs by increasing the expression of SIRT1. The increased expression of SIRT1 significantly reduced BMSC apoptosis during osteogenic differentiation, which is one of the important mechanisms by which SIRT1 regulates the osteogenic ability of BMSCs. Our data also provide strong evidence that resveratrol may be used in the treatment of osteoporosis in patients with T2DM.
Collapse
Affiliation(s)
- Xiangqun Deng
- Department of Endocrinology, Wuhan Third Hospital, Wuhan University, Wuhan 430062, China
| | - Ling Deng
- Department of Cardiology, Wuhan Third Hospital, Wuhan University, Wuhan 430062, China
| | - Min Xu
- Department of Clinical Laboratory, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
| | - Yanlei Sun
- Department of Endocrinology, Wuhan Third Hospital, Wuhan University, Wuhan 430062, China
| | - Mei Yang
- Department of Endocrinology, Wuhan Third Hospital, Wuhan University, Wuhan 430062, China
| |
Collapse
|
30
|
Yang J, Feng Y, Li Q, Zeng Y. Evidence of the static magnetic field effects on bone-related diseases and bone cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:168-180. [PMID: 36462638 DOI: 10.1016/j.pbiomolbio.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Static magnetic fields (SMFs), magnetic fields with constant intensity and orientation, have been extensively studied in the field of bone biology both fundamentally and clinically as a non-invasive physical factor. A large number of animal experiments and clinical studies have shown that SMFs have effective therapeutic effects on bone-related diseases such as non-healing fractures, bone non-union of bone implants, osteoporosis and osteoarthritis. The maintenance of bone health in adults depends on the basic functions of bone cells, such as bone formation by osteoblasts and bone resorption by osteoclasts. Numerous studies have revealed that SMFs can regulate the proliferation, differentiation, and function of bone tissue cells, including bone marrow mesenchymal stem cells (BMSCs), osteoblasts, bone marrow monocytes (BMMs), osteoclasts, and osteocytes. In this paper, the effects of SMFs on bone-related diseases and bone tissue cells are reviewed from both in vivo studies and in vitro studies, and the possible mechanisms are analyzed. In addition, some challenges that need to be further addressed in the research of SMF and bone are also discussed.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yan Feng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
31
|
Leng H, Zhang H, Li L, Zhang S, Wang Y, Chavda SJ, Galas-Filipowicz D, Lou H, Ersek A, Morris EV, Sezgin E, Lee YH, Li Y, Lechuga-Vieco AV, Tian M, Mi JQ, Yong K, Zhong Q, Edwards CM, Simon AK, Horwood NJ. Modulating glycosphingolipid metabolism and autophagy improves outcomes in pre-clinical models of myeloma bone disease. Nat Commun 2022; 13:7868. [PMID: 36550101 PMCID: PMC9780346 DOI: 10.1038/s41467-022-35358-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with multiple myeloma, an incurable malignancy of plasma cells, frequently develop osteolytic bone lesions that severely impact quality of life and clinical outcomes. Eliglustat, a U.S. Food and Drug Administration-approved glucosylceramide synthase inhibitor, reduced osteoclast-driven bone loss in preclinical in vivo models of myeloma. In combination with zoledronic acid, a bisphosphonate that treats myeloma bone disease, eliglustat provided further protection from bone loss. Autophagic degradation of TRAF3, a key step for osteoclast differentiation, was inhibited by eliglustat as evidenced by TRAF3 lysosomal and cytoplasmic accumulation. Eliglustat blocked autophagy by altering glycosphingolipid composition whilst restoration of missing glycosphingolipids rescued autophagy markers and TRAF3 degradation thus restoring osteoclastogenesis in bone marrow cells from myeloma patients. This work delineates both the mechanism by which glucosylceramide synthase inhibition prevents autophagic degradation of TRAF3 to reduce osteoclastogenesis as well as highlighting the clinical translational potential of eliglustat for the treatment of myeloma bone disease.
Collapse
Affiliation(s)
- Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shuhao Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15217, USA
| | - Yanping Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Selina J Chavda
- Department of Hematology, UCL Cancer Institute, University College London, London, UK
| | | | - Hantao Lou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Adel Ersek
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK
| | - Emma V Morris
- Nuffield Department of Surgical Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
- MRC Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Oxford, OX3 9DS, UK
| | - Yi-Hsuan Lee
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | | | - Mei Tian
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, P.R. China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Kwee Yong
- Department of Hematology, UCL Cancer Institute, University College London, London, UK
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Nicole J Horwood
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
- Norwich Medical School, University of East Anglia, James Watson Road, Norwich, NR4 7UQ, UK.
| |
Collapse
|
32
|
Tariq S, Tariq S, Khaliq S, Abualhamael SA, Baig M. Association of serum levels of Visfatin, Intelectin-1, RARRES2 and their genetic variants with bone mineral density in postmenopausal females. Front Endocrinol (Lausanne) 2022; 13:1024860. [PMID: 36531488 PMCID: PMC9748547 DOI: 10.3389/fendo.2022.1024860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Adipokines are engaged in bone physiology and regulate bone mineral density (BMD) by playing protective or cynical role in bone metabolism. The study is designed to measure and compare BMD, adipokines (retinoic acid receptor responder protein-2 RARRES2, visfatin and Intelectin-1) and their genetic variants in postmenopausal osteoporotic, osteopenic and non-osteoporotic females. METHODS This comparative study included postmenopausal non-osteoporotic (n=72), osteopenic (n=72) and osteoporotic (n=100) females with two years of amenorrhea and age between 50 to 70 years. Gold standard DXA was used to measure BMD. Hardy-Weinberg equilibrium was established. Kruskal-Wallis test for comparisons, logistic and multivariate regression analysis were used to rule out the predictors of BMD. RESULTS On comparing the three groups, significant differences were observed in serum RARRES2 (p <0.001) and serum visfatin (p=0.050). The significant positive predictor of BMD at lumbar spine and total hip was serum visfatin. BMD at right and left femoral neck was predicted negatively by serum chemerin while BMD at left femoral neck was also predicted positively by serum calcium levels. There was significant difference in BMD at right femoral neck (p = 0.033) between rs7806429 genotypes. The odds of having low BMD increases with increasing serum levels of chemerin and decreasing serum levels of visfatin and calcium. CONCLUSION The adipokines RARRES2 and visfatin are associated with BMD. RARRES2 is an independent negative and visfatin is positive predictor of BMD in postmenopausal females. BMD at right femoral neck was significantly low in RARRES2 rs7806429 TC heterozygotes.
Collapse
Affiliation(s)
- Sundus Tariq
- Department of Physiology, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Saba Tariq
- Department of Pharmacology and Therapeutics, University Medical & Dental College, The University of Faisalabad, Faisalabad, Pakistan
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | | | - Mukhtiar Baig
- Department of Clinical Biochemistry, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Zhang Z, Zhang Z, Pei L, Zhang X, Li B, Meng Y, Zhou X. How high-fat diet affects bone in mice: A systematic review and meta-analysis. Obes Rev 2022; 23:e13493. [PMID: 35822276 DOI: 10.1111/obr.13493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
High-fat diet (HFD) feeding for mice is commonly used to model obesity. However, conflicting results have been reported on the relationship between HFD and bone mass. In this systematic review and meta-analysis, we synthesized data from 80 articles to determine the alterations in cortical and trabecular bone mass of femur, tibia, and vertebrae in C57BL/6 mice after HFD. Overall, we detected decreased trabecular bone mass as well as deteriorated architecture, in femur and tibia of HFD treated mice. The vertebral trabecula was also impaired, possibly due to its reshaping into a more fragmentized pattern. In addition, pooled cortical thickness declined in femur, tibia, and vertebrae. Combined with changes in other cortical parameters, HFD could lead to a larger femoral bone marrow cavity, and a thinner and more fragile cortex. Moreover, we conducted subgroup analyses to explore the influence of mice's sex and age as well as HFD's ingredients and intervention period. Based on our data, male mice or mice aged 6-12 weeks old are relatively susceptible to HFD. HFD with > 50% of energy from fats and intervention time of 10 weeks to 5 months are more likely to induce skeletal alterations. Altogether, these findings supported HFD as an appropriate model for obesity-associated bone loss and can guide future studies.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaozhou Zhang
- College of Letters & Science, University of California Berkeley, Berkeley, California, USA
| | - Boyuan Li
- Fountain Valley School of Colorado, Colorado Springs, Colorado, USA
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| |
Collapse
|
34
|
Wang B, Zhan Y, Yan L, Hao D. How zoledronic acid improves osteoporosis by acting on osteoclasts. Front Pharmacol 2022; 13:961941. [PMID: 36091799 PMCID: PMC9452720 DOI: 10.3389/fphar.2022.961941] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis is called a silent disease, because it is difficult to detect until comprehensive examinations for osteoporosis are performed or osteoporotic fractures occur. Zoledronic acid is currently the first-line anti-osteoporotic drug, with good efficacy and treatment compliance. A major advantage of zoledronic acid is that intravenous zoledronic acid often guarantees a therapeutic effect for up to 1 year after infusion. The reasons why zoledronic acid is effective in improving osteoporosis are that it can inhibit osteoclast differentiation and induce osteoclast apoptosis, thus suppressing bone resorption and increasing bone density. The story between zoledronic acid and osteoclasts has been written long time ago. Both the canonical receptor activator of the receptor activator of nuclear factor-κB ligand (RANKL) pathway and the non-canonical Wnt pathway are the main pathways by which zoledronic acid inhibits osteoclast differentiation. Farnesyl pyrophosphate synthase (FPPS), reactive oxygen species (ROS), and ferroptosis that was first proposed in 2012, are all considered to be closely associated with zoledronic acid-induced osteoclast apoptosis. Here, we provide a brief review of the recent progress on the study of zoledronic acid and osteoclasts, and hope to elaborate how zoledronic acid improves osteoporosis by acting on osteoclasts.
Collapse
Affiliation(s)
- Biao Wang
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
| | - Yi Zhan
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- The Sceond Clinical Medical College of Shaanxi University of Chinese Medicine, Xi’an, China
| | - Liang Yan
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dingjun Hao, ; Liang Yan,
| | - Dingjun Hao
- Spine Surgery, Honghui Hospital Affiliated to Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dingjun Hao, ; Liang Yan,
| |
Collapse
|
35
|
Zheng Y, Rostami Haji Abadi M, Gough J, Johnston JJD, Nour M, Kontulainen S. Higher Body Fat in Children and Adolescents With Type 1 Diabetes-A Systematic Review and Meta-Analysis. Front Pediatr 2022; 10:911061. [PMID: 35813369 PMCID: PMC9263393 DOI: 10.3389/fped.2022.911061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aims Higher prevalence of overweight and obesity in children and adolescents with type 1 diabetes (T1D) suggests alterations are required in body composition. However, differences in body composition between children with T1D and typically developing children (TDC) have not been synthesized using meta-analysis. Therefore, we conducted a systematic review and meta-analysis to compare body composition between children with T1D and TDC, and to explore the role of disease and non-disease related factors in potential body composition differences. Methods Studies were performed comparing dual-energy x-ray absorptiometry-acquired total body fat and lean mass, absolute (kg) and relative (%) values, between children with T1D and TDC. We reported mean differences with 95% confidence intervals (CI) from meta-analysis and relative between-group %-differences. We used meta-regression to explore the role of sex, age, height, body mass, body mass index, Hemoglobin A1c, age of onset, disease duration, and insulin dosage in the potential body composition differences between children with T1D and TDC, and subgroup analysis to explore the role of geographic regions (p < 0.05). Results We included 24 studies (1,017 children with T1D, 1,045 TDC) in the meta-analysis. Children with T1D had 1.2 kg more fat mass (kg) (95%CI 0.3 to 2.1; %-difference = 9.3%), 2.3% higher body fat % (0.3-4.4; 9.0%), but not in lean mass outcomes. Age of onset (β = -2.3, -3.5 to -1.0) and insulin dosage (18.0, 3.5-32.6) were negatively and positively associated with body fat % mean difference, respectively. Subgroup analysis suggested differences among geographic regions in body fat % (p < 0.05), with greater differences in body fat % from Europe and the Middle East. Conclusion This meta-analysis indicated 9% higher body fat in children with T1D. Earlier diabetes onset and higher daily insulin dosage were associated with body fat % difference between children with T1D and TDC. Children with T1D from Europe and the Middle East may be more likely to have higher body fat %. More attention in diabetes research and care toward body composition in children with T1D is needed to prevent the early development of higher body fat, and to minimize the cardiovascular disease risk and skeletal deficits associated with higher body fat.
Collapse
Affiliation(s)
- Yuwen Zheng
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Jonathan Gough
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Munier Nour
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saija Kontulainen
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
36
|
Du D, Jing Z, Zhang G, Dang X, Liu R, Song J. The relationship between central obesity and bone mineral density: a Mendelian randomization study. Diabetol Metab Syndr 2022; 14:63. [PMID: 35501835 PMCID: PMC9063301 DOI: 10.1186/s13098-022-00840-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The relationship between obesity and osteoporosis is an important public health issue. The goal of this study was to investigate whether and to what extent central obesity traits affect bone mineral density (BMD). METHODS We conducted a two-sample Mendelian randomization analysis. Genomewide significant single nucleotide polymorphisms associated with waist circumference, hip circumference, waist-to-hip ratio, waist circumference adjusted by body mass index (WCadjBMI), hip circumference adjusted by BMI (HCadjBMI) and waist-to-hip ratio adjusted by BMI (WHRadjBMI) were obtained from a large-scale database containing 224,459 samples. The BMD summary dataset was obtained from a UK Biobank database including 265,627 participants. RESULTS The results provided strong evidence that the HCadjBMI trait was causally and negatively associated with BMD (β: - 0.135, 95% CI - 0.216 to - 0.054; P = 0.001), while the WHR trait was causally and positively associated with BMD (β: 0.194, 95% CI 0.062 to 0.325, P = 0.004). No significant effects were observed for other traits on BMD. CONCLUSIONS This study indicates variations in the abilities of different central obesity traits to influence BMD. These results should be considered in further studies and public health measures on obesity and osteoporosis prevention strategies.
Collapse
Affiliation(s)
- Dengkui Du
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
- Department of Orthopaedics, Luoyang Central Hospital, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009 Henan Province China
| | - Zhaopu Jing
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| | - Guangyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| | - Ruiyu Liu
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| | - Jidong Song
- Department of Orthopaedics, The Second Affiliated Hospital, Xi’an Jiaotong University, No.157, Xiwu Road, Xi’an, 710004 Shaanxi Province China
| |
Collapse
|
37
|
Huang Z, Luo R, Yang L, Chen H, Zhang X, Han J, Wang H, Zhou Z, Wang Z, Shao L. CPT1A-Mediated Fatty Acid Oxidation Promotes Precursor Osteoclast Fusion in Rheumatoid Arthritis. Front Immunol 2022; 13:838664. [PMID: 35273614 PMCID: PMC8902079 DOI: 10.3389/fimmu.2022.838664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/01/2022] [Indexed: 12/29/2022] Open
Abstract
The overproduction of osteoclasts, leading to bone destruction in patients with rheumatoid arthritis (RA), is well established. However, little is known about the metabolic dysfunction of osteoclast precursors (OCPs) in RA. Herein, we show that increasing fatty acid oxidation (FAO) induces OCP fusion. Carnitine palmitoyltransferase IA (CPT1A), which is important for carnitine transportation and is involved in FAO in the mitochondria, is upregulated in RA patients. This metabolic change further increases the expression of clathrin heavy chain (CLTC) and clathrin light chain A (CLTA) by enhancing the binding of the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) to the promoters of CLTA and CLTC. This drives clathrin-dependent endocytosis pathway, which attenuates fusion receptors in the cellular membrane and contributes to increased podosome structure formation. This study reveals a new mechanism through which FAO metabolism participates in joint destruction in RA and provides a novel therapeutic direction for the development of drugs against bone destruction in patients with RA.
Collapse
Affiliation(s)
- Zhaoyang Huang
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rong Luo
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liu Yang
- Department of Rheumatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiqi Chen
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinyao Zhang
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Han
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongxia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongyang Zhou
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhao Wang
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lan Shao
- The Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
38
|
Mladenova SG, Savova MS, Marchev AS, Ferrante C, Orlando G, Wabitsch M, Georgiev MI. Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPARγ in human adipocytes. Biomed Pharmacother 2022; 149:112908. [PMID: 35367764 DOI: 10.1016/j.biopha.2022.112908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
Obesity is a global health burden for which we do not yet have effective treatments for prevention or therapy. Plants are an invaluable source of bioactive leads possessing anti-adipogenic potential. Ethnopharmacological use of Ononis spinosa L. roots (OSR) for treatment of obesity and metabolic disorders requires а scientific rationale. The current study examined the anti-adipogenic capacity of OSR and its secondary metabolites ononin (ONON) and maackiain (MACK) in human adipocytes as an in vitro model of obesity. Both ONON and MACK diminished lipid accumulation during adipocyte differentiation. Molecular docking analysis exposed the potential interactions between MACK or ONON and target regulatory adipogenic proteins. Furthermore, results from an RT-qPCR analysis disclosed significant upregulation of AMPK by MACK and ONON treatment. In addition, ONON increased SIRT1, PI3K and ACC mRNA expression, while MACK notably downregulated CEBPA, AKT, SREBP1, ACC and ADIPOQ. The protein level of PI3K, C/EBPα, PPARγ and adiponectin was reduced upon MACK treatment in a concentration-dependent manner. Similarly, ONON suppressed PI3K, PPARγ and adiponectin protein abundance. Finally, our study provides evidence that ONON exerts anti-adipogenic effect by upregulation of SIRT1 and inhibition of PI3K, PPARγ and adiponectin, while MACK induced strong inhibitory effect on adipogenesis via hampering PI3K, PPARγ/C/EBPα signaling and anti-lipogenic effect through downregulation of SREBP1 and ACC. Even though OSR does not hamper adipogenic differentiation, it could be exploited as a source of natural leads with anti-adipogenic potential. The multidirectional mechanism of action of MACK warrant further validation in the context of in vivo obesity models.
Collapse
Affiliation(s)
- Saveta G Mladenova
- BB-NCIPD Ltd., BB-National Centre of Infectious and Parasitic Diseases, Ministry of Health, 1000 Sofia, Bulgaria
| | - Martina S Savova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Andrey S Marchev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University, 66100 Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University, 66100 Chieti, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89073 Ulm, Germany
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
39
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
40
|
Chen P, Hong W, Chen Z, Gordillo-Martinez F, Wang S, Fan H, Liu Y, Dai Y, Wang B, Jiang L, Yu H, He P. CCAAT/Enhancer-Binding Protein Alpha Is a Novel Regulator of Vascular Smooth Muscle Cell Osteochondrogenic Transition and Vascular Calcification. Front Physiol 2022; 13:755371. [PMID: 35295585 PMCID: PMC8918665 DOI: 10.3389/fphys.2022.755371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
AimsVascular calcification is a common clinical complication of chronic kidney disease (CKD), atherosclerosis (AS), and diabetes, which is associated with increased cardiovascular morbidity and mortality in patients. The transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteochondrogenic phenotype is a crucial step during vascular calcification. The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) plays an important role in regulating cell proliferation and differentiation, but whether it regulates the calcification of arteries and VSMCs remains unclear. Therefore, this study aims to understand the role of C/EBPα in the regulation of vascular calcification.Methods and ResultsBoth mRNA and protein expression levels of C/EBPα were significantly increased in calcified arteries from mice treated with a high dose of vitamin D3 (vD3). Upregulation of C/EBPα was also observed in the high phosphate- and calcium-induced VSMC calcification process. The siRNA-mediated knockdown of C/EBPα significantly attenuated VSMC calcification in vitro. Moreover, C/EBPα depletion in VSMCs significantly reduced the mRNA expression of the osteochondrogenic genes, e.g., sex-determining region Y-box 9 (Sox9). C/EBPα overexpression can induce SOX9 overexpression. Similar changes in the protein expression of SOX9 were also observed in VSMCs after C/EBPα depletion or overexpression. In addition, silencing of Sox9 expression significantly inhibited the phosphate- and calcium-induced VSMC calcification in vitro.ConclusionFindings in this study indicate that C/EBPα is a key regulator of the osteochondrogenic transdifferentiation of VSMCs and vascular calcification, which may represent a novel therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Pengyuan Chen
- Department of Cardiology, Guangdong Provincial People’s Hospital’s Nanhai Hospital, The Second Hospital of Nanhai District Foshan City, Foshan, China
- Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanzi Hong
- Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, China
| | - Ziying Chen
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | | | - Siying Wang
- Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- School of Medicine, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yuanhui Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yining Dai
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Wang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Jiang
- School of Medicine, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Lei Jiang,
| | - Hongjiao Yu
- Department of Biochemistry and Molecular Biology, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Hongjiao Yu,
| | - PengCheng He
- School of Medicine, Guangdong Provincial People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- PengCheng He,
| |
Collapse
|
41
|
Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) Interacts with Bone Morphogenetic Protein 11 and Promotes Differentiation of Osteoblasts via Smad1/5/9 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
Yang B, Sun H, Jia M, He Y, Luo Y, Wang T, Wu Y, Wang J. DNA damage-inducible transcript 3 restrains osteoclast differentiation and function. Bone 2021; 153:116162. [PMID: 34455116 DOI: 10.1016/j.bone.2021.116162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023]
Abstract
DNA damage-inducible transcript 3 (DDIT3), a member of the CCAAT/enhancer-binding protein (C/EBP) family, is involved in cellular apoptosis and differentiation. DDIT3 participates in the regulation of adipogenesis and osteogenesis in vitro and in vivo. However, the role of DDIT3 in osteoclastogenesis is not yet known. In this study, the involvement of DDIT3 in osteoclast differentiation and function was reported for the first time. CRISPR/Cas9-mediated DDIT3 knockout (KO) mice were generated for functional assessment. Tartrate-resistant acid phosphatase (TRAP) staining of distal femurs showed increased positive cells in DDIT3 KO mice. DDIT3 expression was downregulated during the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation of bone marrow-derived macrophages (BMMs). The loss of DDIT3 increased the expression of osteoclast-specific markers, including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), TRAP, cathepsin K (CTSK), and dendritic cell-specific transmembrane protein (DC-STAMP) and promoted the formation of TRAP-positive multinucleated osteoclasts. The actin ring number and resorption area of bone slices were also increased in DDIT3 KO BMMs. Lentivirus-mediated DDIT3 overexpression significantly inhibited the osteoclast differentiation of RAW264.7 cells. In the tumor necrosis factor-α-induced osteolysis model, DDIT3 deficiency enhanced osteoclast formation and aggravated bone resorption. DDIT3 inhibited osteoclast differentiation by regulating the C/EBPα-CTSK axis. Furthermore, DDIT3 KO intensified the RANKL-triggered activation of the MAPKs and Akt signaling pathways. Taken together, the results revealed the essential role of DDIT3 in osteoclastogenesis in vitro and in vivo and its close relationship with osteoclast-associated transcription factors and pathways.
Collapse
Affiliation(s)
- Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Tianqi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China.
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China.
| |
Collapse
|
43
|
Feng W, Jin Q, Ming-Yu Y, Yang H, Xu T, You-Xing S, Xu-Ting B, Wan C, Yun-Jiao W, Huan W, Ai-Ning Y, Yan L, Hong T, Pan H, Mi-Duo M, Gang H, Mei Z, Xia K, Kang-Lai T. MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα(+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength. Biomaterials 2021; 279:121242. [PMID: 34768151 DOI: 10.1016/j.biomaterials.2021.121242] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteolysis at the tendon-bone interface can impair pullout strength during tendon-bone healing and lead to surgery failure, but the effects of clinical treatments are not satisfactory. Mesenchymal stem cell (MSC)-derived exosomes have been used as potent and feasible natural nanocarriers for drug delivery and have been proven to enhance tendon-bone healing strength, indicating that MSC-derived exosomes could be a promising therapeutic strategy. In this study, we explored Scleraxis (Scx) dynamically expressed in PDGFRα(+) bone marrow-derived mesenchymal stem cells (BMMSCs) during natural tendon-bone healing. Then, we investigated the role of PDGFRα(+) BMMSCs in tendon-bone healing after Scx overexpression as well as the underlying mechanisms. Our data demonstrated that Scx-overexpressing PDGFRα(+) BMMSCs (BMMSCScx) could efficiently inhibit peritunnel osteolysis and enhance tendon-bone healing strength by preventing osteoclastogenesis in an exosomes-dependent manner. Exosomal RNA-seq revealed that the abundance of a novel miRNA, miR-6924-5p, was highest among miRNAs. miR-6924-5p could directly inhibit osteoclast formation by binding to the 3'-untranslated regions (3'UTRs) of OCSTAMP and CXCL12. Inhibition of miR-6924-5p expression reversed the prevention of osteoclastogenic differentiation by BMMSCScx derived exosomes (BMMSCScx-exos). Local injection of BMMSCScx-exos or miR-6924-5p dramatically reduced osteoclast formation and improved tendon-bone healing strength. Furthermore, delivery of miR-6924-5p efficiently inhibited the osteoclastogenesis of human monocytes. In brief, our study demonstrates that BMMSCScx-exos or miR-6924-5p could serve as a potential therapy for the treatment of osteolysis during tendon-bone healing and improve the outcome.
Collapse
Affiliation(s)
- Wang Feng
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Qian Jin
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China; Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Ming-Yu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - He Yang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Tao Xu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Shi You-Xing
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Bian Xu-Ting
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Chen Wan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Wang Yun-Jiao
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Wang Huan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Yang Ai-Ning
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Li Yan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Tang Hong
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Huang Pan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Mu Mi-Duo
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - He Gang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Zhou Mei
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China
| | - Kang Xia
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China; Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Tang Kang-Lai
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, 400000, China.
| |
Collapse
|
44
|
Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med (Berl) 2021; 100:167-183. [PMID: 34751809 DOI: 10.1007/s00109-021-02164-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Bone marrow (BM) is a heterogeneous niche where bone marrow stromal cells (BMSCs), osteoblasts, osteoclasts, adipocytes, hematopoietic cells, and immune cells coexist. The cellular composition of BM changes with various pathophysiological states. A reduction in osteoblast number and a concomitant increase in adipocyte number in aging and pathological conditions put bone marrow adipose tissue (BMAT) into spotlight. Accumulating evidence strongly supports that an overwhelming production of BMAT is a major contributor to bone loss disorders. Therefore, BMAT-targeted therapy can be an efficient and feasible intervention for osteoporosis. However, compared to blocking bone-destroying molecules produced by BMAT, suppressing BMAT formation is theoretically a more effective and fundamental approach in treating osteoporotic bone diseases. Thus, a deep insight into the molecular basis underlying increased BM adiposity during pathologic bone loss is critical to formulate strategies for therapeutically manipulating BMAT. In this review, we comprehensively summarize the molecular mechanisms involved in adipocyte differentiation of BMSCs as well as the interaction between bone marrow adipocytes and osteoclasts. More importantly, we further discuss the potential clinical implications of therapeutically targeting the upstream of BMAT formation in bone loss diseases.
Collapse
Affiliation(s)
- Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
45
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
46
|
Wang H, Wei P, Zhang Y, Li Y, Yin L. LncRNA TCONS_00023297 Regulates the Balance of Osteogenic and Adipogenic Differentiation in Bone Marrow Mesenchymal Stem Cells and the Coupling Process of Osteogenesis and Angiogenesis. Front Cell Dev Biol 2021; 9:697858. [PMID: 34262909 PMCID: PMC8274487 DOI: 10.3389/fcell.2021.697858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/27/2021] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNA (lncRNA) is a noncoding RNA with a length of more than 200 bases. It plays an important role in the occurrence and development of diseases. Research on lncRNAs has received increasing attention. Bone is an important organ of the human body. As the population ages, the incidence of osteoporosis gradually increases. The mechanism of action of lncRNAs in the development of osteoporosis is unclear. The imbalance between osteogenic and adipogenic differentiation in bone marrow mesenchymal stem cells (hBMSCs) and the coupling process of osteogenesis and angiogenesis plays an important role in the development of osteoporosis. Therefore, this study focused on the mechanism by which lncRNAs regulate the osteogenic differentiation of bone marrow mesenchymal stem cells and the mechanism of action of lncRNAs in bone metabolism. The expression of lncRNAs in the osteogenic differentiation of hBMSCs was detected by lncRNA microarray. Real-time quantitative PCR was used to detect the expression changes of lncRNA and osteogenic genes during hBMSC osteogenic and adipogenic differentiation. The ceRNA mechanisms were detected by RIP and luciferase reporter gene assays. The effect of lncRNAs on the osteogenesis–angiogenesis coupling process was detected by Transwell assays. TCONS_00023297 increased expression during osteogenic differentiation; TCONS_00023297 overexpression promoted osteogenic differentiation of hBMSCs; BMP2 regulated TCONS_00023297 expression in a concentration- and time-dependent manner; TCONS_00023297 regulated miR-608 via a ceRNA mechanism; TCONS_00023297 inhibited hBMSC adipogenic differentiation; and TCONS_00023297 promoted VEGF secretion by hBMSCs. TCONS_00023297 regulates osteogenic differentiation, adipogenic differentiation, and osteogenic–angiogenic coupling of hBMSCs via the TCONS_00023297/miR-608/RUNX2/SHH signaling axis.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Wei
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuebai Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Li Yin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Zhang Z, Lin T, Meng Y, Hu M, Shu L, Jiang H, Gao R, Ma J, Wang C, Zhou X. FOS/GOS attenuates high-fat diet induced bone loss via reversing microbiota dysbiosis, high intestinal permeability and systemic inflammation in mice. Metabolism 2021; 119:154767. [PMID: 33753088 DOI: 10.1016/j.metabol.2021.154767] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Obesity and osteoporosis frequently coexist, and might have a causal relationship. Gut microbiota, associated with both lipid and bone metabolism, plays an important role in the pathogenesis of excessive fat accumulation and bone loss. The improvement of intestinal flora by prebiotics was a promising strategy for ameliorating obesity-related bone loss. METHODS Obesity model was established by feeding mice with high fat diet (HFD) for 16 weeks. Fructooligosaccharides (FOS) and/or galactooligosaccharides (GOS) were daily gavaged to mice. Osteoblastic, adipocytic, and osteoclastic differentiation was performed on primary cells isolated from experimental mice. The composition of gut flora was evaluated by 16s rDNA sequencing. Expression of intestinal junction proteins was assessed by qPCR and immunohistochemistry. Cytokine levels were measured by qPCR. RESULTS Long-term HFD caused decreased bone mass in mice, which was associated with decreased osteogenesis, increased osteoclastogenesis, and excessive adipogenesis. FOS/GOS treatment significantly alleviated HFD-induced bone loss and reversed the imbalanced differentiation of osteoblasts, adipocytes, and osteoclasts. In addition, our study showed that FOS/GOS administration ameliorated microbiota dysbiosis (manifested as enhanced Firmicutes:Bacteriodetes ratio and reduced biodiversity), downregulated expression of intestinal junction proteins (including Claudin1, Claudin15, ZO-1, and JAM-A), and increased inflammatory cytokines (including TNFα, IL6, and IL17) in HFD-fed mice. CONCLUSION Long-term HFD led to decreased bone mass, with microbiota dysbiosis, leaky gut, and systemic inflammation. The administration of FOS/GOS could significantly increase biodiversity and SCFA concentrations of intestinal flora in HFD fed mice, then reverse high gut permeability and inflammatory cytokines, in the end protect against HFD induced osteopenia.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China; College of basic medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Miao Hu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China; College of basic medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Lun Shu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China; College of basic medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China.
| |
Collapse
|
48
|
He HP, Gu S. The PPAR-γ/SFRP5/Wnt/β-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine 2021; 143:155488. [PMID: 33814272 DOI: 10.1016/j.cyto.2021.155488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The inhibition of glucocorticoid (GC) on osteoblastic differentiation of bone marrow stromal stem cells (BMSC) is an important pathway for GC to reduce bone formation. Recent studies implicated an important role of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in GC-mediated cell proliferation and differentiation. Thus, our purpose is to investigate the role of PPAR-γ in regulating rat BMSC (rBMSC) osteoblastic differentiation. METHODS The rBMSC treated with dexamethasone (Dex) was used to construct an in vitro cell model of GC-induced osteoporosis. The expressions of PPAR-γ, RUNX2, ALP, OPN and SFRP5 in cells were detected by RT-qPCR and western blot assays. Osteogenic differentiation of rBMSC was measured by Alizarin Red S (ARS) staining analysis. Lentivirus-delivered shRNA was used to knock down PPAR-γ or SFRP5, and lentivirus-delivered constructs were used to overexpress SFRP5 in rBMSC to verify the effect of PPAR-γ or SFRP5 on cell osteogenic differentiation. RESULTS Dex significantly reduced rBMSC osteoblastic differentiation. The expression of PPAR-γ was enhanced in Dex treated rBMSC. PPAR-γ down-regulation improved Dex inhibition of rBMSC osteogenic differentiation. Moreover, PPAR-γ knockdown promoted protein levels of RUNX2, ALP, OPN and Dex-decreased rBMSC osteogenic differentiation. The expression of SFRP5 was reduced while Wnt and β-catenin were increased in PPAR-γ knockdown and Dex treated rBMSC. Moreover, the up-regulation of SFRP5 reversed the osteogenic differentiation of rBMSC induced by PPAR-γ knockdown. CONCLUSION These data indicated that in GC-induced osteoporosis, PPAR-γ/SFRP5 affects osteogenic differentiation by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hai-Peng He
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China
| | - Shan Gu
- Shenzhen Institute of ENT & Longgang ENT Hospital, Shenzhen 518172, China.
| |
Collapse
|
49
|
Soni S, Torvund M, Mandal CC. Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clin Exp Metastasis 2021; 38:119-138. [PMID: 33591548 DOI: 10.1007/s10585-021-10076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023]
Abstract
Cancer is a complex disease, with various pre-existing health ailments enhancing its pathology. In cancer, the extracellular environment contains various intrinsic physiological factors whose levels are altered with aging and pre-existing conditions. In obesity, the tumor microenvironment and metastases are enriched with factors that are both derived locally, and from other physiological compartments. Similarly, in obesity, the cancer cell environment both at the site of origin and at the secondary site i.e., metastatic niche, contains significantly more phenotypically-altered adipocytes than that of un-obese cancer patients. Indeed, obesity has been linked with cancer progression, metastasis, and therapy resistance. Adipocytes not only interact with tumor cells, but also with adjacent stromal cells at primary and metastatic sites. This review emphasizes the importance of bidirectional interactions between adipocytes and breast tumor cells in breast cancer progression and its bone metastases. This paper not only chronicles the role of various adipocyte-derived factors in tumor growth, but also describes the significance of adipocyte-derived bone metastatic factors in the development of bone metastasis of breast cancer. It provides a molecular view of the interplay between the adipocytes and tumor cells involved in breast cancer bone metastasis. However, more research is needed to determine if targeting cancer-associated adipocytes holds promise as a potential therapeutic approach for breast cancer bone metastasis treatment. Interplay between adipocytes and breast cancer cells at primary cancer site and metastatic bone microenvironment. AMSC Adipose-derived mesenchymal stem cell, CAA Cancer associated adipocytes, CAF Cancer associated fibroblast, BMSC Bone marrow derived mesenchymal stem cell, BMA Bone marrow adipocyte.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
50
|
Manickam R, Duszka K, Wahli W. PPARs and Microbiota in Skeletal Muscle Health and Wasting. Int J Mol Sci 2020; 21:ijms21218056. [PMID: 33137899 PMCID: PMC7662636 DOI: 10.3390/ijms21218056] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle is a major metabolic organ that uses mostly glucose and lipids for energy production and has the capacity to remodel itself in response to exercise and fasting. Skeletal muscle wasting occurs in many diseases and during aging. Muscle wasting is often accompanied by chronic low-grade inflammation associated to inter- and intra-muscular fat deposition. During aging, muscle wasting is advanced due to increased movement disorders, as a result of restricted physical exercise, frailty, and the pain associated with arthritis. Muscle atrophy is characterized by increased protein degradation, where the ubiquitin-proteasomal and autophagy-lysosomal pathways, atrogenes, and growth factor signaling all play an important role. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of transcription factors, which are activated by fatty acids and their derivatives. PPARs regulate genes that are involved in development, metabolism, inflammation, and many cellular processes in different organs. PPARs are also expressed in muscle and exert pleiotropic specialized responses upon activation by their ligands. There are three PPAR isotypes, viz., PPARα, -β/δ, and -γ. The expression of PPARα is high in tissues with effective fatty acid catabolism, including skeletal muscle. PPARβ/δ is expressed more ubiquitously and is the predominant isotype in skeletal muscle. It is involved in energy metabolism, mitochondrial biogenesis, and fiber-type switching. The expression of PPARγ is high in adipocytes, but it is also implicated in lipid deposition in muscle and other organs. Collectively, all three PPAR isotypes have a major impact on muscle homeostasis either directly or indirectly. Furthermore, reciprocal interactions have been found between PPARs and the gut microbiota along the gut–muscle axis in both health and disease. Herein, we review functions of PPARs in skeletal muscle and their interaction with the gut microbiota in the context of muscle wasting.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Department of Pharmaceutical Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Toxalim, INRAE, Chemin de Tournefeuille 180, F-31027 Toulouse, France
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Correspondence:
| |
Collapse
|