1
|
Qu Y, Liang W, Yu M, Wang C, Luo M, Zhong L, Li Z, Wang F. MYO1F in neutrophils is required for the response to immune checkpoint blockade therapy. J Exp Med 2025; 222:e20241957. [PMID: 40202509 PMCID: PMC11980683 DOI: 10.1084/jem.20241957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 04/10/2025] Open
Abstract
Tumor-associated neutrophils (TANs) represent a significant barrier to the effectiveness of immune checkpoint blockade (ICB) therapy. A comprehensive understanding of TANs' regulatory mechanisms is therefore essential for predicting ICB efficacy and improving immunotherapy strategies. Our study reveals that MYO1F is selectively downregulated in neutrophils within both human cancers and murine tumor models, showing a negative correlation with ICB response. Mechanistically, MYO1F normally inhibits neutrophil immunosuppression and proliferation by restraining STAT3 activity. However, during tumorigenesis, tumor-derived TGF-β1 disrupts the binding of SPI1 to intron 8 of Myo1f via DNA methylation, thereby suppressing Myo1f transcription. The resultant decrease in MYO1F reprograms neutrophils into an immunosuppressive state through the STAT3-dependent signaling pathways. This immunosuppressive state further contributes to tumor microenvironment (TME) remodeling by inducing CTL exhaustion. These findings establish MYO1F as a critical regulator within TANs, highlighting its significant role in modulating ICB therapy efficacy.
Collapse
Affiliation(s)
- Yingying Qu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhua Liang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Yu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Luo
- Institute of Pediatrics of Children’s Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin Zhong
- Department of Liver Surgery and Organ Transplantation Center, Shenzhen Third People’s Hospital, Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Brooker HR, Baker K, Ezcurra M, Laissue PP, Wang L, Geeves MA, Tullet JM, Mulvihill DP. Conserved Phosphorylation of the Myosin1e TH1 Domain Impacts Membrane Association and Function in Yeast and Worms. Cytoskeleton (Hoboken) 2025. [PMID: 40205688 DOI: 10.1002/cm.22026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
Cells have an intrinsic ability to rapidly respond to environmental change to regulate cell cycle progression and membrane organisation, thereby affecting cell growth and division. The actin cytoskeleton is a highly dynamic complex of proteins that can rapidly reorganise to change the growth pattern of a cell. Class I myosins are monomeric actin-associated motor proteins that play key roles in diverse cellular functions such as tension sensing and membrane reorganisation, as well as promoting actin polymer nucleation at sites of cell growth. We have analysed the localisation and function of both C. elegans class 1 myosins, HUM-1 (Myo1e) and HUM-5 (Myo1d). Both motors are non-essential. While HUM-1 is expressed in diverse cells and tissues, HUM-5 localises exclusively to a subset of cells in the nervous system. While animals lacking hum-1 displayed a reduced maximal brood size and a delay in embryo release, deleting both hum-1 and hum-5 together shortened C. elegans lifespan. Moreover, we identified that phosphorylation of a conserved serine residue within the Myo1e TH1 domain had an impact on the localisation and function of the motor protein in both C. elegans and the fission yeast, S. pombe, indicating this modification modulates the ability of Myo1e/HUM-1 to interact with phospholipids at the plasma membrane. We conclude that TH1 domain phosphorylation plays a key role in regulating the cellular distribution and function of Myo1e motors across all eukaryotes.
Collapse
Affiliation(s)
- Holly R Brooker
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Karen Baker
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxford, UK
| | | | | | | |
Collapse
|
3
|
Asatsuma T, Moreira ML, Lee HJ, Wanrooy BJ, Skinner OP, Li S, Rea I, Harkin T, Asad S, Williams CG, Beattie L, Haque A. Myosin 1f and Proline-rich 13 are transcriptionally upregulated yet functionally redundant in CD4+ T cells during blood-stage Plasmodium infection. PLoS One 2025; 20:e0320375. [PMID: 40132035 PMCID: PMC11936294 DOI: 10.1371/journal.pone.0320375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Plasmodium-specific CD4+ T cells differentiate into effector and memory subsets during experimental malaria, via mechanisms that remain incompletely characterised. By mining scRNA-seq data of CD4+ T cells during Plasmodium chabaudi chabaudi AS infection in mice, we identified two genes previously uncharacterised in T helper cells, long-tailed unconventional myosin 1f (Myo1f) and proline-rich13/taxanes-resistance 1 (Prr13/Txr1), which were upregulated during effector and memory differentiation. Myo1f is reported to regulate motility and granule exocytosis in myeloid and γδ T cells. Prr13/Txr1 is reported to transcriptionally regulate sensitivity to anti-cancer drugs. To test for cell-intrinsic gene function, we generated Plasmodium-specific TCR transgenic, PbTII cells harbouring CD4-promoter driven Cre recombinase and target genes with loxP-flanked essential exons. We validated our approach for the transcription factor Maf, formally demonstrating here that cMaf is essential for T follicular helper (Tfh) cell differentiation in experimental malaria. Next, having generated conditional knockout lines for Myo1f and Prr13, we observed that deficiency in Myo1f or Prr13 had no impact on either clonal expansion, Th1/Tfh differentiation or transit to memory. Additionally, despite continued expression during re-infection, Myo1f was unnecessary for Th1 recall in vivo. Thus, while cMaf is critical for Tfh differentiation in experimental malaria, Myo1f and Prr13, although transcriptionally upregulated, are unnecessary for effector or memory CD4+ T cell responses.
Collapse
Affiliation(s)
- Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marcela L. Moreira
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Hyun J. Lee
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Brooke J. Wanrooy
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Oliver P. Skinner
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ivana Rea
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Taidhgin Harkin
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Saba Asad
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Cameron G. Williams
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Verdys P, Rey Barroso J, Girel A, Vermeil J, Bergert M, Sanchez T, Métais A, Mangeat T, Bellard E, Bigot C, Astarie-Dequeker C, Labrousse A, Girard JP, Maridonneau-Parini I, Vérollet C, Lagarrigue F, Diz-Muñoz A, Heuvingh J, Piel M, du Roure O, Le Cabec V, Carréno S, Poincloux R. Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics. EMBO J 2024; 43:4822-4845. [PMID: 39026000 PMCID: PMC11535515 DOI: 10.1038/s44318-024-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.
Collapse
Affiliation(s)
- Perrine Verdys
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada
| | - Javier Rey Barroso
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adeline Girel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joseph Vermeil
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Sanchez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claire Bigot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Lagarrigue
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julien Heuvingh
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Olivia du Roure
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Véronique Le Cabec
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Sébastien Carréno
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
5
|
Peng AYT, Li J, Freeman BC. Nuclear Type I Myosins are Essential for Life and Genome Organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615191. [PMID: 39386516 PMCID: PMC11463430 DOI: 10.1101/2024.09.26.615191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The active transport of large biomolecules within a cell is critical for homeostasis. While the cytoplasmic process is well-studied, how the spacing of nucleoplasmic cargo is coordinated is poorly understood. We investigated the impact of myosin motors in the nucleus of budding yeast. We found that life requires a nuclear type I myosin whereas the essential type II or V myosins were not requisite in the nucleus. Nuclear depletion of type I myosins triggered 3D genome disorganization, nucleolar disruption, broad gene expression changes, and nuclear membrane morphology collapse. Genome disorganization occurred first supporting a model where type I myosins actively maintain genome architecture that scaffolds nuclear membrane and nucleolar morphologies. Overall, nuclear myosin is critical for the form and function of the nucleus.
Collapse
|
6
|
Yan L, Chen C, Wang L, Hong H, Wu C, Huang J, Jiang J, Chen J, Xu G, Cui Z. Analysis of gene expression in microglial apoptotic cell clearance following spinal cord injury based on machine learning algorithms. Exp Ther Med 2024; 28:292. [PMID: 38827468 PMCID: PMC11140288 DOI: 10.3892/etm.2024.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/17/2024] [Indexed: 06/04/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological complication following spinal fracture, which has long posed a challenge for clinicians. Microglia play a dual role in the pathophysiological process after SCI, both beneficial and detrimental. The underlying mechanisms of microglial actions following SCI require further exploration. The present study combined three different machine learning algorithms, namely weighted gene co-expression network analysis, random forest analysis and least absolute shrinkage and selection operator analysis, to screen for differentially expressed genes in the GSE96055 microglia dataset after SCI. It then used protein-protein interaction networks and gene set enrichment analysis with single genes to investigate the key genes and signaling pathways involved in microglial function following SCI. The results indicated that microglia not only participate in neuroinflammation but also serve a significant role in the clearance mechanism of apoptotic cells following SCI. Notably, bioinformatics analysis and lipopolysaccharide + UNC569 (a MerTK-specific inhibitor) stimulation of BV2 cell experiments showed that the expression levels of Anxa2, Myo1e and Spp1 in microglia were significantly upregulated following SCI, thus potentially involved in regulating the clearance mechanism of apoptotic cells. The present study suggested that Anxa2, Myo1e and Spp1 may serve as potential targets for the future treatment of SCI and provided a theoretical basis for the development of new methods and drugs for treating SCI.
Collapse
Affiliation(s)
- Lei Yan
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chu Chen
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Lingling Wang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Hongxiang Hong
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chunshuai Wu
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiayi Huang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiawei Jiang
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Jiajia Chen
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Guanhua Xu
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Zhiming Cui
- The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
7
|
Panagopoulos I, Andersen K, Stavseth V, Torkildsen S, Heim S, Tandsæther MR. Germline MYOF1::WNK4 and VPS25::MYOF1 Chimeras Generated by the Constitutional Translocation t(17;19)(q21;p13) in Two Siblings With Myelodysplastic Syndrome. Cancer Genomics Proteomics 2024; 21:272-284. [PMID: 38670586 PMCID: PMC11059592 DOI: 10.21873/cgp.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM Constitutional chromosomal aberrations are rare in hematologic malignancies and their pathogenetic role is mostly poorly understood. We present a comprehensive molecular characterization of a novel constitutional chromosomal translocation found in two siblings - sisters - diagnosed with myelodysplastic syndrome (MDS). MATERIALS AND METHODS Bone marrow and blood cells from the two patients were examined using G-banding, RNA sequencing, PCR, and Sanger sequencing. RESULTS We identified a balanced t(17;19)(q21;p13) translocation in both siblings' bone marrow, blood cells, and phytohemagglutinin-stimulated lymphocytes. The translocation generated a MYO1F::WNK4 chimera on the der(19)t(17;19), encoding a chimeric serine/threonine kinase, and a VPS25::MYO1F on the der(17), potentially resulting in an aberrant VPS25 protein. CONCLUSION The t(17;19)(q21;p13) translocation found in the two sisters probably predisposed them to myelodysplasia. How the MYO1F::WNK4 and/or VPS25::MYO1F chimeras, perhaps especially MYO1F::WNK4 that encodes a chimeric serine/threonine kinase, played a role in MDS pathogenesis, remains incompletely understood.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Vidar Stavseth
- Department of Haematology, Levanger Hospital, Levanger, Norway
| | - Synne Torkildsen
- Department of Haematology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maren Randi Tandsæther
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Yuan Y, Lv X, Wu Y, Weng Y, Dai F, Ding H, Chen R, Zheng B, Zhao W, Tong Q, Ding J, Lou D, Lai Y, Chu X, Zhao L, Lu S, Kong Q. Mining host candidate regulators of schistosomiasis-induced liver fibrosis in response to artesunate therapy through transcriptomics approach. PLoS Negl Trop Dis 2023; 17:e0011626. [PMID: 37773953 PMCID: PMC10566724 DOI: 10.1371/journal.pntd.0011626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Artesunate (ART) has been reported to have an antifibrotic effect in various organs. The underlying mechanism has not been systematically elucidated. We aimed to clarify the effect of ART on liver fibrosis induced by Schistosoma japonicum (S. japonicum) in an experimentally infected rodent model and the potential underlying mechanisms. METHODS The effect of ART on hepatic stellate cells (HSCs) was assessed using CCK-8 and Annexin V-FITC/PI staining assays. The experimental model of liver fibrosis was established in the Mongolian gerbil model infected with S. japonicum cercariae and then treated with 20 mg/kg or 40 mg/kg ART. The hydroxyproline (Hyp) content, malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities in liver tissue were measured and histopathological changes of liver tissues were observed. Whole-transcriptome RNA sequencing (RNA-seq) of the liver tissues was performed. Differentially expressed genes (DEGs) were identified using bioinformatic analysis and verified by quantitative PCR (qPCR) and western blot assay. RESULTS ART significantly inhibited the proliferation and induce the apoptosis of HSCs in a dose-dependent manner. In vivo, Hyp content decreased significantly in the ART-H group compared to the model (MOD) group and GPX activity was significantly higher in the ART-H group than in the MOD group. Besides, ART treatment significantly reduced collagen production (p <0.05). A total of 158 DEGs and 44 differentially expressed miRNAs related to ART-induced anti-schistosomiasis liver fibrosis were identified. The qPCR and western blot results of selected DEGs were consistent with the sequencing results. These DEGs were implicated in key pathways such as immune and inflammatory response, integrin-mediated signaling and toll-like receptor signaling pathways. CONCLUSION ART is effective against liver fibrosis using Mongolian gerbil model induced by S. japonicum infection. We identified host candidate regulators of schistosomiasis-induced liver fibrosis in response to ART through transcriptomics approach.
Collapse
Affiliation(s)
- Yajie Yuan
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xinyue Lv
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yahan Wu
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Youhong Weng
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Fangwei Dai
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Haojie Ding
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Riping Chen
- School of Public Health, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Bin Zheng
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenxia Zhao
- School of Public Health, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Qunbo Tong
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jianzu Ding
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Di Lou
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yunru Lai
- Department of Laboratory Medicine, Lishui Second People’s Hospital Affiliated to Wenzhou Medical University, Lishui, China
| | - Xiaofeng Chu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital Affiliated to Wenzhou Medical University, Lishui, China
| | - Shaohong Lu
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Qingming Kong
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
10
|
Liu S, Liu P, Fei X, Zhu C, Hou J, Wang X, Pan Y. Analysis and validation of the potential of the MYO1E gene in pancreatic adenocarcinoma based on a bioinformatics approach. Oncol Lett 2023; 26:285. [PMID: 37274465 PMCID: PMC10236097 DOI: 10.3892/ol.2023.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/22/2023] [Indexed: 06/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common digestive cancer, and its prognosis is poor. Myosin 1E (MYO1E) is a class I myosin family member whose expression and function have not been reported in PAAD. In the present study, bioinformatics analysis was used to explore the expression levels of MYO1E in PAAD and its prognostic value, and the immunological role of MYO1E in PAAD was analyzed. The study revealed that a variety of malignancies have substantially increased MYO1E expression. Further investigation demonstrated that PAAD tissues exhibited greater levels of MYO1E mRNA and protein expression than normal tissues. High MYO1E expression is associated with poor prognosis in patients with PAAD. MYO1E expression was also associated with pathological stage in patients with PAAD. Functional enrichment analysis demonstrated that MYO1E was linked to multiple tumor-related mechanisms in PAAD. The pancreatic adenocarcinoma tumor microenvironment (TME) was analyzed and it was revealed that MYO1E expression was positively associated with tumor immune cell infiltration. In addition, MYO1E was closely associated with some tumor chemokines/receptors and immune checkpoints. In vitro experiments revealed that the suppression of MYO1E expression could inhibit pancreatic adenocarcinoma cell proliferation, invasion and migration. Through preliminary analysis, the present study evaluated the potential function of MYO1E in PAAD and its function in TME, and MYO1E may become a potential biomarker for PAAD.
Collapse
Affiliation(s)
- Songbai Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Peng Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Xiaobin Fei
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Changhao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Junyi Hou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Xing Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yaozhen Pan
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| |
Collapse
|
11
|
Martínez-Vargas IU, Sánchez-Bello ME, Miguel-Rodríguez CE, Hernández-Cázares F, Santos-Argumedo L, Talamás-Rohana P. Myo1f has an essential role in γδT intraepithelial lymphocyte adhesion and migration. Front Immunol 2023; 14:1041079. [PMID: 37207213 PMCID: PMC10189005 DOI: 10.3389/fimmu.2023.1041079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
γδT intraepithelial lymphocyte represents up to 60% of the small intestine intraepithelial compartment. They are highly migrating cells and constantly interact with the epithelial cell layer and lamina propria cells. This migratory phenotype is related to the homeostasis of the small intestine, the control of bacterial and parasitic infections, and the epithelial shedding induced by LPS. Here, we demonstrate that Myo1f participates in the adhesion and migration of intraepithelial lymphocytes. Using long-tailed class I myosins KO mice, we identified the requirement of Myo1f for their migration to the small intestine intraepithelial compartment. The absence of Myo1f affects intraepithelial lymphocytes' homing due to reduced CCR9 and α4β7 surface expression. In vitro, we confirm that adhesion to integrin ligands and CCL25-dependent and independent migration of intraepithelial lymphocytes are Myo1f-dependent. Mechanistically, Myo1f deficiency prevents correct chemokine receptor and integrin polarization, leading to reduced tyrosine phosphorylation which could impact in signal transduction. Overall, we demonstrate that Myo1f has an essential role in the adhesion and migration in γδT intraepithelial lymphocytes.
Collapse
Affiliation(s)
- Irving Ulises Martínez-Vargas
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria Elena Sánchez-Bello
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carlos Emilio Miguel-Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Felipe Hernández-Cázares
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Leopoldo Santos-Argumedo, ; Patricia Talamás-Rohana,
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Leopoldo Santos-Argumedo, ; Patricia Talamás-Rohana,
| |
Collapse
|
12
|
Bending over backwards: BAR proteins and the actin cytoskeleton in mammalian receptor-mediated endocytosis. Eur J Cell Biol 2022; 101:151257. [PMID: 35863103 DOI: 10.1016/j.ejcb.2022.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.
Collapse
|
13
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Tian X, Bunda P, Ishibe S. Podocyte Endocytosis in Regulating the Glomerular Filtration Barrier. Front Med (Lausanne) 2022; 9:801837. [PMID: 35223901 PMCID: PMC8866310 DOI: 10.3389/fmed.2022.801837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a mechanism that internalizes and recycles plasma membrane components and transmembrane receptors via vesicle formation, which is mediated by clathrin-dependent and clathrin-independent signaling pathways. Podocytes are specialized, terminally differentiated epithelial cells in the kidney, located on the outermost layer of the glomerulus. These cells play an important role in maintaining the integrity of the glomerular filtration barrier in conjunction with the adjacent basement membrane and endothelial cell layers within the glomerulus. An intact podocyte endocytic machinery appears to be necessary for maintaining podocyte function. De novo pathologic human genetic mutations and loss-of-function studies of critical podocyte endocytosis genes in genetically engineered mouse models suggest that this pathway contributes to the pathophysiology of development and progression of proteinuria in chronic kidney disease. Here, we review the mechanism of cellular endocytosis and its regulation in podocyte injury in the context of glomerular diseases. A thorough understanding of podocyte endocytosis may shed novel insights into its biological function in maintaining a functioning filter and offer potential targeted therapeutic strategies for proteinuric glomerular diseases.
Collapse
Affiliation(s)
| | | | - Shuta Ishibe
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Mikhaleva LM, Orekhov AN. The Role of Altered Mitochondrial Metabolism in Thyroid Cancer Development and Mitochondria-Targeted Thyroid Cancer Treatment. Int J Mol Sci 2021; 23:ijms23010460. [PMID: 35008887 PMCID: PMC8745127 DOI: 10.3390/ijms23010460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine malignancy. Tumour formation, progression, and metastasis greatly depend on the efficacy of mitochondria-primarily, the regulation of mitochondria-mediated apoptosis, Ca2+ homeostasis, dynamics, energy production, and associated reactive oxygen species generation. Recent studies have successfully confirmed the mitochondrial aetiology of thyroid carcinogenesis. In this review, we focus on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism. We also discuss the repurposing of known drugs and the induction of mitochondria-mediated apoptosis as a new trend in the development of anti-TC therapy.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Street, 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
16
|
Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity 2021; 54:2514-2530.e7. [PMID: 34717796 DOI: 10.1016/j.immuni.2021.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 07/01/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.
Collapse
|
17
|
Solanki AK, Biswal MR, Walterhouse S, Martin R, Kondkar AA, Knölker HJ, Rahman B, Arif E, Husain S, Montezuma SR, Nihalani D, Lobo GP. Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells 2021; 10:cells10061322. [PMID: 34073294 PMCID: PMC8229726 DOI: 10.3390/cells10061322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of Myo1c knockout (Myo1c-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In Myo1c-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of Myo1c-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.
Collapse
Affiliation(s)
- Ashish K. Solanki
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Manas R. Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Stephen Walterhouse
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Hans-Joachim Knölker
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Ehtesham Arif
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 516 Delaware Street S.E., 9th Floor, Minneapolis, MN 55455, USA;
| | - Deepak Nihalani
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bldg. 2DEM, Room 6085, 6707 Democracy Blvd., Bethesda, MD 20817, USA
- Correspondence: (D.N.); (G.P.L.)
| | - Glenn Prazere Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Ophthalmology and Visual Neurosciences, Lions Research Building, University of Minnesota, 2001 6th Street S.E., Room 225, Minneapolis, MN 55455, USA
- Correspondence: (D.N.); (G.P.L.)
| |
Collapse
|
18
|
Navinés-Ferrer A, Ainsua-Enrich E, Serrano-Candelas E, Proaño-Pérez E, Muñoz-Cano R, Gastaminza G, Olivera A, Martin M. MYO1F Regulates IgE and MRGPRX2-Dependent Mast Cell Exocytosis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2277-2289. [PMID: 33941653 DOI: 10.4049/jimmunol.2001211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/09/2021] [Indexed: 11/19/2022]
Abstract
The activation and degranulation of mast cells is critical in the pathogenesis of allergic inflammation and modulation of inflammation. Recently, we demonstrated that the unconventional long-tailed myosin, MYO1F, localizes with cortical F-actin and mediates adhesion and migration of mast cells. In this study, we show that knockdown of MYO1F by short hairpin RNA reduces human mast cell degranulation induced by both IgE crosslinking and by stimulation of the Mas-related G protein-coupled receptor X2 (MRGPRX2), which has been associated with allergic and pseudoallergic drug reactions, respectively. Defective degranulation was accompanied by a reduced reassembly of the cortical actin ring after activation but reversed by inhibition of actin polymerization. Our data show that MYO1F is required for full Cdc42 GTPase activation, a critical step in exocytosis. Furthermore, MYO1F knockdown resulted in less granule localization in the cell membrane and fewer fissioned mitochondria along with deficient mitochondria translocation to exocytic sites. Consistent with that, AKT and DRP1 phosphorylation are diminished in MYO1F knockdown cells. Altogether, our data point to MYO1F as an important regulator of mast cell degranulation by contributing to the dynamics of the cortical actin ring and the distribution of both the secretory granules and mitochondria.
Collapse
Affiliation(s)
- Arnau Navinés-Ferrer
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain.,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Erola Ainsua-Enrich
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain.,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Eva Serrano-Candelas
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain.,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Elizabeth Proaño-Pérez
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain.,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Rosa Muñoz-Cano
- Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain.,Allergy Section, Pneumology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Asthma, Adverse Drug Reactions and Allergy Research Network (ARADyAL), Spain
| | - Gabriel Gastaminza
- Asthma, Adverse Drug Reactions and Allergy Research Network (ARADyAL), Spain.,Department of Allergy and Clinical Immunology, Clinical University of Navarra, Pamplona, Spain
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain .,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain.,Asthma, Adverse Drug Reactions and Allergy Research Network (ARADyAL), Spain
| |
Collapse
|
19
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|