1
|
Caviglia M, Li Z, Santini C, Del Gobbo J, Cimarelli C, Du M, Dolmella A, Pellei M. New Cu(II), Cu(I) and Ag(I) Complexes of Phenoxy-Ketimine Schiff Base Ligands: Synthesis, Structures and Antibacterial Activity. Molecules 2025; 30:1893. [PMID: 40363700 PMCID: PMC12073749 DOI: 10.3390/molecules30091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Two phenoxy-ketimines ligands, 2-(1-(benzylimino)ethyl)phenol (HLBSMe) and 2-((benzylimino)(phenyl)methyl)phenol (HLBSPh), were synthesized and used as supporting ligands of new copper(II), copper(I), and silver(I) complexes. In order to confer different solubility properties to the metal complexes and to stabilize Cu and Ag in their +1 oxidation state, the lipophilic triphenylphosphine (PPh3) and the hydrophilic 1,3,5-triaza-7-phosphaadamantane (PTA) were selected as co-ligands in the syntheses of the Cu(I) and Ag(I) complexes. All compounds were characterized by CHN analysis, NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS); the molecular structure of the copper(II) complex [Cu(LBSPh)2] was also determined by single-crystal X-ray diffraction. Finally, the antibacterial activity of the metal complexes, the Schiff base ligands and phosphane co-ligands, were assessed by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus).
Collapse
Affiliation(s)
- Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna Delle Carceri (ChIP), 62032 Camerino, Italy; (M.C.); (Z.L.); (C.S.); (J.D.G.); (C.C.)
| | - Zhenzhen Li
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna Delle Carceri (ChIP), 62032 Camerino, Italy; (M.C.); (Z.L.); (C.S.); (J.D.G.); (C.C.)
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna Delle Carceri (ChIP), 62032 Camerino, Italy; (M.C.); (Z.L.); (C.S.); (J.D.G.); (C.C.)
| | - Jo’ Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna Delle Carceri (ChIP), 62032 Camerino, Italy; (M.C.); (Z.L.); (C.S.); (J.D.G.); (C.C.)
| | - Cristina Cimarelli
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna Delle Carceri (ChIP), 62032 Camerino, Italy; (M.C.); (Z.L.); (C.S.); (J.D.G.); (C.C.)
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna Delle Carceri (ChIP), 62032 Camerino, Italy; (M.C.); (Z.L.); (C.S.); (J.D.G.); (C.C.)
| |
Collapse
|
2
|
Jhetam Z, Martins-Furness C, Slabber C, Munro OQ, Nel M, Harmse L. Copper complexes induce haem oxygenase-1 (HMOX1) and cause apoptotic cell death in pancreatic cancer cells. J Inorg Biochem 2025; 264:112815. [PMID: 39740375 DOI: 10.1016/j.jinorgbio.2024.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, has a dismal 5-year survival rate, making palliative chemotherapy the only treatment option. Targeted therapy has limited efficacy in PDAC, underscoring the need for novel therapeutic approaches. The inducible stress-response protein, haem oxygenase-1 (HMOX1), has been implicated in treatment failure in PDAC. Copper coordination complexes have shown promise as anticancer agents against various cancers, and are associated with apoptotic cell death. The different ligands to which copper is complexed, determine the specificity and efficacy of each complex. Three different classes of copper complexes were evaluated for anti-cancer activity against AsPC-1 and MIA PaCa-2 pancreatic cancer cell lines. A copper-phenanthroline-theophylline complex (CuPhTh2), a copper-8-aminoquinoline-naphthyl complex (Cu8AqN), and two copper-aromatic-isoindoline complexes (CuAIsI) were effective inhibitors of cell proliferation with clinically relevant IC50 values below 5 μM. The copper complexes caused reactive oxygen species (ROS) formation, promoted annexin-V binding, disrupted the mitochondrial membrane potential (MMP) and activated caspase-9 and caspase-3/7, confirming apoptotic cell death. Expression of nuclear HMOX1 was increased in both cell lines, with the CuPhTh2 complex being the most active. Inhibition of HMOX1 activity significantly decreased the IC50 values of these copper complexes suggesting that HMOX1 inhibition may alter treatment outcomes in PDAC.
Collapse
Affiliation(s)
- Zakeeya Jhetam
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Carla Martins-Furness
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Cathy Slabber
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smut Ave, Braamfontein, Johannesburg 2017, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Marietha Nel
- Dept of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| | - Leonie Harmse
- Division of Pharmacology, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
3
|
Pellei M, Santini C, Caviglia M, Del Gobbo J, Battocchio C, Meneghini C, Amatori S, Donati C, Zampieri E, Gandin V, Marzano C. Anticancer potential of copper(i) complexes based on isopropyl ester derivatives of bis(pyrazol-1-yl)acetate ligands. RSC Med Chem 2025; 16:849-861. [PMID: 39618961 PMCID: PMC11605304 DOI: 10.1039/d4md00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/07/2024] [Indexed: 02/21/2025] Open
Abstract
In this paper, the isopropyl ester derivatives LOiPr and L2OiPr of bis(pyrazol-1-yl)acetic acid and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid were used as chelators for the preparation of new Cu(i) phosphane complexes 1-4. They were synthesized by the reaction of [Cu(CH3CN)4]PF6 and triphenylphosphine or 1,3,5-triaza-7-phosphaadamantane with LOiPr and L2OiPr ligands, in acetonitrile or acetonitrile/methanol solution. The authenticity of the compounds was confirmed by CHN analysis, 1H-, 13C- and 31P-NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). Furthermore, the electronic and molecular structures of the selected Cu(i) coordination compound 3 were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), and the local structure around the copper ion site was studied combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modelling. Triphenylphosphine as a coligand confers to [Cu(LOiPr)(PPh3)]PF6 (1) and [Cu(L2OiPr)(PPh3)]PF6 (3) a significant antitumor activity in 3D spheroidal models of human colon cancer cells. Investigations focused on the mechanism of action evidenced protein disulfide-isomerase (PDI) as an innovative molecular target for this class of phosphane copper(i) complexes. By hampering PDI activity, copper(i) complexes were able to cause an imbalance in cancer cell redox homeostasis thus leading to cancer cell death - a non-apoptotic programmed cell death.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino Via Madonna delle Carceri (ChIP) 62032 Camerino Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino Via Madonna delle Carceri (ChIP) 62032 Camerino Italy
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino Via Madonna delle Carceri (ChIP) 62032 Camerino Italy
| | - Jo' Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino Via Madonna delle Carceri (ChIP) 62032 Camerino Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University Via della Vasca Navale 79 00146 Roma Italy
| | - Carlo Meneghini
- Department of Science, Roma Tre University Via della Vasca Navale 79 00146 Roma Italy
| | - Simone Amatori
- Department of Science, Roma Tre University Via della Vasca Navale 79 00146 Roma Italy
| | - Chiara Donati
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Via Marzolo 5 35131 Padova Italy
| | - Eleonora Zampieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Via Marzolo 5 35131 Padova Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Via Marzolo 5 35131 Padova Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova Via Marzolo 5 35131 Padova Italy
| |
Collapse
|
4
|
Morelli MB, Caviglia M, Santini C, Del Gobbo J, Zeppa L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Battocchio C, Bertelà F, Amatori S, Meneghini C, Iucci G, Venditti I, Dolmella A, Di Palma M, Pellei M. Copper-Based Complexes with Adamantane Ring-Conjugated bis(3,5-Dimethyl-pyrazol-1-yl)acetate Ligand as Promising Agents for the Treatment of Glioblastoma. J Med Chem 2024; 67:9662-9685. [PMID: 38831692 DOI: 10.1021/acs.jmedchem.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Jo' Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Laura Zeppa
- School of Pharmacy, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Federica Bertelà
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Simone Amatori
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Carlo Meneghini
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Iole Venditti
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Michele Di Palma
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| |
Collapse
|
5
|
Pellei M, Del Gobbo J, Caviglia M, Gandin V, Marzano C, Karade DV, Noonikara Poyil A, Dias HVR, Santini C. Synthesis and Investigations of the Antitumor Effects of First-Row Transition Metal(II) Complexes Supported by Two Fluorinated and Non-Fluorinated β-Diketonates. Int J Mol Sci 2024; 25:2038. [PMID: 38396717 PMCID: PMC10889438 DOI: 10.3390/ijms25042038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The 3d transition metal (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes, supported by anions of sterically demanding β-diketones, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3), were synthesized and evaluated for their antitumor activity. To assess the biological effects of substituents on phenyl moieties, we also synthesized and investigated the analogous metal(II) complexes of the anion of the less bulky 1,3-diphenylpropane-1,3-dione (HLPh) ligand. The compounds [Cu(LCF3)2], [Cu(LMes)2] and ([Zn(LMes)2]) were characterized by X-ray crystallography. The [Cu(LCF3)2] crystallizes with an apical molecule of solvent (THF) and features a rare square pyramidal geometry at the Cu(II) center. The copper(II) and zinc(II) complexes of diketonate ligands, derived from the deprotonated 1,3-dimesitylpropane-1,3-dione (HLMes), adopt a square planar or a tetrahedral geometry at the metal, respectively. We evaluated the antitumor properties of the newly synthesized (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) complexes against a series of human tumor cell lines derived from different solid tumors. Except for iron derivatives, cellular studies revealed noteworthy antitumor properties, even towards cancer cells endowed with poor sensitivity to the reference drug cisplatin.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Jo’ Del Gobbo
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Miriam Caviglia
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Deepika V. Karade
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - Anurag Noonikara Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, P.O. Box 19065, Arlington, TX 76019, USA; (D.V.K.); (H.V.R.D.)
| | - Carlo Santini
- School of Science and Technology—Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.)
| |
Collapse
|
6
|
Del Gobbo J, Santini C, Dolmella A, Li Z, Caviglia M, Pellei M. New Copper Complexes with N,O-Donor Ligands Based on Pyrazole Moieties Supported by 3-Substituted Acetylacetone Scaffolds. Molecules 2024; 29:621. [PMID: 38338366 PMCID: PMC10856362 DOI: 10.3390/molecules29030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The new 3-monosubstituted acetylacetone ligands, 3-(phenyl(1H-pyrazol-1-yl)methyl)pentane-2,4-dione (HLacPz) and 3-((3,5-dimethyl-1H-pyrazol-1-yl)(phenyl)methyl)pentane-2,4-dione (HLacPzMe), were synthesized and used as supporting ligands for new copper(II) and copper(I) phosphane complexes of the general formulae [Cu(HLacX)2(LacX)2] and [Cu(PPh3)2(HLacX)]PF6 (X = Pz (pyrazole) or PzMe (3,5-dimethylpyrazole)), respectively. In the syntheses of the Cu(I) complexes, the triphenylphosphine coligand (PPh3) was used to stabilize copper in the +1 oxidation state, avoiding oxidation to Cu(II). All compounds were characterized by CHN analysis, 1H-NMR, 13C-NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). The ligands HLacPz (1) and HLacPzMe (2) and the copper complex [Cu(PPh3)2(HLacPz)]PF6 (3) were also characterized by X-ray crystallography. The reactivity of these new compounds was investigated and the new compounds 4-phenyl-4-(1H-pyrazol-1-yl)butan-2-one (7) and 4-(3,5-dimethyl-1H-pyrazol-1-yl)-4-phenylbutan-2-one (8) were obtained in basic conditions via the retro-Claisen reaction of related 3-monosubstituted acetylacetone, providing efficient access to synthetically useful ketone compounds. Compound 8 was also characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Jo’ Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Zhenzhen Li
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), Camerino, 62032 Macerata, Italy; (J.D.G.); (C.S.); (Z.L.); (M.C.)
| |
Collapse
|
7
|
Pellei M, Del Gobbo J, Caviglia M, Karade DV, Gandin V, Marzano C, Noonikara Poyil A, Dias HVR, Santini C. Synthesis and cytotoxicity studies of Cu(I) and Ag(I) complexes based on sterically hindered β-diketonates with different degrees of fluorination. Dalton Trans 2023; 52:12098-12111. [PMID: 37581477 DOI: 10.1039/d3dt02179c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Design, synthesis, and in vitro antitumor properties of Cu(I) and Ag(I) phosphane complexes supported by the anions of sterically hindered β-diketone ligands, 1,3-dimesitylpropane-1,3-dione (HLMes) and 1,3-bis(3,5-bis(trifluoromethyl)phenyl)-3-hydroxyprop-2-en-1-one (HLCF3) featuring trifluoromethyl or methyl groups on the phenyl moieties have been reported. In order to compare the biological effects of substituents on the phenyl moieties, the analogous copper(I) and silver(I) complexes of the anion of the parent 1,3-diphenylpropane-1,3-dione (HLPh) ligand were also synthesized and included in the study. In the syntheses of the Cu(I) and Ag(I) complexes, the phosphane coligands triphenylphosphine (PPh3) and 1,3,5-triaza-7-phosphaadamantane (PTA) were used to stabilize silver and copper in the +1 oxidation state, preventing the metal ion reduction to Ag(0) or oxidation to Cu(II), respectively. X-ray crystal structures of HLCF3 and the metal adducts [Cu(LCF3)(PPh3)2] and [Ag(LPh)(PPh3)2] are also presented. The antitumor properties of both classes of metal complexes were evaluated against a series of human tumor cell lines derived from different solid tumors, by means of both 2D and 3D cell viability studies. They display noteworthy antitumor properties and are more potent than cisplatin in inhibiting cancer cell growth.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy.
| | - Jo' Del Gobbo
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy.
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy.
| | - Deepika V Karade
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Anurag Noonikara Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Box 19065, Arlington, Texas 76019-0065, USA.
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy.
| |
Collapse
|
8
|
Carbone D, De Franco M, Pecoraro C, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall'Acqua S, Sut S, Moro S, Gandin V, Diana P. Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma. Mar Drugs 2023; 21:md21050288. [PMID: 37233482 DOI: 10.3390/md21050288] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, invasion, and resistance to standard chemotherapeutic agents. Taking into account all these factors and the urgency in evaluating novel options to treat PDAC, in the present work we reported the synthesis of a new series of indolyl-7-azaindolyl triazine compounds inspired by marine bis-indolyl alkaloids. We first assessed the ability of the new triazine compounds to inhibit the enzymatic activity of pyruvate dehydrogenase kinases (PDKs). The results showed that most of derivatives totally inhibit PDK1 and PDK4. Molecular docking analysis was executed to predict the possible binding mode of these derivatives using ligand-based homology modeling technique. Evaluation of the capability of new triazines to inhibit the cell growth in 2D and 3D KRAS-wild-type (BxPC-3) and KRAS-mutant (PSN-1) PDAC cell line, was carried out. The results showed the capacity of the new derivatives to reduce cell growth with a major selectivity against KRAS-mutant PDAC PSN-1 on both cell models. These data demonstrated that the new triazine derivatives target PDK1 enzymatic activity and exhibit cytotoxic effects on 2D and 3D PDAC cell models, thus encouraging further structure manipulation for analogs development against PDAC.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
9
|
Pecoraro C, De Franco M, Carbone D, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall'Acqua S, Moro S, Gandin V, Diana P. 1,2,4-Amino-triazine derivatives as pyruvate dehydrogenase kinase inhibitors: Synthesis and pharmacological evaluation. Eur J Med Chem 2023; 249:115134. [PMID: 36709650 DOI: 10.1016/j.ejmech.2023.115134] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Among the different hallmarks of cancer, deregulation of cellular metabolism turned out to be an essential mechanism in promoting cancer resistance and progression. The pyruvate dehydrogenase kinases (PDKs) are well known as key regulators in cells metabolic process and their activity was found to be overexpressed in different metabolic alerted types of cancer, including the high aggressive pancreatic ductal adenocarcinoma (PDAC). To date few PDK inhibitors have been reported, and the different molecules developed are characterized by structural chemical diversity. In an attempt to find novel classes of potential PDK inhibitors, the molecular hybridization approach, which combine two or more active scaffolds in a single structure, was employed. Herein we report the synthesis and the pharmacological evaluation of the novel hybrid molecules, characterized by the fusion of three different pharmacophoric sub-units such as 1,2,4-amino triazines, 7-azaindoles and indoles, in a single structure. The synthesized derivatives demonstrated a promising ability in hampering the enzymatic activity of PDK1 and 4, further confirmed by docking studies. Interestingly, these derivatives retained a strong antiproliferative activity against pancreatic cancer cells either in 2D and 3D models. Mechanistic studies in highly aggressive PDAC cells confirmed their ability to hamper PDK axis and to induce cancer cell death by apoptosis. Moreover, in vivo translational studies in a murine syngeneic solid tumor model confirmed the ability of the most representative compounds to target the PDK system and highlight the ability to reduce the tumor growth without inducing substantial body weight changes in the treated mice.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Davide Bassani
- Department of Pharmaceutical and Pharmacological Sciences, Molecular Modeling Section (MMS), University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Matteo Pavan
- Department of Pharmaceutical and Pharmacological Sciences, Molecular Modeling Section (MMS), University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Stefano Moro
- Department of Pharmaceutical and Pharmacological Sciences, Molecular Modeling Section (MMS), University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
10
|
Pellei M, Santini C, Bagnarelli L, Caviglia M, Sgarbossa P, De Franco M, Zancato M, Marzano C, Gandin V. Novel Silver Complexes Based on Phosphanes and Ester Derivatives of Bis(pyrazol-1-yl)acetate Ligands Targeting TrxR: New Promising Chemotherapeutic Tools Relevant to SCLC Management. Int J Mol Sci 2023; 24:ijms24044091. [PMID: 36835512 PMCID: PMC9960633 DOI: 10.3390/ijms24044091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Bis(pyrazol-1-yl)acetic acid (HC(pz)2COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pzMe2)2COOH) were converted into the methyl ester derivatives 1 (LOMe) and 2 (L2OMe), respectively, and were used for the preparation of silver(I) complexes 3-5. The Ag(I) complexes were prepared by the reaction of AgNO3 and 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine (PPh3) with LOMe and L2OMe in methanol solution. All Ag(I) complexes showed a significant in vitro antitumor activity, proving to be more effective than the reference drug cisplatin in the in-house human cancer cell line panel containing examples of different solid tumors. Compounds were particularly effective against the highly aggressive and intrinsically resistant human small-cell lung carcinoma (SCLC) cells, either in 2D and 3D cancer cell models. Mechanistic studies revealed their ability to accumulate into cancer cells and to selectively target Thioredoxin (TrxR), thus leading to redox homeostasis unbalance and ultimately inducing cancer cell death through apoptosis.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
- Correspondence: (C.S.); (C.M.)
| | - Luca Bagnarelli
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Miriam Caviglia
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Mirella Zancato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Correspondence: (C.S.); (C.M.)
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
11
|
Carbone D, De Franco M, Pecoraro C, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall’Acqua S, Moro S, Gandin V, Diana P. Discovery of the 3-Amino-1,2,4-triazine-Based Library as Selective PDK1 Inhibitors with Therapeutic Potential in Highly Aggressive Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24043679. [PMID: 36835086 PMCID: PMC9959349 DOI: 10.3390/ijms24043679] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Pyruvate dehydrogenase kinases (PDKs) are serine/threonine kinases, that are directly involved in altered cancer cell metabolism, resulting in cancer aggressiveness and resistance. Dichloroacetic acid (DCA) is the first PDK inhibitor that has entered phase II clinical; however, several side effects associated with weak anticancer activity and excessive drug dose (100 mg/kg) have led to its limitation in clinical application. Building upon a molecular hybridization approach, a small library of 3-amino-1,2,4-triazine derivatives has been designed, synthesized, and characterized for their PDK inhibitory activity using in silico, in vitro, and in vivo assays. Biochemical screenings showed that all synthesized compounds are potent and subtype-selective inhibitors of PDK. Accordingly, molecular modeling studies revealed that a lot of ligands can be properly placed inside the ATP-binding site of PDK1. Interestingly, 2D and 3D cell studies revealed their ability to induce cancer cell death at low micromolar doses, being extremely effective against human pancreatic KRAS mutated cancer cells. Cellular mechanistic studies confirm their ability to hamper the PDK/PDH axis, thus leading to metabolic/redox cellular impairment, and to ultimately trigger apoptotic cancer cell death. Remarkably, preliminary in vivo studies performed on a highly aggressive and metastatic Kras-mutant solid tumor model confirm the ability of the most representative compound 5i to target the PDH/PDK axis in vivo and highlighted its equal efficacy and better tolerability profile with respect to those elicited by the reference FDA approved drugs, cisplatin and gemcitabine. Collectively, the data highlights the promising anticancer potential of these novel PDK-targeting derivatives toward obtaining clinical candidates for combatting highly aggressive KRAS-mutant pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
- Correspondence: (V.G.); (P.D.)
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
- Correspondence: (V.G.); (P.D.)
| |
Collapse
|
12
|
In Vitro Evaluation of the Cytotoxic Potential of Thiosemicarbazide Coordinating Compounds in Hepatocyte Cell Culture. Biomedicines 2023; 11:biomedicines11020366. [PMID: 36830902 PMCID: PMC9953081 DOI: 10.3390/biomedicines11020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Cancer is a global medical problem and, despite research efforts in the field of tumor treatment, there is currently a shortage of specific anticancer drugs. Most anticancer drugs show significant side effects. The liver is the organ that has central functions in drug metabolism, being a major target of the harmful action of anticancer compounds. In this context, it is essential to evaluate the cytotoxic effects of potential anticancer substances. Therefore, hepatotoxicity and hepatocyte viability were determined in vitro to evaluate the action of seven new local thiosemicarbazide coordination compounds (CCT) on normal liver cells. Doxorubicin was used as a reference substance. The control group consisted of hepatocytes not exposed to CCT action. The cell viability of hepatocytes treated with CCT decreased significantly by 5-12% compared to the control, but was statistically significantly higher by 5-14% compared to doxorubicin, except after CMD-8 and CMT-67 influence, when it does not change. Thus, new local CCT had a selective effect on hepatocytes in vitro and were less hepatotoxic compared to doxorubicin, which may be the basis for further study of its potential in anticancer drugs.
Collapse
|
13
|
Pellei M, Bagnarelli L, Gabrielli S, Lupidi G, Cimarelli C, Stella F, Dolmella A, Santini C. Copper(II) complexes based on isopropyl ester derivatives of bis(pyrazol-1-yl)acetate ligands with catalytic potency in organic macro(molecules) synthesis. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
|
14
|
Pivovarova E, Climova A, Świątkowski M, Staszewski M, Walczyński K, Dzięgielewski M, Bauer M, Kamysz W, Krześlak A, Jóźwiak P, Czylkowska A. Synthesis and Biological Evaluation of Thiazole-Based Derivatives with Potential against Breast Cancer and Antimicrobial Agents. Int J Mol Sci 2022; 23:ijms23179844. [PMID: 36077257 PMCID: PMC9456159 DOI: 10.3390/ijms23179844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Investigating novel, biologically-active coordination compounds that may be useful in the design of breast anticancer, antifungal, and antimicrobial agents is still the main challenge for chemists. In order to get closer to solving this problem, three new copper coordination compounds containing thiazole-based derivatives were synthesized. The structures of the synthesized compounds and their physicochemical characterization were evaluated based on elemental analysis, 1H and l3C nuclear magnetic resonance (NMR), flame atomic absorption spectroscopy (F-AAS), single-crystal X-ray diffraction, thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The pharmacokinetics were studied using SwissADME. The results obtained from the computational studies supported the results obtained from the MTT analysis, and the antimicrobial activity was expressed as the minimum inhibitory concentration (MIC).
Collapse
Affiliation(s)
- Ekaterina Pivovarova
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
- Correspondence: (E.P.); (A.C.)
| | - Alina Climova
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marcin Świątkowski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Marek Dzięgielewski
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
- Correspondence: (E.P.); (A.C.)
| |
Collapse
|
15
|
Pellei M, Santini C, Bagnarelli L, Battocchio C, Iucci G, Venditti I, Meneghini C, Amatori S, Sgarbossa P, Marzano C, De Franco M, Gandin V. Exploring the Antitumor Potential of Copper Complexes Based on Ester Derivatives of Bis(pyrazol-1-yl)acetate Ligands. Int J Mol Sci 2022; 23:ijms23169397. [PMID: 36012662 PMCID: PMC9409343 DOI: 10.3390/ijms23169397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Bis(pyrazol-1-yl)acetic acid (HC(pz)2COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pzMe2)2COOH) were converted into the methyl ester derivatives 1 (LOMe) and 2 (L2OMe), respectively, and were used for the preparation of Cu(I) and Cu(II) complexes 3–10. The copper(II) complexes were prepared by the reaction of CuCl2·2H2O or CuBr2 with ligands 1 and 2 in methanol solution. The copper(I) complexes were prepared by the reaction of Cu[(CH3CN)4]PF6 and 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine with LOMe and L2OMe in acetonitrile solution. Synchrotron radiation-based complementary techniques (XPS, NEXAFS, and XAS) were used to investigate the electronic and molecular structures of the complexes and the local structure around copper ions in selected Cu(I) and Cu(II) coordination compounds. All Cu(I) and Cu(II) complexes showed a significant in vitro antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human cancer cell lines, and were able to overcome cisplatin resistance. Noticeably, Cu complexes appeared much more effective than cisplatin in 3D spheroid cultures. Mechanistic studies revealed that the antitumor potential did not correlate with cellular accumulation but was consistent with intracellular targeting of PDI, ER stress, and paraptotic cell death induction.
Collapse
Affiliation(s)
- Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
- Correspondence: (C.S.); (V.G.)
| | - Luca Bagnarelli
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Iole Venditti
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Carlo Meneghini
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Simone Amatori
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Correspondence: (C.S.); (V.G.)
| |
Collapse
|
16
|
Del Bello F, Pellei M, Bagnarelli L, Santini C, Giorgioni G, Piergentili A, Quaglia W, Battocchio C, Iucci G, Schiesaro I, Meneghini C, Venditti I, Ramanan N, De Franco M, Sgarbossa P, Marzano C, Gandin V. Cu(I) and Cu(II) Complexes Based on Lonidamine-Conjugated Ligands Designed to Promote Synergistic Antitumor Effects. Inorg Chem 2022; 61:4919-4937. [PMID: 35285628 PMCID: PMC8965879 DOI: 10.1021/acs.inorgchem.1c03658] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bis(pyrazol-1-yl)- and bis(3,5-dimethylpyrazol-1-yl)-acetates were conjugated with the 2-hydroxyethylester and 2-aminoethylamide derivatives of the antineoplastic drug lonidamine to prepare Cu(I) and Cu(II) complexes that might act through synergistic mechanisms of action due to the presence of lonidamine and copper in the same chemical entity. Synchrotron radiation-based complementary techniques [X-ray photorlectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS)] were used to characterize the electronic and molecular structures of the complexes and the local structure around the copper ion (XAFS) in selected complexes. All complexes showed significant antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human tumor cell lines, and were able to overcome oxaliplatin and multidrug resistance. Noticeably, these Cu complexes appeared much more effective than cisplatin against 3D spheroids of pancreatic PSN-1 cancer cells; among these, PPh3-containing Cu(I) complex 15 appeared to be the most promising derivative. Mechanistic studies revealed that 15 induced cancer cell death by means of an apoptosis-alternative cell death.
Collapse
Affiliation(s)
- Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Luca Bagnarelli
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Irene Schiesaro
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Carlo Meneghini
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Iole Venditti
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Roma, Italy
| | - Nitya Ramanan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova, Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
17
|
Baishya T, Sharma P, Gomila RM, Frontera A, Barceló-Oliver M, Verma AK, Bhattacharyya MK. Fumarato and Phthalato Bridged Dinuclear Metal-Organic Cu(II) and Mn(II) Compounds involving Infinite Fumarate-water Assemblies and Unusual Structure-guiding H-bonded Synthons: Antiproliferative Evaluation and Theoretical Studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj01860h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new dinuclear coordination compounds viz. [Cu2(µ-fum)(phen)2(H2O)6](fum)•6H2O (1) and [Mn2(µ-phth)2(phen)4]•2H2O (2) (phen = 1,10-phenanthroline, fum = fumarate and phth = phthalate) have been synthesized and characterized by elemental analysis, single...
Collapse
|
18
|
Bagnarelli L, Dolmella A, Santini C, Vallesi R, Giacomantonio R, Gabrielli S, Pellei M. A New Dimeric Copper(II) Complex of Hexyl Bis(pyrazolyl)acetate Ligand as an Efficient Catalyst for Allylic Oxidations. Molecules 2021; 26:molecules26206271. [PMID: 34684852 PMCID: PMC8541649 DOI: 10.3390/molecules26206271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
A new dimeric copper(II) bromide complex, [Cu(LOHex)Br(μ-Br)]2 (1), was prepared by a reaction of CuBr2 with the hexyl bis(pyrazol-1-yl)acetate ligand (LOHex) in acetonitrile solution and fully characterized in the solid state and in solution. The crystal structure of 1 was also determined: the complex is interlinked by two bridging bromide ligands and possesses terminal bromide ligands on each copper atom. The two pyrazolyl ligands in 1 coordinate with the nitrogen atoms to complete the Cu coordination sphere, resulting in a five-coordinated geometry—away from idealized trigonal bipyramidal and square pyramidal geometries—which can better be described as distorted square pyramidal, as measured by the τ and χ structural parameters. The pendant hexyloxy chain is disordered over two arrangements, with final site occupancies refined to 0.705 and 0.295. The newly synthesized complex was evaluated as a catalyst in copper-catalyzed C–H oxidation for allylic functionalization through a Kharasch–Sosnovsky reaction without any external reducing agent. Using 0.5 mol% of this catalyst, and tert-butyl peroxybenzoate (Luperox) as an oxidant, allylic benzoates were obtained with up to 90% yield. The general reaction time was only slightly decreased to 24 h but a very significant decrease in the alkene:Luperox ratio to 3:1 was achieved. These factors show relevant improvements with respect to classical Kharasch–Sosnovsky reactions in terms of rate and amount of reagents. The present study highlights the potential of copper(II) complexes containing functionalized bis(pyrazol-1-yl)acetate ligands as efficient catalysts for allylic oxidations.
Collapse
Affiliation(s)
- Luca Bagnarelli
- Chemistry Division, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (L.B.); (C.S.); (R.V.); (R.G.)
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Carlo Santini
- Chemistry Division, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (L.B.); (C.S.); (R.V.); (R.G.)
| | - Riccardo Vallesi
- Chemistry Division, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (L.B.); (C.S.); (R.V.); (R.G.)
| | - Roberto Giacomantonio
- Chemistry Division, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (L.B.); (C.S.); (R.V.); (R.G.)
| | - Serena Gabrielli
- Chemistry Division, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (L.B.); (C.S.); (R.V.); (R.G.)
- Correspondence: (S.G.); (M.P.); Tel.: +39-0737-402219 (S.G.); +39-0737-402213 (M.P.)
| | - Maura Pellei
- Chemistry Division, School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy; (L.B.); (C.S.); (R.V.); (R.G.)
- Correspondence: (S.G.); (M.P.); Tel.: +39-0737-402219 (S.G.); +39-0737-402213 (M.P.)
| |
Collapse
|
19
|
Pyrazole-based trinuclear and mononuclear complexes: synthesis, characterization, DNA interactions and cytotoxicity studies. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Biswas N, Saha S, Biswas BK, Chowdhury M, Rahaman A, Junghare V, Mohapatra S, Hazra S, Zangrando E, Roy Choudhury R, Roy Choudhury C. The DNA- and protein-binding properties and cytotoxicity of a new copper(II) hydrazone Schiff base complex. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1913128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Niladri Biswas
- Department of Chemistry, West Bengal State University, Kolkata, West Bengal, India
| | - Sandeepta Saha
- Department of Chemistry, West Bengal State University, Kolkata, West Bengal, India
- Sripur High School, Kolkata, West Bengal, India
| | - Barun Kumar Biswas
- Department of Chemistry, West Bengal State University, Kolkata, West Bengal, India
| | - Manas Chowdhury
- Department of Chemistry, West Bengal State University, Kolkata, West Bengal, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Kolkata, West Bengal, India
| | - Vivek Junghare
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand, India
| | - Swati Mohapatra
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand, India
- Amity Institute of Microbial Technology, AU, Greater Noida, Uttar Pradesh, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ruma Roy Choudhury
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata, West Bengal, India
| | | |
Collapse
|
21
|
Gabrielli S, Pellei M, Venditti I, Fratoddi I, Battocchio C, Iucci G, Schiesaro I, Meneghini C, Palmieri A, Marcantoni E, Bagnarelli L, Vallesi R, Santini C. Development of new and efficient copper(II) complexes of hexyl bis(pyrazolyl)acetate ligands as catalysts for allylic oxidation. Dalton Trans 2020; 49:15622-15632. [PMID: 33095220 DOI: 10.1039/d0dt02952a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, two new hexyl bis(pyrazol-1-yl)acetate ligands and related copper(ii) complexes were prepared and fully characterized in the solid state and in solution. Their electronic and molecular structures were investigated by X-ray photoelectron spectroscopy and near edge X-ray absorption; their ligand molecular structural stability upon coordination to copper was also investigated. The Cu(ii) complexes were studied as new catalysts in copper-catalyzed C-H oxidation for allylic functionalization (the Kharasch-Sosnovsky reaction) avoiding the use of any external reducing agents. Using 5 mol% of these catalysts and tert-butylperoxybenzoate as the oxidant, allylic benzoates were obtained in up to 90% yield: the general reaction time was decreased to 6 h and a 5 to 1 ratio of the alkene and tert-butylperoxybenzoate was used to overcome the two most important limitations on their use in chemistry.
Collapse
Affiliation(s)
- Serena Gabrielli
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Iole Venditti
- Science Department, Roma Tre University, via della Vasca Navale 79, 00146, Rome, Italy
| | - Ilaria Fratoddi
- Chemistry Department, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Battocchio
- Science Department, Roma Tre University, via della Vasca Navale 79, 00146, Rome, Italy
| | - Giovanna Iucci
- Science Department, Roma Tre University, via della Vasca Navale 79, 00146, Rome, Italy
| | - Irene Schiesaro
- Science Department, Roma Tre University, via della Vasca Navale 79, 00146, Rome, Italy
| | - Carlo Meneghini
- Science Department, Roma Tre University, via della Vasca Navale 79, 00146, Rome, Italy
| | - Alessandro Palmieri
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Enrico Marcantoni
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Luca Bagnarelli
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Riccardo Vallesi
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| |
Collapse
|
22
|
Synthesis and Characterization for New Nanometer Cu(II) Complexes, Conformational Study and Molecular Docking Approach Compatible with Promising in Vitro Screening. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04814-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Copper Coordination Compounds as Biologically Active Agents. Int J Mol Sci 2020; 21:E3965. [PMID: 32486510 PMCID: PMC7312030 DOI: 10.3390/ijms21113965] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022] Open
Abstract
Copper-containing coordination compounds attract wide attention due to the redox activity and biogenicity of copper ions, providing multiple pathways of biological activity. The pharmacological properties of metal complexes can be fine-tuned by varying the nature of the ligand and donor atoms. Copper-containing coordination compounds are effective antitumor agents, constituting a less expensive and safer alternative to classical platinum-containing chemotherapy, and are also effective as antimicrobial, antituberculosis, antimalarial, antifugal, and anti-inflammatory drugs. 64Сu-labeled coordination compounds are promising PET imaging agents for diagnosing malignant pathologies, including head and neck cancer, as well as the hallmark of Alzheimer's disease amyloid-β (Aβ). In this review article, we summarize different strategies for possible use of coordination compounds in the treatment and diagnosis of various diseases, and also various studies of the mechanisms of antitumor and antimicrobial action.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexey Naumov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Dmitry Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
- Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad’ 9, 125047 Moscow, Russia
| |
Collapse
|