1
|
Karkanis SF, Nikolaidis AK, Koulaouzidou EA, Achilias DS. Production of Novel Dental Resin Monomers Using Dimethacrylated Oligoesters Derived from Chemically Recycling PET Waste. CHEMSUSCHEM 2025; 18:e202402371. [PMID: 40067063 DOI: 10.1002/cssc.202402371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025]
Abstract
This research explores the potential exploitation of recycled PET bottles in developing dimethacrylated oligoesters to be used as alternative monomers to produce novel dimethacrylate-based dental resins. Specifically, oligoester diols derived from PET glycolysis were converted into dimethacrylated oligoesters (PET-GLY-DMs), as alternative monomers to Bisphenol-A glycidyl methacrylate (Bis-GMA). The glycolysis products were analyzed for their molecular weight using Gel Permeation Chromatography (GPC) and the successful conversion of hydroxyl to methacrylate groups via methacrylation was confirmed by FT-IR spectroscopy. A gradient substitute of Bis-GMA by PET-GLY-DM within Bis-GMA/TEGDMA mixtures was conducted, and the gained dimethacrylated matrices were light-cured followed by the evaluation of their physicochemical and mechanical properties. It was revealed that the newly synthesized resins exhibited lower viscosity, higher degree of conversion, and reduced mechanical properties compared to the control resins. However, the most important observation, related to environmental friendliness, was that the PET-GLY-DMs did not release Bisphenol-A, as measured by liquid chromatography. The proportions of PET-GLY-DMs, Bis-GMA, and TEGDMA in dental resin formulations were optimized to achieve similar handling properties to control resins while maintaining significant hardening and mechanical performance. This research highlights the sustainability of the chemical recycling of PET, in the synthesis of novel products with added environmental and economic benefit.
Collapse
Affiliation(s)
- Stefanos F Karkanis
- Laboratory of Polymer and Color Chemistry and Technology Department of Chemistry, Aristotle University Thessaloniki, 541 24, Thessaloniki, Greece
| | - Alexandros K Nikolaidis
- Division of Dental Tissues' Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry) School of Dentistry, Aristotle University Thessaloniki, 541 24, Thessaloniki, Greece
| | - Elisabeth A Koulaouzidou
- Division of Dental Tissues' Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry) School of Dentistry, Aristotle University Thessaloniki, 541 24, Thessaloniki, Greece
| | - Dimitris S Achilias
- Laboratory of Polymer and Color Chemistry and Technology Department of Chemistry, Aristotle University Thessaloniki, 541 24, Thessaloniki, Greece
| |
Collapse
|
2
|
Salazar A, Anderson N, Stansbury J. Formulating Mechanically Robust Composite Restorative Materials for High Performance. J Funct Biomater 2025; 16:101. [PMID: 40137380 PMCID: PMC11942826 DOI: 10.3390/jfb16030101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Although dental resin composite restoratives offer a widely used direct-placement treatment option aimed at replacing the form and function of a natural tooth, there are several clinically relevant performance aspects of these materials that can be improved. The formulation of the resin matrix phase of dental composites for high-efficiency photopolymerization leading to polymers with excellent mechanical properties has always been a challenge that is addressed here through the use of structurally new and more reactive monomers as well as the formation of polymer networks that incorporate non-covalent reinforcing interactions. The purpose of this study was to validate that a set of tetraurethane diacrylates (TUDAs) with a novel configuration of their urethane linkages in coordination with acidic comonomers could be devised to obtain highly robust new composite materials. Due to the novel molecular design, this exploratory approach was conducted using reaction kinetics and three-point bend testing to assess the performance. Conversion and mechanical properties were measured to refine these formulations prior to the addition of filler. The initial formulations demonstrated outstanding dry mechanical test results that subsequently showed a major intolerance to water storage, which led to a model study using urethane diacrylate (UDA) followed by the addition of hydrophobic TUDA monomers. Once the resin formulations were optimized, silane-treated particulate filler was added to determine the effectiveness as composite materials. The final formulation used a hydrophobic, aromatic TUDA along with 4-methacryloxyethyl trimellitic anhydride (4-META) as a latent acidic comonomer and a mixture of acrylic acid (AA) and methacrylic acid (MAA). This formulation achieves a very high level of both reactivity and mechanical properties relative to current dental composite restoratives.
Collapse
Affiliation(s)
- Austyn Salazar
- Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.S.); (N.A.)
| | - Natalie Anderson
- Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.S.); (N.A.)
| | - Jeffrey Stansbury
- Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.S.); (N.A.)
- Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
3
|
Pereira RP, Oliveira DD, Rocha MG, Correr-Sobrinho L, Roulet JF, Sinhoreti MAC. Physicochemical properties of flowable composites using isobornyl methacrylate as diluent monomer. J Appl Oral Sci 2024; 32:e20240172. [PMID: 39319906 PMCID: PMC11464074 DOI: 10.1590/1678-7757-2024-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE this study sought to evaluate the effect of isobornyl methacrylate (IBOMA) as a diluent monomer on the physicochemical properties of experimental flowable resin composites. METHODOLOGY the organic resin matrix of a modal flowable resin composite was formulated with 50 wt.% of bisphenol-A-glycidyl methacrylate (Bis-GMA) and 50 wt.% of a diluent monomer, in which IBOMA was used as a combining or substituent diluent monomer to triethylene glycol dimethacrylate (TEGDMA). The resin matrices were filled with 55 wt.% particles, of which 10 wt.% was 0.05-μm fumed silica, and 45 wt.% was 0.7-μm BaBSiO2 glass. Polymerization shrinkage stress (PSS; n=10), degree of conversion (DC; n=3), maximum rate of polymerization (Rpmax; n=3), film thickness (FT; n=10), sorption (Wsp; n=10), solubility (Wsl; n=10), flexural strength (FS; n=10), flexural modulus (FM; n=10), Knoop microhardness (KH; n=10), and microhardness reduction after chemical softening (HR; n=10) were evaluated. Data were analyzed using one-way ANOVA, followed by Tukey's test (α=0.05; β=0.2). RESULTS the results showed that the substitution or addition of IBOMA reduced FT (p=0.001), PSS (p=0.013), Rpmax (p=0.001), DC (p=0.001), FM (p=0.006) Wsp (p=0.032), and Wsl (p=0.021). However, when used as a complete substituent, IBOMA demonstrated significantly lower FS (p=0.017) and KH (p=0.008), while TEGDMA demonstrated significantly lower HR (p=0.022). CONCLUSION the flowable composite containing IBOMA combined with TEGDMA showed no effect in KH and FS and effectively reduced the PSS, RP, FT, Wsp, and Wsl. However, it showed a reduction in DC, FS, and an increase in HR.
Collapse
Affiliation(s)
- Roberta Pinto Pereira
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Odontologia Restauradora, Piracicaba, SP, Brasil
| | - Dayane de Oliveira
- University of Florida, College of Dentistry, Department of Restorative Dental Sciences, Gainesville, FL, United States
| | - Mateus Garcia Rocha
- University of Florida, College of Dentistry, Department of Restorative Dental Sciences, Gainesville, FL, United States
| | - Lourenço Correr-Sobrinho
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Odontologia Restauradora, Piracicaba, SP, Brasil
| | - Jean-François Roulet
- University of Florida, College of Dentistry, Department of Restorative Dental Sciences, Gainesville, FL, United States
| | - Mario Alexandre Coelho Sinhoreti
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Odontologia Restauradora, Piracicaba, SP, Brasil
| |
Collapse
|
4
|
Ardelean AI, Mârza SM, Marica R, Dragomir MF, Rusu-Moldovan AO, Moldovan M, Pașca PM, Oana L. Evaluation of Biocomposite Cements for Bone Defect Repair in Rat Models. Life (Basel) 2024; 14:1097. [PMID: 39337881 PMCID: PMC11432940 DOI: 10.3390/life14091097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Repairing or reconstructing significant bone defects is typically challenging. In the present study, two composite cements were used as scaffolds in a sub-critical femoral defect in rats. A control group and two experimental batches were used to compare the outcomes. This research aimed to investigate the osteogenic potential and toxicological tolerance of the bioproducts through histopathology and computed tomography imaging analysis at 14, 28, 56, and 90 days post-implantation. The biomaterials used in the investigation consisted of a 65% bioactive salinized inorganic filler and a 25% weight organic matrix. The organic part of the biomaterial was composed of Bis-GMA (bisphenol A-glycidyl methacrylate), UDMA (urethane dimethacrylate), HEMA (2-Hydroxyethyl methacrylate), and TEGDMA (triethylene glycol dimethacrylate), while the inorganic filler was composed of silica, barium glass, hydroxyapatite, and fluor aluminosilicate glass. The first findings of this research are encouraging, revealing that there is a slight difference between the groups treated with biomaterials, but it might be an effective approach for managing bone abnormalities. Material C1 exhibited a faster bone defect healing time compared to material C2, where bone fractures occurred in some individuals. It is unclear if the fractures were caused by the presence of the biomaterial C2 or whether additional variables were to blame. By the end of the research, the mice appeared to tolerate the biomaterials without exhibiting any inflammatory or rejection responses.
Collapse
Affiliation(s)
- Alina Ioana Ardelean
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Sorin Marian Mârza
- Department of Veterinary Imagistics, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Raluca Marica
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Mădălina Florina Dragomir
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Alina Oana Rusu-Moldovan
- Department of Surgery III, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Mărioara Moldovan
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Paula Maria Pașca
- Clinics Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 700489 Iasi, Romania
| | - Liviu Oana
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Ardelean AI, Marza SM, Negoescu A, Dragomir MF, Sarosi C, Moldovan M, Ene R, Oana L. Assessing Biocompatibility of Composite Cements by Peri/Intramuscular and Subcutaneous Implantation in Rats. Biomedicines 2024; 12:1718. [PMID: 39200185 PMCID: PMC11351888 DOI: 10.3390/biomedicines12081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
This study's goal was to evaluate the biocompatibility of two composite cements over a 90-day period by analyzing the individuals' behavior as well as conducting macroscopic and histological examinations and Computed Tomography (CT) scans. We conducted the cytotoxicity test by placing the materials subcutaneously and peri/intramuscularly. Days 30 and 90 were crucial for our research. On those days, we harvested the implants, kidneys and liver to search for any toxic deposits. The biomaterial's uniformity, color and texture remained unaltered despite being in intimate contact with the tissue. Although a slight inflammatory response was observed in the placement location, we observed an improved outcome of the interaction between the material and its insertion area. There were no notable discoveries in the liver and kidneys. According to the obtained results, the biomaterials did not produce any clinical changes nor specific irritation during the research, demonstrating that they are biocompatible with biological tissues.
Collapse
Affiliation(s)
- Alina Ioana Ardelean
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.I.A.); (M.F.D.); (L.O.)
| | - Sorin Marian Marza
- Department of Veterinary Imagistics, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrada Negoescu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Madalina Florina Dragomir
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.I.A.); (M.F.D.); (L.O.)
| | - Codruta Sarosi
- Department Polymeric Composites, Babeș-Bolyai University, 400294 Cluj-Napoca, Romania; (C.S.); (M.M.)
| | - Marioara Moldovan
- Department Polymeric Composites, Babeș-Bolyai University, 400294 Cluj-Napoca, Romania; (C.S.); (M.M.)
| | - Razvan Ene
- Department Orthopedics, Anesthesia and Intensive Care, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Orthopedics and Traumatology Department, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
| | - Liviu Oana
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.I.A.); (M.F.D.); (L.O.)
| |
Collapse
|
6
|
Mahmoudi Meimand N, Tsoi JKH, Burrow MF, He J, Cho K. A comparative study on the mechanical and antibacterial properties of BPA-free dental resin composites. Dent Mater 2024; 40:e31-e39. [PMID: 38926013 DOI: 10.1016/j.dental.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE The commonly used base monomer utilized in resinous commercial dental restorative products is bis-GMA which is derived from bisphenol-A (BPA) - a well-known compound which may disrupt endocrine functions. To address concerns about its leaching into the oral environment and to optimize the quality of dental composites, a BPA-free alternative base monomer, fluorinated urethane dimethacrylate (FUDMA), was designed by modifying a UDMA monomer system. METHODS Nine groups of composites were prepared by mixing the base monomers and TEGDMA in a ratio of 70/30 wt% to which were added silanized glass particles (mean diameter: 0.7 µm) in 3 different volume fractions (40, 45, and 50 vol%). Bis-GMA and UDMA base monomers were used as control groups in the same ratios. Various properties including degree of conversion (DC), flexural strength (FS) and flexural modulus (FM), water sorption (WS), solubility (SL), surface hardness and roughness, and initial adhesion property against S.mutans were investigated. One-way analysis of variance followed by Bonferroni test at α = 0.05 was used to analyze the results. RESULTS A significant difference in FS between FUDMA-based composite with 40 vol% filler (120.3 ± 10.4 MPa) and Bis-GMA-based composite with the same filler fraction (105.8 ± 10.0 MPa) was observed but there was no significant difference among other groups. The UDMA based group exhibited the highest WS (1.3 ± 0.3 %). Bis-GMA showed greater initial bacterial adhesion but was not statistically different from the other groups (p = 0.082). SIGNIFICANCE FUDMA-based resin composites exhibit comparable mechanical and bacterial adhesion properties compared with Bis-GMA and UDMA-based composites. The FUDMA composites show positive outcomes indicating they could be used as substitute composites to Bis-GMA-based composites.
Collapse
Affiliation(s)
- Negar Mahmoudi Meimand
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - James Kit Hon Tsoi
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Michael Francis Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, PR China
| | - Kiho Cho
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Melo M, Dumitrache B, Ghilotti J, Sanz JL, Llena C. Effect of Bleaching Agents on Composite Resins with and without Bis-GMA: An In Vitro Study. J Funct Biomater 2024; 15:144. [PMID: 38921518 PMCID: PMC11204896 DOI: 10.3390/jfb15060144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The objective was to evaluate the change in color, hardness, and roughness produced by carbamide peroxide (CP) at two different concentrations on two resins. The 16% or 45% CP was applied to 66 resin discs with and without Bis-GMA. The color was measured with a spectrophotometer, and ΔEab and ΔE00 were calculated. Microhardness tester and SEM were used. In both composites, the a* and b* coordinates tended to be red and yellow, respectively, and were significant in the Bis-GMA group (p < 0.05). The ΔEab and ΔE00 were higher in the composite with Bis-GMA, regardless of the treatment received (p < 0.05). The microhardness was reduced in both composites regardless of the PC concentration compared to the control (p < 0.05). The 45% CP reduced the microhardness in the resin group with Bis-GMA compared to 16% CP (p < 0.001) but was not significant in the resin without Bis-GMA (p = 1). An increase in roughness was directly proportional to the concentration of CP, and it was more notable in the composite without Bis-GMA. The composite with Bis-GMA showed a greater tendency to darken than the one without Bis-GMA. The surface hardness of the composite was reduced in both composites and was not influenced by CP concentration in the composite without Bis-GMA. Bleaching is a common procedure nowadays. It is important to know how CP affects composites to establish a prognosis of the treatments in terms of color change, roughness, and hardness.
Collapse
Affiliation(s)
| | | | - James Ghilotti
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, Gascó Oliag, 46010 Valencia, Spain
| | | | | |
Collapse
|
8
|
Zhou Z, Li A, Sun K, Guo D, Li T, Lu J, Tonin BSH, Ye Z, Watts DC, Wang T, Fu J. Synthesis of a novel monomer "DDTU-IDI" for the development of low-shrinkage dental resin composites. Dent Mater 2024; 40:608-618. [PMID: 38369405 DOI: 10.1016/j.dental.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE The current dental resin composites often suffer from polymerization shrinkage, which can lead to microleakage and potentially result in recurring tooth decay. This study presents the synthesis of a novel monomer, (3,9-diethyl-1,5,7,11-tetraoxaspiro[5,5]undecane-3,9-diyl)bis(methylene) bis((2-(3-(prop-1-en-2-yl)phenyl)propan-2-yl)carbamate) (DDTU-IDI), and evaluates its effect in the formulation of low-shrinkage dental resin composites. METHODS DDTU-IDI was synthesized through a two-step reaction route, with the initial synthesis of the required raw material monomer 3,9-diethyl-3,9-dihydroxymethyl-1,5,7,11-tetraoxaspiro-[5,5] undecane (DDTU). The structures were confirmed using Fourier-transform infrared (FT-IR) spectroscopy and hydrogen nuclear magnetic resonance (1HNMR) spectroscopy. Subsequently, DDTU-IDI was incorporated into Bis-GMA-based composites at varying weight percentages (5, 10, 15, and 20 wt%). The polymerization reaction, degree of conversion, polymerization shrinkage, mechanical properties, physicochemical properties and biocompatibility of the low-shrinkage composites were thoroughly evaluated. Furthermore, the mechanical properties were assessed after a thermal cycling test with 10,000 cycles to determine the stability. RESULTS The addition of DDTU-IDI at 10, 15, and 20 wt% significantly reduced the polymerization volumetric shrinkage of the experimental resin composites, without compromising the degree of conversion, mechanical and physicochemical properties. Remarkably, at a monomer content of 20 wt%, the polymerization shrinkage was reduced to 1.83 ± 0.53%. Composites containing 10, 15, and 20 wt% DDTU-IDI exhibited lower water sorption and higher contact angle. Following thermal cycling, the composites exhibited no significant decrease in mechanical properties, except for the flexural properties. SIGNIFICANCE DDTU-IDI has favorable potential as a component which could produce volume expansion and increase rigidity in the development of low-shrinkage dental resin composites. The development of low-shrinkage composites containing DDTU-IDI appears to be a promising strategy for reducing polymerization shrinkage, thereby potentially enhancing the longevity of dental restorations.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Aihua Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266003, China
| | - Ke Sun
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Di Guo
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Tingting Li
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jun Lu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bruna S H Tonin
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040904, SP, Brazil
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong S.A.R, China
| | - David C Watts
- University of Manchester, School of Medical Sciences, Oxford Road, M13 9PL Manchester, UK
| | - Ting Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Jing Fu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
9
|
Yu Y, Guo X, Chen J, Zhao Y, Song J, Alshawwa H, Zou X, Zhao H, Zhang Z. Biodegradation of Urethane Dimethacrylate-based materials (CAD/CAM resin-ceramic composites) and its effect on the adhesion and proliferation of Streptococcus mutans. J Mech Behav Biomed Mater 2024; 150:106280. [PMID: 38043260 DOI: 10.1016/j.jmbbm.2023.106280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE To investigate whether urethane dimethacrylate (UDMA) -based dental restorative materials biodegrade in the presence of Streptococcus mutans (S. mutans) and whether the monomers affect the adhesion and proliferation of S. mutans in turn. METHODS Cholesterol esterase and pseudocholinesterase-like activities in S. mutans were detected using p-nitrophenyl substrate. Two UDMA-based CAD/CAM resin-ceramic composites, Lava Ultimate (LU) and Vita Enamic (VE), and a light-cured UDMA resin block were co-cultured with S. mutans for 14 days. Their surfaces were characterized by scanning electron microscopy and laser microscopy, and the byproducts of biodegradation were examined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Then, the antimicrobial components (silver nanoparticles with quaternary ammonium salts) were added to the UDMA resin block to detect whether the biodegradation was restrained. Finally, the effect of UDMA on biofilm formation and virulence expression of S. mutans was assessed. RESULTS Following a 14-day immersion, the LU and UDMA resin blocks' surface roughness increased. The LU and VE groups had no UDMA or its byproducts discovered, according to the UPLC-MS/MS data, whereas the light-cured UDMA block group had UDMA, urethane methacrylate (UMA), and urethane detected. The addition of antimicrobial agents showed a significant reduction in the release of UDMA. Biofilm staining experiments showed that UDMA promoted the growth of S. mutans biofilm and quantitative real-time polymerase chain reaction results indicated that 50 μg/mL UDMA significantly increase the expression of gtfB, comC, comD, comE, and gbpB genes within the biofilm. CONCLUSIONS UDMA in the light-cured resin can be biodegraded to produce UMA and urethane under the influence of S. mutans. The formation of early biofilm can be promoted and the expression of cariogenic genes can be up-regulated by UDMA. CLINICAL SIGNIFICANCE This study focuses for the first time on whether UDMA-based materials can undergo biodegradation and verifies from a genetic perspective that UDMA can promote the formation of S. mutans biofilms, providing a reference for the rational use of UDMA-based materials in clinical practice.
Collapse
Affiliation(s)
- Yiyan Yu
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Xinwei Guo
- School of Stomatology, Peking University, Beijing, China
| | - Jiawen Chen
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Yuanhang Zhao
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Jiazhuo Song
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Hamed Alshawwa
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Xinying Zou
- Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Oral Biomedical Engineering, China
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
10
|
Pitzanti G, Mohylyuk V, Corduas F, Byrne NM, Coulter JA, Lamprou DA. Urethane dimethacrylate-based photopolymerizable resins for stereolithography 3D printing: A physicochemical characterisation and biocompatibility evaluation. Drug Deliv Transl Res 2024; 14:177-190. [PMID: 37454029 PMCID: PMC10746761 DOI: 10.1007/s13346-023-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Vat photopolymerisation (VP) three-dimensional printing (3DP) has attracted great attention in many different fields, such as electronics, pharmaceuticals, biomedical devices and tissue engineering. Due to the low availability of biocompatible photocurable resins, its application in the healthcare sector is still limited. In this work, we formulate photocurable resins based on urethane dimethacrylate (UDMA) combined with three different difunctional methacrylic diluents named ethylene glycol dimethacrylate (EGDMA), di(ethylene glycol) dimethacrylate (DEGDMA) or tri(ethylene glycol) dimethacrylate (TEGDMA). The resins were tested for viscosity, thermal behaviour and printability. After printing, the 3D printed specimens were measured with a digital calliper in order to investigate their accuracy to the digital model and tested with FT-IR, TGA and DSC. Their mechanical properties, contact angle, water sorption and biocompatibility were also evaluated. The photopolymerizable formulations investigated in this work achieved promising properties so as to be suitable for tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Giulia Pitzanti
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Valentyn Mohylyuk
- Laboratory of Finished Dosage Forms, Faculty of Pharmacy, Riga Stradiņš University, 21 Konsula Street, Riga, 1007, Latvia
| | - Francesca Corduas
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus, Newtownabbey, BT37 0QB, UK
| | - Niall M Byrne
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | | |
Collapse
|
11
|
Azlisham NAF, Johari Y, Mohamad D, Yhaya MF, Mahmood Z. Degree of conversion and physicomechanical properties of newly developed flowable composite derived from rice husk using urethane dimethacrylate monomer. Proc Inst Mech Eng H 2023; 237:1339-1347. [PMID: 38014749 DOI: 10.1177/09544119231208222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
This study evaluated the use of urethane dimethacrylate (UDMA) as a base monomer to prepare the newly developed flowable composite (FC) using nanohybrid silica derived from rice husk in comparison to bisphenol A-glycidyl methacrylate (Bis-GMA) on the degree of conversion and physicomechanical properties. The different loadings of base monomer to diluent monomer were used at the ratio of 40:60, 50:50, and 60:40. The bonding analysis confirmed the presence of nanohybrid silica in the newly developed FC. Independent t-test revealed a statistically significant increase in the degree of conversion, depth of cure and Vickers hardness of the UDMA-based FC, while surface roughness showed comparable results between the two base monomers. In conclusion, UDMA-based FC demonstrated superior performance with 60%-65% conversions, a significantly higher depth of cure exceeding 1 mm which complies with the Internal Standard of Organization 4049 (ISO 4049), and a substantial increase in Vickers hardness numbers compared to Bis-GMA-based FC, making UDMA a suitable alternative to Bis-GMA as a base monomer in the formulation of this newly developed FC derived from rice husk.
Collapse
Affiliation(s)
- Nor Ain Fatihah Azlisham
- Unit of Biomaterials, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Yanti Johari
- Unit of Prosthodontics, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Dasmawati Mohamad
- Unit of Biomaterials, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Firdaus Yhaya
- Unit of Biomaterials, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Zuliani Mahmood
- Unit of Paediatric Dentistry, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
12
|
Aref NS, Alsdrani RM. Surface topography and spectrophotometric assessment of white spot lesions restored with nano-hydroxyapatite-containing universal adhesive resin: an in-vitro study. BMC Oral Health 2023; 23:911. [PMID: 37993884 PMCID: PMC10666413 DOI: 10.1186/s12903-023-03642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND White spot lesion (WSL) is a main shortcoming accompanied by orthodontic treatment. It impairs the esthetic, surface hardness, and surface texture of enamel. So, this study was conducted to analyze the surface characteristics and color change of white spot lesions treated with nano-hydroxyapatite (nHA)-enriched universal adhesive resin. MATERIALS AND METHODS Eighty sound human permanent molars crowns were sectioned into two halves, producing 160 specimens. 16 specimens were left untreated, and 144 specimens were artificially-demineralized to generate WSLs. The specimens were classified according to the treatment approach applied as follows: I; Sound enamel, Group II; artificially-created WSLs, Group III; ICON resin-restored WSLs, Group IV; Universal adhesive resin-restored WSLs, Group V; 0.5 wt% nHA-containing universal adhesive resin-restored WSLs, Group VI; 1 wt% nHA-containing universal adhesive resin- restored WSLs, and Group VII; 3 wt% nHA-containing universal adhesive resin-restored WSLs, Group VIII; 5 wt% nHA-containing universal adhesive resin-restored WSLs, Group IX; 7 wt% nHA-containing universal adhesive resin-restored WSLs, and Group X; 10 wt% nHA-containing universal adhesive resin-restored WSLs. Some surface characteristics and color changes were assessed. Data was collected and analyzed statistically using ANOVA and the Tukey test at p < 0.05. RESULTS Surface microhardness of WSLs was significantly improved with all investigated ratios of nHA-containing universal adhesive (p < 0.0001), with the highest mean belonging to 10 wt% nHA-containing universal adhesive resin treated WSLs. All ratios of nHA-containing universal adhesive resin significantly reduced the surface roughness of WSLs (p < 0.0001). The investigated ratios of 1, 3, 5, 7, and 10 wt% nHA-containing universal adhesive resin treatment approach could mask the WSLs significantly (p < 0.0001). CONCLUSIONS Nano-hydroxyapatite-containing universal adhesive is a promising contemporary approach for the management of WSLs, coupled both the remineralizing concept and the minimally invasive resin infiltration.
Collapse
Affiliation(s)
- Neven S Aref
- Dental Biomaterials Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
- Basic Oral and Medical Sciences Department, College of Dentistry, Qassim University, Buraydah, Saudi Arabia.
| | | |
Collapse
|
13
|
Al-Odayni AB, Al-Kahtani HM, Sharaf Saeed W, Al-Kahtani A, Aouak T, Khan R, De Vera MAT, Alrahlah A. Physical-Chemical and Microhardness Properties of Model Dental Composites Containing 1,2-Bismethacrylate-3-eugenyl Propane Monomer. Biomimetics (Basel) 2023; 8:511. [PMID: 37999152 PMCID: PMC10669855 DOI: 10.3390/biomimetics8070511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
A new eugenyl dimethacrylated monomer (symbolled BisMEP) has recently been synthesized. It showed promising viscosity and polymerizability as resin for dental composite. As a new monomer, BisMEP must be assessed further; thus, various physical, chemical, and mechanical properties have to be investigated. In this work, the aim was to investigate the potential use of BisMEP in place of the BisGMA matrix of resin-based composites (RBCs), totally or partially. Therefore, a list of model composites (CEa0, CEa25, CEa50, and CEa100) were prepared, which made up of 66 wt% synthesized silica fillers and 34 wt% organic matrices (BisGMA and TEGDMA; 1:1 wt/wt), while the novel BisMEP monomer has replaced the BisGMA content as 0.0, 25, 50, and 100 wt%, respectively. The RBCs were analyzed for their degree of conversion (DC)-based depth of cure at 1 and 2 mm thickness (DC1 and DC2), Vickers hardness (HV), water uptake (WSP), and water solubility (WSL) properties. Data were statistically analyzed using IBM SPSS v21, and the significance level was taken as p < 0.05. The results revealed no significant differences (p > 0.05) in the DC at 1 and 2 mm depth for the same composite. No significant differences in the DC between CEa0, CEa25, and CEa50; however, the difference becomes substantial (p < 0.05) with CEa100, suggesting possible incorporation of BisMEP at low dosage. Furthermore, DC1 for CEa0-CEa50 and DC2 for CEa0-CEa25 were found to be above the proposed minimum limit DC of 55%. Statistical analysis of the HV data showed no significant difference between CEa0, CEa25, and CEa50, while the difference became statistically significant after totally replacing BisGMA with BisMEP (CEa100). Notably, no significant differences in the WSP of various composites were detected. Likewise, WSL tests revealed no significant differences between such composites. These results suggest the possible usage of BisMEP in a mixture with BisGMA with no significant adverse effect on the DC, HV, WSP, and degradation (WSL).
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | | | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdullah Al-Kahtani
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | | | - Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
14
|
Xie Y, Chen R, Yao W, Ma L, Li B. Synergistic effect of ion-releasing fillers on the remineralization and mechanical properties of resin-dentin bonding interfaces. Biomed Phys Eng Express 2023; 9:062001. [PMID: 37832527 DOI: 10.1088/2057-1976/ad0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In modern restorative dentistry, adhesive resin materials are vital for achieving minimally invasive, esthetic, and tooth-preserving restorations. However, exposed collagen fibers are found in the hybrid layer of the resin-dentin bonding interface due to incomplete resin penetration. As a result, the hybrid layer is susceptible to attack by internal and external factors such as hydrolysis and enzymatic degradation, and the durability of dentin bonding remains limited. Therefore, efforts have been made to improve the stability of the resin-dentin interface and achieve long-term clinical success. New ion-releasing adhesive resin materials are synthesized by introducing remineralizing ions such as calcium and phosphorus, which continuously release mineral ions into the bonding interface in resin-bonded restorations to achieve dentin biomimetic remineralization and improve bond durability. As an adhesive resin material capable of biomimetic mineralization, maintaining excellent bond strength and restoring the mechanical properties of demineralized dentin is the key to its function. This paper reviews whether ion-releasing dental adhesive materials can maintain the mechanical properties of the resin-dentin bonding interface by supplementing the various active ingredients required for dentin remineralization from three aspects: phosphate, silicate, and bioactive glass.
Collapse
Affiliation(s)
- Yimeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Ruhua Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Wei Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Liang Ma
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| |
Collapse
|
15
|
Chisnoiu RM, Muntean A, Păstrav O, Chisnoiu AM, Cuc S, Silaghi Dumitrescu L, Păstrav M, Prodan D, Delean AG. Polymer Mixtures for Experimental Self-Limited Dental Burs Development-A Preliminary Approach (Part 1). J Funct Biomater 2023; 14:447. [PMID: 37754861 PMCID: PMC10532411 DOI: 10.3390/jfb14090447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Alternative techniques have been investigated for effectiveness in caries removal because conventional metallic dental burs can lead to an excessive loss of sound tissue. The aim of the present study is to realize a preliminary approach in obtaining effective polymer mixtures for polymeric bur development, capable of removing primary dental caries using combinations of polymers to ensure the requirements for such instruments, but also a greater compatibility with the teeth structure. This study assessed the main mechanical properties, water sorption, solubility and microscopic structure of four new polymer mixture recipes to provide essential features in obtaining experimental self-limited dental burs. Two mixtures have in their composition polymer mixtures of Bis-phenol A diglycidyl ether dimethacrylate/Triethylene glycol dimethacrylate/Urethane dimethacrylates (R1, R2), and two other mixtures have Bis-phenol A diglycidyl ether dimethacrylate/Polymethyl methacrylate/Methyl methacrylates (R3, R4). The incorporation of nanoparticles into the polymer matrix has become essential due to the need of polymer biocompatibility increasing along with teeth surface remineralization, so that the powder charge was added to four recipes, such as 5% glass with BaF2 and 0.5% graphene with silver particles. All data sets were analyzed using the One-Way ANOVA test. R3, R4 showed higher compressive strength and diametrical compression values; these values increased when glass and graphene were added. Moreover, the addition of glass particles lead to an increase in flexural strength. Regarding the sorption, sample R3 had the most significant differences between day 69 and the rest of the investigation days, while the solubility varied at different intervals. From the mechanical evaluation, we could conclude that the Bis-GMA/PMMA/MMA mixtures fit the mechanical characteristics supported by polymer burs, following future studies regarding their use on the affected dentin.
Collapse
Affiliation(s)
- Radu Marcel Chisnoiu
- Department of Odontology, Endodontics and Oral Pathology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 33 Moților Street, 400001 Cluj-Napoca, Romania; (R.M.C.); (O.P.); (A.G.D.)
| | - Alexandrina Muntean
- Department of Pedodontics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 31 Avram Iancu Street, 400083 Cluj-Napoca, Romania;
| | - Ovidiu Păstrav
- Department of Odontology, Endodontics and Oral Pathology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 33 Moților Street, 400001 Cluj-Napoca, Romania; (R.M.C.); (O.P.); (A.G.D.)
| | - Andrea Maria Chisnoiu
- Department of Prosthodontics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Stanca Cuc
- “Raluca Ripan” Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (L.S.D.); (D.P.)
| | - Laura Silaghi Dumitrescu
- “Raluca Ripan” Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (L.S.D.); (D.P.)
| | - Mihaela Păstrav
- Department of Orthodontics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 31 Avram Iancu Street, 400083 Cluj-Napoca, Romania;
| | - Doina Prodan
- “Raluca Ripan” Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (L.S.D.); (D.P.)
| | - Ada Gabriela Delean
- Department of Odontology, Endodontics and Oral Pathology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 33 Moților Street, 400001 Cluj-Napoca, Romania; (R.M.C.); (O.P.); (A.G.D.)
| |
Collapse
|
16
|
Ardelean AI, Dragomir MF, Moldovan M, Sarosi C, Paltinean GA, Pall E, Tudoran LB, Petean I, Oana L. In Vitro Study of Composite Cements on Mesenchymal Stem Cells of Palatal Origin. Int J Mol Sci 2023; 24:10911. [PMID: 37446086 DOI: 10.3390/ijms241310911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Uniform filler distribution in composites is an important requirement. Therefore, BaO glass, nano hydroxyapatite and quartz filler distribution was realized through PCL microcapsules which progressively release filler during matrix polymerization. Two composites were realized based on a complex matrix containing BisGMA, UDMA, HEMA and PEG400 mixed with a previously described mineral filler: 33% for C1 and 31% for C2. The spreading efficiency was observed via SEM, revealing a complete disintegration of the microcapsules during C1 polymerization, while C2 preserved some microcapsule parts that were well embedded into the matrix beside BaO filler particles; this was confirmed by means of the EDS spectra. Mesenchymal stem cells of palatal origin were cultured on the composites for 1, 3, 5 and 7 days. The alkaline phosphatase (ALP) level was measured at each time interval and the cytotoxicity was tested after 3, 5 and 7 days of co-culture on the composite samples. The SEM investigation showed that both composites allowed for robust proliferation of the cells. The MSC cell pluripotency stage was observed from 1 to 3 days with an average level of ALP of 209.2 u/L for C1 and 193.0 u/L for C2 as well as a spindle cell morphology. Cell differentiation occurred after 5 and 7 days of culture, implied by morphological changes such as flattened, star and rounded shapes, observed via SEM, which were correlated with an increased ALP level (279.4 u/L for C1 and 284.3 u/L for C2). The EDX spectra after 7 days of co-culture revealed increasing amounts of P and Ca close to the hydroxyapatite stoichiometry, indicating the stimulation of the osteoinductive behavior of MSCs by C1 and C2. The MTT assay test showed a cell viability of 98.08% for C1 and 97.33% for C2 after 3 days, proving the increased biocompatibility of the composite samples. The cell viability slightly decreased at 5 and 7 days but the results were still excellent: 89.5% for C1 and 87.3% for C2. Thus, both C1 and C2 are suitable for further in vivo testing.
Collapse
Affiliation(s)
- Alina Ioana Ardelean
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Madalina Florina Dragomir
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Marioara Moldovan
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Codruta Sarosi
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Gertrud Alexandra Paltinean
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Emoke Pall
- Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Faculty of Biology and Geology, Babes-Bolyai University, 44 Gheorghe Bilaşcu Street, 400015 Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Liviu Oana
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Alrahlah A, Khan R, Al-Odayni AB, Saeed WS, Bautista LS, Haider S, De Vera MAT, Alshabib A. Fabrication of Novel Pre-Polymerized BisGMA/Silica Nanocomposites: Physio-Mechanical Considerations. J Funct Biomater 2023; 14:323. [PMID: 37367287 DOI: 10.3390/jfb14060323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Resin composite mimics tooth tissues both in structure and properties, and thus, they can withstand high biting force and the harsh environmental conditions of the mouth. Various inorganic nano- and micro-fillers are commonly used to enhance these composites' properties. In this study, we adopted a novel approach by using pre-polymerized bisphenol A-glycidyl methacrylate (BisGMA) ground particles (XL-BisGMA) as fillers in a BisGMA/triethylene glycol dimethacrylate (TEGDMA) resin system in combination with SiO2 nanoparticles. The BisGMA/TEGDMA/SiO2 mixture was filled with various concentrations of XL-BisGMA (0, 2.5, 5, and 10 wt.%). The XL-BisGMA added composites were evaluated for viscosity, degree of conversion (DC), microhardness, and thermal properties. The results demonstrated that the addition of a lower concentration of XL-BisGMA particles (2.5 wt.%) significantly reduced (p ≤ 0.05) the complex viscosity from 374.6 (Pa·s) to 170.84. (Pa·s). Similarly, DC was also increased significantly (p ≤ 0.05) by the addition of 2.5 wt.% XL-BisGMA, with the pristine composite showing a DC of (62.19 ± 3.2%) increased to (69.10 ± 3.4%). Moreover, the decomposition temperature has been increased from 410 °C for the pristine composite (BT-SB0) to 450 °C for the composite with 10 wt.% of XL-BisGMA (BT-SB10). The microhardness has also been significantly reduced (p ≤ 0.05) from 47.44 HV for the pristine composite (BT-SB0) to 29.91 HV for the composite with 2.5 wt.% of XL-BisGMA (BT-SB2.5). These results suggest that a XL-BisGMA could be used to a certain percentage as a promising filler in combination with inorganic fillers to enhance the DC and flow properties of the corresponding resin-based dental composites.
Collapse
Affiliation(s)
- Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Leonel S Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | | | - Abdulrahman Alshabib
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
18
|
Analysis of Monomer Release from Different Composite Resins after Bleaching by HPLC. Life (Basel) 2022; 12:life12111713. [PMID: 36362868 PMCID: PMC9699366 DOI: 10.3390/life12111713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: This study aimed to examine the effect of bleaching agents on the release of triethylenae glycol dimethacrylate, 2-hydroxyethyl methacrylate, bisphenol A, urethane dimethacrylate, and bisphenol A-glycidyl methacrylate monomers, which are released from different composite resins, using the high-performance liquid chromatography (HPLC) method. (2) Methods: Ninety disc-shaped specimens were produced and immersed in artificial saliva. After different bleaching applications [office type bleaching (OB) and home type bleaching (HB)], the specimens were immersed in a 75 wt% ethanol/water solution, and the released monomers were analyzed by HPLC at predefined time intervals: 1, 7, and 28 days. The Kruskal−Wallis and Mann−Whitney U tests were conducted for statistical analysis (p = 0.05). (3) Results: The monomers were released at all times from all composite specimens. The monomer release was increased over time. The highest monomer release was detected on day 28. Bleaching applications affected monomer release. No statistical difference was found between OB and HB applications (p > 0.05). The most released monomer was Bisphenol-A in all composites. (4) Conclusion: Given that a residual monomer release from composite resins has a toxic effect and that bleaching treatments increase this release, a treatment protocol should be made in accordance with the manufacturer’s instructions.
Collapse
|
19
|
Abu Bakar AA, Zainuddin MZ, Abdullah SM, Tamchek N, Mohd Noor IS, Alauddin MS, Alforidi A, Mohd Ghazali MI. The 3D Printability and Mechanical Properties of Polyhydroxybutyrate (PHB) as Additives in Urethane Dimethacrylate (UDMA) Blends Polymer for Medical Application. Polymers (Basel) 2022; 14:4518. [PMID: 36365512 PMCID: PMC9657082 DOI: 10.3390/polym14214518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 04/12/2024] Open
Abstract
The integration of additive manufacturing (3D printing) in the biomedical sector required material to portray a holistic characteristic in terms of printability, biocompatibility, degradability, and mechanical properties. This research aims to evaluate the 3D printability and mechanical properties of polyhydroxybutyrate (PHB) as additives in the urethane dimethacrylate (UDMA) based resin and its potential for medical applications. The printability of the PHB/UDMA resin blends was limited to 11 wt.% as it reached the maximum viscosity value at 2188 cP. Two-way analysis of variance (ANOVA) was also conducted to assess the significant effect of the varied PHB (wt.%) incorporation within UDMA resin, and the aging duration of 3D printed PHB/UDMA on mechanical properties in terms of tensile and impact properties. Meanwhile, the increasing crystallinity index (CI) of X-ray diffraction (XRD) in the 3D printed PHB/UDMA as the PHB loading increased, indicating that there is a strong correlation with the lower tensile and impact strength. FESEM images also proved that the agglomerations that occurred within the UDMA matrix had affected the mechanical performance of 3D printed PHB/UDMA. Nonetheless, the thermal stability of the 3D printed PHB/UDMA had only a slight deviation from the 3D printed UDMA since it had better thermal processability.
Collapse
Affiliation(s)
- Ahmad Adnan Abu Bakar
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Muhammad Zulhilmi Zainuddin
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Shahino Mah Abdullah
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Nizam Tamchek
- Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Ikhwan Syafiq Mohd Noor
- Physics Division, Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Syafiq Alauddin
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia
| | - Ahmad Alforidi
- Electrical Engineering Department, Taibah University, Medina 42353, Saudi Arabia
| | - Mohd Ifwat Mohd Ghazali
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| |
Collapse
|
20
|
The Cytotoxicity and Genotoxicity of Bioactive Dental Materials. Cells 2022; 11:cells11203238. [PMID: 36291107 PMCID: PMC9600439 DOI: 10.3390/cells11203238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/31/2022] Open
Abstract
The promotion of biologically based treatment strategies in restorative dentistry is of paramount importance, as invasive treatments should be avoided to maintain the tooth's vitality. This study aimed to assess the biocompatibility of commercially available bioactive materials that can be used for dental pulp capping. The study was performed with a monocyte/macrophage peripheral blood SC cell line (ATCC CRL-9855) on the following six specific bioactive materials: ProRoot MTA (Dentsply Sirona), MTA Angelus (Angelus), Biodentine (Septodont), TheraCal LC (Bisco), ACTIVA BioACTIVE (Pulpdent) and Predicta Bioactive Bulk (Parkell). The cytotoxicity of the investigated agents was measured using a resazurin-based cell viability assay, while the genotoxicity was evaluated using an alkaline comet assay. Additionally, flow cytometry (FC) apoptosis detection was conducted with a FITC (fluorescein isothiocyanate) Annexin V Apoptosis Detection Kit I. FC cell-cycle arrest assessment was carried out with propidium iodide staining. The results of this study showed no significant cytotoxicity and genotoxicity (p > 0.05) in ProRoot MTA, MTA Angelus, Biodentine, ACTIVA BioACTIVE and Predicta Bioactive. Conversely, TheraCal LC presented a significant decrease (p < 0.001). In conclusion, due to excellent biocompatibility and low cytotoxicity, MTA, Biodentine, ACTIVA BioACTIVE and Predicta Bioactive may be suitable for pulp capping treatments. On the other hand, due to the high cytotoxicity of TheraCal LC, its use should be avoided in vital pulp therapies.
Collapse
|
21
|
Bergamo ETP, Campos TMB, Piza MMT, Gutierrez E, Lopes ACO, Witek L, Coelho PG, Celestrino M, Carvalho LFD, Benalcázar Jalkh EB, Bonfante EA. Temporary materials used in prosthodontics: The effect of composition, fabrication mode, and aging on mechanical properties. J Mech Behav Biomed Mater 2022; 133:105333. [PMID: 35839630 DOI: 10.1016/j.jmbbm.2022.105333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the effect of composition, fabrication mode, and thermal cycling on the mechanical properties of different polymeric systems used for temporary dental prostheses. MATERIALS AND METHODS Standard bar-shaped specimens (25 × 2 × 2 mm) were fabricated of six polymeric systems of varying compositions and fabrication modes (n = 10/group): conventional PMMA (Alike, GC) - group CGC; conventional PMMA (Dêncor, Clássico) - group CD; bis-acryl (Tempsmart, GC) - group BGC; bis-acryl (Yprov, Yller) - group BY; milled PMMA (TelioCAD, Ivoclar) - group MI; 3D printed bis-acryl - (Cosmos Temp, Yller) group PY. Half of the specimens were subjected to 5000 thermal cycles (5 °C to 55 °C). Three-point bending tests were performed using a universal testing machine with a crosshead speed set to 0.5 mm/min. Flexural strength and elastic modulus were calculated from the collected data. FTIR spectra were recorded pre and post curing and after thermal cycling to evaluate material composition and degree of conversion. Energy-dispersive spectroscopy (EDS) and scanning electron microscope (SEM) were utilized to examine the composition and micromorphology of the systems, respectively. Data were analyzed using two-analysis of variance and Tukey tests (α = 0.05). RESULTS FTIR spectra indicated that BGC, BY and PY groups corresponded to urethane dimethacrylate systems (bis-acryl), while CGC, CD, and MI groups corresponded to monomethacrylate systems, polymethyl methacrylate (PMMA). Bis-acryl BGC system yeilded the highest flexural strength (80 MPa), followed by the milled PMMA MI system (71 MPa), both statistically significant different relative to other groups. Bis-acryl BY exhibited the lowest flexural strength (27 MPa). Thermocycling significantly increased the flexural strength of all polymeric systems (∼10-15 MPa), except for the 3D-printed PY group. Bis-acryl BGC (1.89 GPa) and conventional PMMA CGC (1.66 GPa) groups exhibited the highest elastic modulus, followed by milled PMMA MI group (1.51 GPa) and conventional PMMA CD (1.45 GPa) systems, with significant difference detected between BGC group and MI and CD groups. The 3D printed PY (0.78 GPa) and bis-acryl BY (0.47 GPa) systems presented the lowest elastic modulus. Thermocycling did not have a significant influence on the elastic modulus. FTIR spectra indicate water sorption and release of unreacted monomers as well as increased degree of conversion (∼5-12%) after thermal cycling. CONCLUSION Composition and fabrication mode and thermal cycling significantly affected the mechanical properties of polymeric systems used for temporary dental prostheses.
Collapse
Affiliation(s)
- Edmara T P Bergamo
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil; Division of Biomaterials, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA.
| | - Tiago M B Campos
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Mariana M T Piza
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Eliezer Gutierrez
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Adolfo C O Lopes
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Lukasz Witek
- Division of Biomaterials, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Paulo G Coelho
- Division of Biomaterials, Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, NY, USA; Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | | | - Laura F de Carvalho
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Ernesto B Benalcázar Jalkh
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Estevam A Bonfante
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| |
Collapse
|
22
|
Chrószcz-Porębska MW, Barszczewska-Rybarek IM, Chladek G. Characterization of the Mechanical Properties, Water Sorption, and Solubility of Antibacterial Copolymers of Quaternary Ammonium Urethane-Dimethacrylates and Triethylene Glycol Dimethacrylate. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165530. [PMID: 36013665 PMCID: PMC9414361 DOI: 10.3390/ma15165530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 06/01/2023]
Abstract
The use of dental composites based on dimethacrylates that have quaternary ammonium groups is a promising solution in the field of antibacterial restorative materials. This study aimed to investigate the mechanical properties and behaviors in aqueous environments of a series of six copolymers (QA:TEG) comprising 60 wt.% quaternary ammonium urethane-dimethacrylate (QAUDMA) and 40 wt.% triethylene glycol dimethacrylate (TEGDMA); these copolymers are analogous to a common dental copolymer (BG:TEG), which comprises 60 wt.% bisphenol A glycerolate dimethacrylate (Bis-GMA) and 40 wt.% TEGDMA. Hardness (HB), flexural strength (FS), flexural modulus (E), water sorption (WS), and water solubility (SL) were assessed for this purpose. The pilot study of these copolymers showed that they have high antibacterial activity and good physicochemical properties. This paper revealed that QA:TEGs cannot replace BG:TEG due to their insufficient mechanical properties and poor behavior in water. However, the results can help to explain how QAUDMA-based materials work, and how their composition should be manipulated to produce the best performance. It was found that the longer the N-alkyl chain, the lower the HB, WS, and SL. The FS and E increased with the lengthening of the N-alkyl chain from eight to ten carbon atoms. Its further extension, to eighteen carbon atoms, caused a decrease in those parameters.
Collapse
Affiliation(s)
- Marta W. Chrószcz-Porębska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Izabela M. Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Grzegorz Chladek
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| |
Collapse
|
23
|
Lopes-Rocha L, Hernandez C, Gonçalves V, Pinho T, Tiritan ME. Analytical Methods for Determination of BPA Released from Dental Resin Composites and Related Materials: A Systematic Review. Crit Rev Anal Chem 2022; 54:653-668. [PMID: 35776702 DOI: 10.1080/10408347.2022.2093097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Knowing the impacts of bisphenol A (BPA) on human health, this systematic review aimed to gather the analytical methods for the quantification of BPA release of BPA in dental materials in in vitro and in vivo (biological fluids) studies. A brief critical discussion of the impacts of BPA on human health and the possible association with BPA in dental materials was also presented. The research was carried out by three independent researchers, (according to PRISMA guidelines) in PUBMED and SCOPUS databases, by searching for specific keywords and articles published between January 2011 and February 2022. Seventeen articles met the eligibility criteria and were included in this systematic review: 10 in vitro and 7 in vivo. In in vitro studies, the highest amounts of BPA released were from flowable to conventional resins, followed by resin-modified glass ionomer. In contrast, the smallest amount was released from "BPA-free" composites and CAD-CAM blocks. Regarding in vivo studies, a higher concentration of BPA were found in saliva than urine or blood. The best analytical method for trace quantifying BPA is LC-MS/MS (Liquid Chromatography with Tandem Mass Spectrometry) due to its selectivity, low quantification limits, and the unequivocal identification. However, further studies are required to develop faster and more sensitive methods, in order to obtain more reliable results.
Collapse
Affiliation(s)
- Lígia Lopes-Rocha
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Clara Hernandez
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Virgínia Gonçalves
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Teresa Pinho
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- IBMC-Institute of Molecular and Cellular Biology, i3S-Institute of Innovation and Research in Health, Oporto University, Porto, Portugal
| | - Maria Elizabeth Tiritan
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- Faculty of Pharmacy, University of Porto (FFUP), Portugal. Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Photopolymerizable dental composite resins with lower shrinkage stress and improved hydrolytic and hygroscopic behavior with a urethane monomer used as an additive. J Mech Behav Biomed Mater 2022; 130:105189. [DOI: 10.1016/j.jmbbm.2022.105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/15/2022]
|
25
|
Chrószcz MW, Barszczewska-Rybarek IM, Kazek-Kęsik A. Novel Antibacterial Copolymers Based on Quaternary Ammonium Urethane-Dimethacrylate Analogues and Triethylene Glycol Dimethacrylate. Int J Mol Sci 2022; 23:ijms23094954. [PMID: 35563344 PMCID: PMC9103508 DOI: 10.3390/ijms23094954] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The growing scale of secondary caries and occurrence of antibiotic-resistant bacterial strains require the development of antibacterial dental composites. It can be achieved by the chemical introduction of quaternary ammonium dimethacrylates into dental composites. In this study, physicochemical and antibacterial properties of six novel copolymers consisting of 60 wt. % quaternary ammonium urethane-dimethacrylate analogues (QAUDMA) and 40 wt. % triethylene glycol dimethacrylate (TEGDMA) were investigated. Uncured compositions had suitable refractive index (RI), density (dm), and glass transition temperature (Tgm). Copolymers had low polymerization shrinkage (S), high degree of conversion (DC) and high glass transition temperature (Tgp). They also showed high antibacterial effectiveness against S. aureus and E. coli bacterial strains. It was manifested by the reduction in cell proliferation, decrease in the number of bacteria adhered on their surfaces, and presence of growth inhibition zones. It can be concluded that the copolymerization of bioactive QAUDMAs with TEGDMA provided copolymers with high antibacterial activity and rewarding physicochemical properties.
Collapse
Affiliation(s)
- Marta W. Chrószcz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-32-237-1793
| | - Izabela M. Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland;
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland;
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| |
Collapse
|
26
|
Hampe T, Wiessner A, Frauendorf H, Alhussein M, Karlovsky P, Bürgers R, Krohn S. Monomer Release from Dental Resins: The Current Status on Study Setup, Detection and Quantification for In Vitro Testing. Polymers (Basel) 2022; 14:polym14091790. [PMID: 35566958 PMCID: PMC9100225 DOI: 10.3390/polym14091790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Improvements in mechanical properties and a shift of focus towards esthetic dentistry led to the application of dental resins in various areas of dentistry. However, dental resins are not inert in the oral environment and may release monomers and other substances such as Bisphenol-A (BPA) due to incomplete polymerization and intraoral degradation. Current research shows that various monomers present cytotoxic, genotoxic, proinflammatory, and even mutagenic effects. Of these eluting substances, the elution of BPA in the oral environment is of particular interest due to its role as an endocrine disruptor. For this reason, the release of residual monomers and especially BPA from dental resins has been a cause for public concern. The assessment of patient exposure and potential health risks of dental monomers require a reliable experimental and analytical setup. However, the heterogeneous study design applied in current research hinders biocompatibility testing by impeding comparative analysis of different studies and transfer to the clinical situation. Therefore, this review aims to provide information on each step of a robust experimental and analytical in vitro setup that allows the collection of clinically relevant data and future meta-analytical evaluations.
Collapse
Affiliation(s)
- Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
- Correspondence:
| | - Andreas Wiessner
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| | - Holm Frauendorf
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany;
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany; (M.A.); (P.K.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany; (M.A.); (P.K.)
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| | - Sebastian Krohn
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| |
Collapse
|
27
|
Vieira I, Ferraz LN, Vieira Junior WF, Dias CTDS, Lima DANL. Effect of at-home bleaching gels with different thickeners on the physical properties of a composite resin without bisphenol A. J ESTHET RESTOR DENT 2022; 34:969-977. [PMID: 35332985 DOI: 10.1111/jerd.12908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate, in vitro, the influence of at-home bleaching with 16% carbamide peroxide (CP) gels containing different thickeners on the color, gloss, roughness, and microhardness of a composite resin with bisphenol A (BPA) and without bisphenol A (BPA-free). MATERIAL AND METHODS Cylindrical samples (7 × 2 mm) of a composite resin with BPA (Filtek Z350 XT®; 3M/ESPE) and composite resin BPA-free (Vittra APS®; FGM) were subdivided into six subgroups (n = 12), according to the bleaching gel used: no bleaching (control), commercial gel with 16% CP and carbopol, experimental gel with 16% CP and carbopol, experimental gel with 16% CP and natrosol, experimental gel with carbopol and experimental gel with natrosol. At the end of the experimental phase, the specimens were analyzed for color (ΔE*ab and ΔE00 ), surface roughness (Ra), gloss (GU), and surface microhardness (SMH). The data for all analyzes were submitted to Levene's test, Shapiro-Wilk's test and ANOVA. RESULTS For ΔE*ab and ΔE00 no statistically significant differences were found between all groups evaluated. Bleaching with experimental 16% CP gel with carbopol resulted in the lowest GU values for both composite resins evaluated. 16% CP experimental gel with natrosol resulted in higher Ra for the BPA composite resin and the bleaching with natrosol resulted in higher Ra for BPA-free. About 16% CP experimental gel with carbopol and 16% CP experimental gel with natrosol resulted in the lowest final SMH for composite resin with BPA. For the BPA-free composite resin, no differences were found between the groups in SMH for the same resin, however they presented the lowest values compared with all others groups. CONCLUSION The effects on physical properties are dependent on the composition of the composite resin and the thickener/bleaching gel used. The BPA-free composite resin showed less changes after exposure to bleaching agent, although its initial physical properties were worse compared to a bleached BPA. CLINICAL RELEVANCE The hydrogen peroxide and thickener of the at-home bleaching gel does impact the properties of composites with BPA or BPA-free such as gloss, roughness and surface microhardness, extremely important factors for maintaining an aesthetically and physically satisfactory restoration. BPA-free composite resins have inferior properties after at-home bleaching with different thickeners.
Collapse
Affiliation(s)
- Isabele Vieira
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Laura Nobre Ferraz
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Carlos Tadeu Dos Santos Dias
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | | |
Collapse
|
28
|
Aref NS, Alrasheed MK. Casein phosphopeptide amorphous calcium phosphate and universal adhesive resin as a complementary approach for management of white spot lesions: an in-vitro study. Prog Orthod 2022; 23:10. [PMID: 35307802 PMCID: PMC8934900 DOI: 10.1186/s40510-022-00404-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background White spot lesion (WSL) is the most common consequence during and after orthodontic treatment. This study was conducted to investigate the ability of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) coupled with universal adhesive resin to treat white spot lesions. Material and methods Forty-five extracted premolars were sectioned to create 90 specimens. Seventy-five specimens were demineralized to generate artificially created WSLs. Different strategies have been applied for the management of the artificially created WSLs. Six experimental groups were employed: Group I: sound enamel (control), Group II: demineralized enamel (artificially-created WSLs), Group III: ICON resin-treated WSLs, Group IV: CPP-ACP-treated WSLs, Group V: universal adhesive resin-treated WSLs, and Group VI: CPP-ACP followed by universal adhesive resin-treated WSLs. Assessment of color stability using a spectrophotometer, surface microhardness using a Vickers tester, and surface roughness using a profilometer was done. The surface topography of representative specimens from each experimental group was inspected using a scanning electron microscope. Collected data were analyzed using one-way ANOVA followed by Tukey’s post hoc test at p ≤ 0.05. Results White spot lesions treated with CPP-ACP and subsequently coated with universal adhesive resin (Group VI) exhibited a significantly lower ΔE than both CPP-ACP (Group IV) and universal adhesive resin-treated (Group V) groups (p ≤ 0.05), but it was not significantly different from the ICON resin-treated group (Group III). For surface microhardness, WSLs treated with CPP-ACP and consequently coated with universal adhesive resin (Group VI) recorded the highest mean that was significantly different from both ICON resin (Group III) and universal adhesive resin-treated (Group V) groups (p ≤ 0.05). All the tested strategies (ICON resin, CPP-ACP, universal adhesive resin, and CPP-ACP followed by universal adhesive resin) significantly lowered the surface roughness of the WSLs (p ≤ 0.05), while no significant difference was detected among them. Conclusions Combining a considerable caries remineralizing program using CPP-ACP with subsequent universal adhesive resin infiltration could be a promising approach to manage WSLs efficiently through increasing surface microhardness and restoring esthetic while developing a smoother surface.
Collapse
|
29
|
Sun Y, Zhou Z, Jiang H, Duan Y, Li J, Liu X, Hong L, Zhao C. Preparation and evaluation of novel bio-based Bis-GMA-free dental composites with low estrogenic activity. Dent Mater 2021; 38:281-293. [PMID: 34955233 DOI: 10.1016/j.dental.2021.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/07/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Although bisphenol Aglycidyl methacrylate (Bis-GMA) are widely used in the dental composite, its raw materials include the petroleum-based product bisphenol A (BPA) with high estrogenic activity (EA). In this study, two new BPA-free dimethacrylate monomers from bio-based material creosol were synthesized and evaluated. METHODS The renewable bisphenol monomer 5, 5'-methylenedicreosol (BCF) was prepared from bio-based material creosol. By the human breast cancer cells (MCF-7 cells) proliferation assay, a risk assessment of BCF was performed to determine if BCF possessed reduced EA in comparison to BPA. Then, the novel monomers 5, 5'-methylenedicreosol diglycidyl ether diacrylate (BCF-EA) and 5, 5'-methylenedicreosol diglycidyl ether dimethacrylate (BCF-GMA) were synthesized from BCF with epichlorohydrin and (meth)acrylate. All products were investigated by 1H NMR and FT-IR spectra. The control resin was a mixture based on Bis-GMA and tri(ethyleneglycol) dimethacrylate (TEGDMA) with a weight ratio of 5:5 (5B5T). Similarly, experimental resin matrix was a mixture based on BCF-EA/TEGDMA (5E5T) and BCF-GMA/TEGDMA (5G5T). And their corresponding composites were then prepared with corresponding resin matrices and hybrid SiO2 (5E5TC, 5G5TC and 5B5TC). The properties of these composites were investigated according to the standard or referenced methods. Each sample was evaluated for double bond conversion (DC), shrinkage stress (SS) and volumetric polymerization shrinkage (VS). Water sorption (WS), water solubility (SL), mechanical properties and cytotoxicity were also measured. RESULTS 1H NMR and FT-IR spectra confirmed the chemical structure of each monomer. EA test revealed that bio-based bisphenol monomer BCF as the precursor of BCF-EA and BCF-GMA showed lower EA than BPA. Cured resin matrix: Both 5E5T and 5G5T had nearly the same DC (p < 0.05), which was higher than 5B5T (p < 0.05); 5E5T and 5G5T had lower VS, SL and cytotoxicity than 5B5T (p < 0.05); mechanical properties of 5E5T and 5G5T were all better than those of 5B5T (p < 0.05). Cured composite: There was no significant difference in conversion (p < 0.05); 5E5TC and 5G5TC had significantly lower VS (p < 0.05); WS of 5E5TC and 5G5TC were similar (p < 0.05), but higher compared to 5B5TC (p < 0.05); 5E5TC and 5G5TC had the deeper depth of cure (p > 0.05); before water immersion, there was no significant difference in flexural strength between 5E5TC and 5G5TC (p > 0.05), and higher than 5B5TC (p < 0.05); 5E5TC and 5G5TC showed less cytotoxicity than 5B5TC (p < 0.05). SIGNIFICANCE The new BPA-free di(meth)acrylates are promising photocurable dental monomers owning to bio-based raw material, high degree of conversion coupled with low curing shrinkage and good mechanical properties. Therefore, BCF-EA and BCF-GMA has a potential to be used as the substitution for Bis-GMA to prepare Bis-GMA-free dental composite.
Collapse
Affiliation(s)
- Yinan Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zeying Zhou
- Department of Prosthodontic Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Hao Jiang
- College of Materials Science and Engineering, Jilin University, Changchun 130022, PR China
| | - Yuting Duan
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jialin Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiaoqiu Liu
- Department of Prosthodontic Dentistry, Hospital of Stomatology, Jilin University, Changchun 130012, PR China
| | - Lihua Hong
- Endodontics Department of Stomatological Hospital, Jilin University, Changchun 130021, PR China.
| | - Chengji Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
30
|
Szczesio-Wlodarczyk A, Domarecka M, Kopacz K, Sokolowski J, Bociong K. An Evaluation of the Properties of Urethane Dimethacrylate-Based Dental Resins. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2727. [PMID: 34064213 PMCID: PMC8196897 DOI: 10.3390/ma14112727] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/01/2022]
Abstract
Most of the dental materials available on the market are still based on traditional monomers such as bisphenol A-glycidyl methacrylate (Bis-GMA), urethane dimethacrylate (UDMA), triethyleneglycol dimethacrylate (TEGDMA), and ethoxylated bisphenol-A dimethacrylate (Bis-EMA). The interactions that arise in the monomer mixture and the characteristics of the resulting polymer network are the most important factors, which define the final properties of dental materials. The use of three different monomers in proper proportions may create a strong polymer matrix. In this paper, fourteen resin materials, based on urethane dimethacrylate with different co-monomers such as Bis-GMA or Bis-EMA, were evaluated. TEGDMA was used as the diluting monomer. The flexural strength (FS), diametral tensile strength (DTS), and hardness (HV) were determined. The impacts of material composition on the water absorption and dissolution were evaluated as well. The highest FS was 89.5 MPa, while the lowest was 69.7 MPa. The median DTS for the tested materials was found to range from 20 to 30 MPa. The hardness of the tested materials ranged from 14 to 16 HV. UDMA/TEGDMA matrices were characterized by the highest adsorption values. The overall results indicated that changes in the materials' properties are not strictly proportional to the material's compositional changes. The matrices showed good properties when the composite contained an equal mixture of Bis-GMA/Bis-EMA and UDMA or the content of the UDMA monomer was higher.
Collapse
Affiliation(s)
- Agata Szczesio-Wlodarczyk
- University Laboratory of Materials Research, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland
| | - Monika Domarecka
- Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland; (M.D.); (J.S.); (K.B.)
| | - Karolina Kopacz
- “DynamoLab” Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, ul. Pomorska 251, 92-216 Lodz, Poland;
- Department of Health Sciences, Medical University of Mazovia, Ludwika Rydygiera 8, 01-793 Warszawa, Poland
| | - Jerzy Sokolowski
- Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland; (M.D.); (J.S.); (K.B.)
| | - Kinga Bociong
- Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Lodz, Poland; (M.D.); (J.S.); (K.B.)
| |
Collapse
|
31
|
Yoshinaga K, Yoshihara K, Yoshida Y. Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA. Dent Mater 2021; 37:e391-e398. [PMID: 33757654 DOI: 10.1016/j.dental.2021.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Bisphenol A-glycidyl methacrylate (Bis-GMA) and urethane dimethacrylate (UDMA) are widely used as the primary components of (meth)acrylic monomers. However, the use of Bis-GMA, which is a bisphenol A derivative, in dentistry is being questioned after bisphenol A was found to exhibit estrogenic activity. Although UDMA is being considered as a substitute for bis-GMA, the mechanical properties of cured resin composites containing UDMA are less than desirable. Therefore, in this study, we developed new alternative (meth)acrylic monomers to enhance the mechanical strength of cured composite resins. METHODS Five urethane acrylic monomers were synthesized in this study as (meth)acrylic monomer substituents to replace Bis-GMA and UDMA. The elastic modulus, strength, and breaking energy values of cured resins consisting of mixtures of the urethane acrylates and diluting monomers were determined using the three-point flexural test. The data obtained were analyzed using one-way ANOVA and the post-hoc Tukey HSD tests (p < 0.05). Viscosities of the urethane acrylic monomers were measured with a cone-plate viscometer. Refractive indices of the urethane acrylic monomers were determined with an Abbe refractometer. RESULTS The results of the three-point flexural tests revealed that the cured urethane acrylic monomer-based resin exhibited higher elastic modulus (up to 40%) and strength (up to 21%) compared to the cured UDMA-based resin. Viscosity and refractive index of the urethane acrylic monomers were between those of UDMA and Bis-GMA. SIGNIFICANCE The developed urethane diacrylates prepared from diisocyanates which have an aromatic or aliphatic ring, 1,3-bis(1-isocyanato-1-methylethyl)benzene (TMXDI), 1,3-bis(isocyanatomethyl)benzene (XDI), or norbornane diisocyanate (NBDI) are worth considering as alternative options of Bis-GMA and UDMA for restorative resin composites.
Collapse
Affiliation(s)
- Kazuhiko Yoshinaga
- Hokkaido University, Faculty of Dental Medicine, Department of Biomaterials and Bioengineering, Kita 13, Nishi 7, Sapporo, Hokkaido, Japan; Sun Medical Co., Ltd., 571-2 Furutaka-cho, Moriyama, Shiga 524-0044, Japan.
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan; Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yasuhiro Yoshida
- Hokkaido University, Faculty of Dental Medicine, Department of Biomaterials and Bioengineering, Kita 13, Nishi 7, Sapporo, Hokkaido, Japan
| |
Collapse
|
32
|
Alrahlah A, Al-Odayni AB, Al-Mutairi HF, Almousa BM, Alsubaie FS, Khan R, Saeed WS. A Low-Viscosity BisGMA Derivative for Resin Composites: Synthesis, Characterization, and Evaluation of Its Rheological Properties. MATERIALS 2021; 14:ma14020338. [PMID: 33440864 PMCID: PMC7827810 DOI: 10.3390/ma14020338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to synthesize new bisphenol A-glycidyl methacrylate (BisGMA) derivatives, targeting a reduction in its viscosity by substituting one of its OH groups, the leading cause of its high viscosity, with a chlorine atom. Hence, this monochloro-BisGMA (mCl-BisGMA) monomer was synthesized by Appel reaction procedure, and its structure was confirmed using Fourier transform infrared spectroscopy, 1H and 13C-nuclear magnetic resonance spectroscopy, and mass spectroscopy. The viscosity of mCl-BisGMA (8.3 Pa·s) was measured under rheometry conditions, and it was found to be more than 65-fold lower than that of BisGMA (566.1 Pa·s) at 25 °C. For the assessment of the viscosity changes of model resins in the presence of mCl-BisGMA, a series of resin matrices, in which, besides BisGMA, 50 wt % was triethylene glycol dimethacrylate, were prepared and evaluated at 20, 25, and 35 °C. Thus, BisGMA was incrementally replaced by 25% mCl-BisGMA to obtain TBC0, TBC25, TBC50, TBC75, and TBC100 blends. The viscosity decreased with temperature, and the mCl-BisGMA content in the resin mixture increased. The substantial reduction in the viscosity value of mCl-BisGMA compared with that of BisGMA may imply its potential use as a dental resin matrix, either alone or in combination with traditional monomers. However, the various properties of mCl-BisGMA-containing matrices should be evaluated.
Collapse
Affiliation(s)
- Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (H.F.A.-M.); (B.M.A.); (R.K.); (W.S.S.)
- Correspondence: (A.A.); (A.-B.A.-O.)
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (H.F.A.-M.); (B.M.A.); (R.K.); (W.S.S.)
- Correspondence: (A.A.); (A.-B.A.-O.)
| | - Haifa Fahad Al-Mutairi
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (H.F.A.-M.); (B.M.A.); (R.K.); (W.S.S.)
| | - Bashaer Mousa Almousa
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (H.F.A.-M.); (B.M.A.); (R.K.); (W.S.S.)
| | - Faisal S. Alsubaie
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (H.F.A.-M.); (B.M.A.); (R.K.); (W.S.S.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (H.F.A.-M.); (B.M.A.); (R.K.); (W.S.S.)
| |
Collapse
|
33
|
Martins ARM, Machado-Santos L, Grassia RCF, Vitti RP, Sinhoreti MAC, Brandt WC. Physical and Mechanical Properties of Resins Blends Containing a Monomethacrylate with Low-polymerization Shrinkage. Eur J Dent 2021; 15:96-100. [PMID: 33412607 PMCID: PMC7902105 DOI: 10.1055/s-0040-1716985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objectives
The aim of this study was to evaluate the Knoop hardness (KH), cross-link density (CLD), water sorption (WS), water solubility (WSB), and volumetric shrinkage (VS) of experimental resins blends containing a monomethacrylate with low-polymerization shrinkage.
Materials and Methods
A blend of bisphenol glycidyl methacrylate (BisGMA) as base monomer was formulated with (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA), Bis-GMA/isobornyl methacrylate (IBOMA), or Bis-GMA/TEGDMA/IBOMA in different concentrations (40, 50, or 60 wt%). The camphorquinone (CQ)/2-(dimethylamino) ethyl methacrylate (DMAEMA) was used as the photoinitiator system. The KH and CLD were measured at the top surface using an indenter. For WS and WSB, the volume of the samples was calculated in mm
3
. The samples were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). The samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2 − m3/V and m1 − m3/V, respectively. VS results were calculated with the density parameters before and after curing.
Statistical Analysis
Data were submitted to ANOVA and Tukey’s test (α = 0.05).
Results
The resins containing IBOMA showed lower VS results. TEGDMA 40% and TEGDMA/IBOMA 20/20 wt% showed higher KH values. The IBOMA groups showed lower CLD, while TEGDMA groups had higher values of CLD. The BisGMA/TEGDMA resin presented the highest values of WS, and for WSB, all groups showed no significant differences among themselves.
Conclusion
The monomethacrylate with low-polymerization shrinkage IBOMA used alone or in combination with TEGDMA may decrease VS, WS, and CLD values.
Collapse
Affiliation(s)
| | - Luciana Machado-Santos
- Department of Prosthodontics, School of Dentistry, University of Taubaté, Taubaté, SP, Brazil
| | | | - Rafael Pino Vitti
- Department of Prosthodontics, School of Dentistry, University of Taubaté, Taubaté, SP, Brazil.,School of Dentistry, Herminio Ometto University Center, Araras, SP, Brazil
| | | | | |
Collapse
|
34
|
Bhadila G, Wang X, Weir MD, Melo MAS, Martinho F, Fay GG, Oates TW, Sun J, Xu HHK. Low-shrinkage-stress nanocomposite: An insight into shrinkage stress, antibacterial, and ion release properties. J Biomed Mater Res B Appl Biomater 2021; 109:1124-1134. [PMID: 33386668 DOI: 10.1002/jbm.b.34775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/17/2020] [Accepted: 11/28/2020] [Indexed: 02/05/2023]
Abstract
The aims are: (a) To develop the first low-shrinkage-stress nanocomposite with antibacterial and remineralization capabilities through the incorporation of dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP); (b) to investigate the effects of the new composite on biofilm inhibition, mechanical properties, shrinkage stress, and calcium (Ca) and phosphate (P) ion releases. The low-shrinkage-stress resin consisted of urethane dimethacrylate and triethylene glycol divinylbenzyl ether. Composite was formulated with 3% DMAHDM and 20% NACP. Mechanical properties, shrinkage stress, and degree of conversion were evaluated. Streptococcus mutans biofilm growth on composites was assessed. Ca and P ion releases were measured. The shrinkage stress of the low-shrinkage-stress composite containing 3% DMAHDM and 20% NACP was 36% lower than that of traditional composite control (p < 0.05), with similar degrees of conversion of 73.9%. The new composite decreased the biofilm colony-forming unit by 4 log orders and substantially reduced biofilm lactic acid production compared to control composite (p < 0.05). Incorporating DMAHDM to the low-shrinkage-stress composite did not adversely affect the Ca and P ion release. A novel bioactive nanocomposite was developed with low shrinkage stress, strong antibiofilm activity, and high levels of ion release for remineralization, without undermining the mechanical properties and degree of conversion.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Pediatric Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, Maryland, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Frederico Martinho
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Guadalupe Garcia Fay
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, Maryland, USA
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Arbildo-Vega HI, Lapinska B, Panda S, Lamas-Lara C, Khan AS, Lukomska-Szymanska M. Clinical Effectiveness of Bulk-Fill and Conventional Resin Composite Restorations: Systematic Review and Meta-Analysis. Polymers (Basel) 2020; 12:polym12081786. [PMID: 32785019 PMCID: PMC7464794 DOI: 10.3390/polym12081786] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The objective of this systematic review and meta-analysis was to determine the clinical effectiveness of bulk-fill and conventional resin in composite restorations. A bibliographic search was carried out until May 2020, in the biomedical databases Pubmed/MEDLINE, EMBASE, Scopus, CENTRAL and Web of Science. The study selection criteria were: randomized clinical trials, in English, with no time limit, with a follow-up greater than or equal to 6 months and that reported the clinical effects (absence of fractures, absence of discoloration or marginal staining, adequate adaptation marginal, absence of post-operative sensitivity, absence of secondary caries, adequate color stability and translucency, proper surface texture, proper anatomical form, adequate tooth integrity without wear, adequate restoration integrity, proper occlusion, absence of inflammation and adequate point of contact) of restorations made with conventional and bulk resins. The risk of bias of the study was analyzed using the Cochrane Manual of Systematic Reviews of Interventions. Sixteen articles were eligible and included in the study. The results indicated that there is no difference between restorations with conventional and bulk resins for the type of restoration, type of tooth restored and restoration technique used. However, further properly designed clinical studies are required in order to reach a better conclusion.
Collapse
Affiliation(s)
- Heber Isac Arbildo-Vega
- Department of General Dentistry, Dentistry School, Universidad San Martín de Porres, Chiclayo 14012, Peru;
- Department of General Dentistry, Dentistry School, Universidad Particular de Chiclayo, Chiclayo 14012, Peru
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Saurav Panda
- Department of Periodontics and Oral Implantology, Siksha ‘O’ Anusandhan Univeristy, Bhubaneswar 751003, India;
- Department of Biomedical, Surgical and Dental Sciences, Universita Degli Studi di Milano, 20122 Milano, Italy
| | - César Lamas-Lara
- Department of General Dentistry, Stomatology School, Universidad Peruana Los Andes, Lima 15072, Peru;
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-675-74-61
| |
Collapse
|