1
|
Zhou L, Liu Q, Fang Z, Li QL, Wong HM. Targeted antimicrobial self-assembly peptide hydrogel with in situ bio-mimic remineralization for caries management. Bioact Mater 2025; 44:428-446. [PMID: 39534787 PMCID: PMC11555604 DOI: 10.1016/j.bioactmat.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
The single-function agents with wide-spectrum activity which tend to disturb the ecological balance of oral cavity cannot satisfy dental treatment need. A multi-functional agent with specifically targeted killing property and in situ remineralization is warranted for caries management. A novel multi-functional agent (8DSS-C8-P-113) consisting of three domains, i.e., a non-specific antimicrobial peptide (AMP) (P-113), a competence stimulating peptide (C8), and an enhancing remineralization domain (8DSS), is fabricated and evaluated in this study. The findings demonstrates that 2 μM mL-1 of 8DSS-C8-P-113 eliminates planktonic Streptococcus mutans (S. mutans) without disrupting the oral normal flora. At a concentration of 8 μM mL-1, it exhibits the ability to prevent S. mutans' adhesion. Furthermore, 8DSS-C8-P-113 self-assembles a hydrogel state at the higher concentration of 16 μM mL-1. This hydrogel self-adheres on the tooth surface, resisting acid attack, eradicating S. mutans' biofilm, and inducing mineralization in order to facilitate the repair of demineralized dental hard tissue. Its significant effectiveness in reducing the severity of dental caries is also demonstrated in vivo in a rat model. This study suggests that the multi-functional bioactive AMP 8DSS-C8-P-113 is a promising agent to specifically target pathogen, prevent tooth demineralization, and effectively induce in situ bio-mimic remineralization for the management of dental caries.
Collapse
Affiliation(s)
- Li Zhou
- Faculty of Dentistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Qing Liu
- Faculty of Dentistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Zehui Fang
- Faculty of Dentistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Quan Li Li
- Institute of Oral Science, Department of Stomatology, Longgang Otorhinolaryngology Hospital, No. 3004L Longgang Avenue, Shenzhen, 518172, China
- Key Lab. of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Meishan Road, Hefei, 230000, China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
2
|
Sharma A, Singh G, Bhatti JS, Gill SK, Arya SK. Antifungal peptides: Therapeutic potential and challenges before their commercial success. Int J Biol Macromol 2025; 284:137957. [PMID: 39603306 DOI: 10.1016/j.ijbiomac.2024.137957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Antifungal peptides (AFPs) are small cationic peptides that are found in a diverse range of taxa including bacteria, plants, mammals and insects. AFPs exhibit the strong antifungal activities against several pathogenic fungi, making them potential candidates for developing novel antifungal agents. AFP cause fungal cell death by rupturing the membranes of the fungal cell wall and inhibits the vital enzymes. Since AFPs are isolated from a range of natural sources, efforts are being made to create synthetic versions of these peptides with improved pharmacological properties. One of their key advantages is that they are less likely to develop resistance as compared to conventional antifungal medications. Although AFPs display immense potential as antifungal agents, challenges still exist in their stability, solubility, absorption, and time-consuming extraction process. Still, the possibility for AFPs to evolve into a novel class of antifungal medicine gives hope for improved treatments for fungal infections. This article offers the comprehensive information on AFPs origin, mode of action, prospective use in antifungal treatments. It also discusses about the application of antifungal peptides beyond the therapeutic field, such as in agriculture for crop protection, in food industry and in aquaculture field. It further elaborates on the challenges and potential paths associated with the progression of AFPs as advanced antifungal agents.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | | | | |
Collapse
|
3
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
4
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Bras G, Satala D, Juszczak M, Kulig K, Wronowska E, Bednarek A, Zawrotniak M, Rapala-Kozik M, Karkowska-Kuleta J. Secreted Aspartic Proteinases: Key Factors in Candida Infections and Host-Pathogen Interactions. Int J Mol Sci 2024; 25:4775. [PMID: 38731993 PMCID: PMC11084781 DOI: 10.3390/ijms25094775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular proteases are key factors contributing to the virulence of pathogenic fungi from the genus Candida. Their proteolytic activities are crucial for extracting nutrients from the external environment, degrading host defenses, and destabilizing the internal balance of the human organism. Currently, the enzymes most frequently described in this context are secreted aspartic proteases (Saps). This review comprehensively explores the multifaceted roles of Saps, highlighting their importance in biofilm formation, tissue invasion through the degradation of extracellular matrix proteins and components of the coagulation cascade, modulation of host immune responses via impairment of neutrophil and monocyte/macrophage functions, and their contribution to antifungal resistance. Additionally, the diagnostic challenges associated with Candida infections and the potential of Saps as biomarkers were discussed. Furthermore, we examined the prospects of developing vaccines based on Saps and the use of protease inhibitors as adjunctive therapies for candidiasis. Given the complex biology of Saps and their central role in Candida pathogenicity, a multidisciplinary approach may pave the way for innovative diagnostic strategies and open new opportunities for innovative clinical interventions against candidiasis.
Collapse
Affiliation(s)
- Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| |
Collapse
|
6
|
Amer L, Retout M, Jokerst JV. Activatable prodrug for controlled release of an antimicrobial peptide via the proteases overexpressed in Candida albicans and Porphyromonas gingivalis. Theranostics 2024; 14:1781-1793. [PMID: 38389835 PMCID: PMC10879876 DOI: 10.7150/thno.91165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Candida albicans and Porphyromonas gingivalis are prevalent in the subgingival area where the frequency of fungal colonization increases with periodontal disease. Candida's transition to a pathogenic state and its interaction with P. gingivalis exacerbate periodontal disease severity. However, current treatments for these infections differ, and combined therapy remains unexplored. This work is based on an antimicrobial peptide that is therapeutic and induces a color change in a nanoparticle reporter. Methods: We built and characterized two enzyme-activatable prodrugs to treat and detect C. albicans and P. gingivalis via the controlled release of the antimicrobial peptide. The zwitterionic prodrug quenches the antimicrobial peptide's activity until activation by a protease inherent to the pathogens (SAP9 for C. albicans and RgpB for P. gingivalis). The toxicity of the intact prodrugs was evaluated against fungal, bacterial, and mammalian cells. Therapeutic efficacy was assessed through microscopy, disk diffusion, and viability assays, comparing the prodrug to the antimicrobial peptide alone. Finally, we developed a colorimetric detection system based on the aggregation of plasmonic nanoparticles. Results: The intact prodrugs showed negligible toxicity to cells absent a protease trigger. The therapeutic impact of the prodrugs was comparable to that of the antimicrobial peptide alone, with a minimum inhibitory concentration of 3.1 - 16 µg/mL. The enzymatic detection system returned a detection limit of 10 nM with gold nanoparticles and 3 nM with silver nanoparticles. Conclusion: This approach offers a convenient and selective protease sensing and protease-induced treatment mechanism based on bioinspired antimicrobial peptides.
Collapse
Affiliation(s)
- Lubna Amer
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Jesse V. Jokerst
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
7
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Balleza D. Peptide Flexibility and the Hydrophobic Moment are Determinants to Evaluate the Clinical Potential of Magainins. J Membr Biol 2023; 256:317-330. [PMID: 37097306 DOI: 10.1007/s00232-023-00286-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Using a flexibility prediction algorithm and in silico structural modeling, we have calculated the intrinsic flexibility of several magainin derivatives. In the case of magainin-2 (Mag-2) and magainin H2 (MAG-H2) we have found that MAG-2 is more flexible than its hydrophobic analog, Mag-H2. This affects the degree of bending of both peptides, with a kink around two central residues (R10, R11), whereas, in Mag-H2, W10 stiffens the peptide. Moreover, this increases the hydrophobic moment of Mag-H2, which could explain its propensity to form pores in POPC model membranes, which exhibit near-to-zero spontaneous curvatures. Likewise, the protective effect described in DOPC membranes for this peptide regarding its facilitation in pore formation would be related to the propensity of this lipid to form membranes with negative spontaneous curvature. The flexibility of another magainin analog (MSI-78) is even greater than that of Mag-2. This facilitates the peptide to present a kind of hinge around the central F12 as well as a C-terminal end prone to be disordered. Such characteristics are key to understanding the broad-spectrum antimicrobial actions exhibited by this peptide. These data reinforce the hypothesis on the determinant role of spontaneous membrane curvature, intrinsic peptide flexibility, and specific hydrophobic moment in assessing the bioactivity of membrane-active antimicrobial peptides.
Collapse
Affiliation(s)
- Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico.
| |
Collapse
|
9
|
Amer L, Retout M, Jokerst JV. Activatable prodrug for controlled release of an antimicrobial peptide via the proteases overexpressed in Candida albicans and Porphyromonas gingivalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568833. [PMID: 38076788 PMCID: PMC10705279 DOI: 10.1101/2023.11.27.568833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report the controlled release of an antimicrobial peptide using enzyme-activatable prodrugs to treat and detect Candida albicans and Porphyromonas gingivalis . Our motivation lies in the prevalence of these microorganisms in the subgingival area where the frequency of fungal colonization increases with periodontal disease. This work is based on an antimicrobial peptide that is both therapeutic and induces a color change in a nanoparticle reporter. This antimicrobial peptide was then built into a zwitterionic prodrug that quenches its activity until activation by a protease inherent to these pathogens of interest: SAP9 or RgpB for C. albicans and P. gingivalis , respectively. We first confirmed that the intact zwitterionic prodrug has negligible toxicity to fungal, bacterial, and mammalian cells absent a protease trigger. Next, the therapeutic impact was assessed via disk diffusion and viability assays and showed a minimum inhibitory concentration of 3.1 - 16 µg/mL, which is comparable to the antimicrobial peptide alone (absent integration into prodrug). Finally, the zwitterionic design was exploited for colorimetric detection of C. albicans and P. gingivalis proteases. When the prodrugs were cleaved, the plasmonic nanoparticles aggregated causing a color change with a limit of detection of 10 nM with gold nanoparticles and 3 nM with silver nanoparticles. This approach has value as a convenient and selective protease sensing and protease-induced treatment mechanism based on bioinspired antimicrobial peptides. Abstract Figure
Collapse
|
10
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
11
|
Machado M, Silva S, Costa EM. Are Antimicrobial Peptides a 21st-Century Solution for Atopic Dermatitis? Int J Mol Sci 2023; 24:13460. [PMID: 37686269 PMCID: PMC10488019 DOI: 10.3390/ijms241713460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that is the result of various environmental, bacterial and genetic stimuli, which culminate in the disruption of the skin's barrier function. Characterized by highly pruritic skin lesions, xerosis and an array of comorbidities among which skin infections are the most common, this condition results in both a significant loss of quality of life and in the need for life-long treatments (e.g., corticosteroids, monoclonal antibodies and regular antibiotic intake), all of which may have harmful secondary effects. This, in conjunction with AD's rising prevalence, made the development of alternative treatment strategies the focus of both the scientific community and the pharmaceutical industry. Given their potential to both manage the skin microbiome, fight infections and even modulate the local immune response, the use of antimicrobial peptides (AMPs) from more diverse origins has become one of the most promising alternative solutions for AD management, with some being already used with some success towards this end. However, their production and use also exhibit some limitations. The current work seeks to compile the available information and provide a better understanding of the state of the art in the understanding of AMPs' true potential in addressing AD.
Collapse
Affiliation(s)
| | - Sara Silva
- CBQF Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Eduardo M. Costa
- CBQF Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
12
|
Yang L, Cheng T, Shao J. Perspective on receptor-associated immune response to Candida albicans single and mixed infections: Implications for therapeutics in oropharyngeal candidiasis. Med Mycol 2023; 61:myad077. [PMID: 37533203 DOI: 10.1093/mmy/myad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Oropharyngeal candidiasis (OPC), commonly known as 'thrush', is an oral infection that usually dismantles oral mucosal integrity and malfunctions local innate and adaptive immunities in compromised individuals. The major pathogen responsible for the occurrence and progression of OPC is the dimorphic opportunistic commensal Candida albicans. However, the incidence induced by non-albicans Candida species including C. glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, and C. krusei are increasing in company with several oral bacteria, such as Streptococcus mutans, S. gordonii, S. epidermidis, and S. aureus. In this review, the microbiological and infection features of C. albicans and its co-contributors in the pathogenesis of OPC are outlined. Since the invasion and concomitant immune response lie firstly on the recognition of oral pathogens through diverse cellular surface receptors, we subsequently emphasize the roles of epidermal growth factor receptor, ephrin-type receptor 2, human epidermal growth factor receptor 2, and aryl hydrocarbon receptor located on oral epithelial cells to delineate the underlying mechanism by which host immune recognition to oral pathogens is mediated. Based on these observations, the therapeutic approaches to OPC comprising conventional and non-conventional antifungal agents, fungal vaccines, cytokine and antibody therapies, and antimicrobial peptide therapy are finally overviewed. In the face of newly emerging life-threatening microbes (C. auris and SARS-CoV-2), risks (biofilm formation and interconnected translocation among diverse organs), and complicated clinical settings (HIV and oropharyngeal cancer), the research on OPC is still a challenging task.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, P. R. China
| |
Collapse
|
13
|
Sharma L, Bisht GS. Short Antimicrobial Peptides: Therapeutic Potential and Recent Advancements. Curr Pharm Des 2023; 29:3005-3017. [PMID: 38018196 DOI: 10.2174/0113816128248959231102114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
There has been a lot of interest in antimicrobial peptides (AMPs) as potential next-generation antibiotics. They are components of the innate immune system. AMPs have broad-spectrum action and are less prone to resistance development. They show potential applications in various fields, including medicine, agriculture, and the food industry. However, despite the good activity and safety profiles, AMPs have had difficulty finding success in the clinic due to their various limitations, such as production cost, proteolytic susceptibility, and oral bioavailability. To overcome these flaws, a number of solutions have been devised, one of which is developing short antimicrobial peptides. Short antimicrobial peptides do have an advantage over longer peptides as they are more stable and do not collapse during absorption. They have generated a lot of interest because of their evolutionary success and advantageous properties, such as low molecular weight, selective targets, cell or organelles with minimal toxicity, and enormous therapeutic potential. This article provides an overview of the development of short antimicrobial peptides with an emphasis on those with ≤ 30 amino acid residues as a potential therapeutic agent to fight drug-resistant microorganisms. It also emphasizes their applications in many fields and discusses their current state in clinical trials.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|
14
|
Griffith A, Mateen A, Markowitz K, Singer SR, Cugini C, Shimizu E, Wiedman GR, Kumar V. Alternative Antibiotics in Dentistry: Antimicrobial Peptides. Pharmaceutics 2022; 14:1679. [PMID: 36015305 PMCID: PMC9412702 DOI: 10.3390/pharmaceutics14081679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Akilah Mateen
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Kenneth Markowitz
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Steven R. Singer
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
15
|
Cheah YH, Liu CY, Yip BS, Wu CL, Peng KL, Cheng JW. Strategy to Enhance Anticancer Activity and Induced Immunogenic Cell Death of Antimicrobial Peptides by Using Non-Nature Amino Acid Substitutions. Biomedicines 2022; 10:biomedicines10051097. [PMID: 35625834 PMCID: PMC9138567 DOI: 10.3390/biomedicines10051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
There is an urgent and imminent need to develop new agents to fight against cancer. In addition to the antimicrobial and anti-inflammatory activities, many antimicrobial peptides can bind to and lyse cancer cells. P-113, a 12-amino acid clinically active histatin-rich peptide, was found to possess anti-Candida activities but showed poor anticancer activity. Herein, anticancer activities and induced immunogenic cancer cell death of phenylalanine-(Phe-P-113), β-naphthylalanine-(Nal-P-113), β-diphenylalanine-(Dip-P-113), and β-(4,4′-biphenyl)alanine-(Bip-P-113) substituted P-113 were studied. Among these peptides, Nal-P-113 demonstrated the best anticancer activity and caused cancer cells to release potent danger-associated molecular patterns (DAMPs), such as reactive oxygen species (ROS), cytochrome c, ATP, and high-mobility group box 1 (HMGB1). These results could help in developing antimicrobial peptides with better anticancer activity and induced immunogenic cell death in therapeutic applications.
Collapse
Affiliation(s)
- Yu-Huan Cheah
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Chun-Yu Liu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Bak-Sau Yip
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Chih-Lung Wu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Kuang-Li Peng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
| | - Jya-Wei Cheng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-H.C.); (C.-Y.L.); (B.-S.Y.); (C.-L.W.); (K.-L.P.)
- Correspondence: ; Tel.: +886-3-5742763; Fax: +886-3-5715934
| |
Collapse
|
16
|
Sun CQ, Peng J, Yang LB, Jiao ZL, Zhou LX, Tao RY, Zhu LJ, Tian ZQ, Huang MJ, Guo G. A Cecropin-4 Derived Peptide C18 Inhibits Candida albicans by Disturbing Mitochondrial Function. Front Microbiol 2022; 13:872322. [PMID: 35531288 PMCID: PMC9075107 DOI: 10.3389/fmicb.2022.872322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
Global burden of fungal infections and related health risk has accelerated at an incredible pace, and multidrug resistance emergency aggravates the need for the development of new effective strategies. Candida albicans is clinically the most ubiquitous pathogenic fungus that leads to high incidence and mortality in immunocompromised patients. Antimicrobial peptides (AMPs), in this context, represent promising alternatives having potential to be exploited for improving human health. In our previous studies, a Cecropin-4-derived peptide named C18 was found to possess a broader antibacterial spectrum after modification and exhibit significant antifungal activity against C. albicans. In this study, C18 shows antifungal activity against C. albicans or non-albicans Candida species with a minimum inhibitory concentration (MIC) at 4∼32 μg/ml, and clinical isolates of fluconazole (FLZ)-resistance C. tropicalis were highly susceptible to C18 with MIC value of 8 or 16 μg/ml. Additionally, C18 is superior to FLZ for killing planktonic C. albicans from inhibitory and killing kinetic curves. Moreover, C18 could attenuate the virulence of C. albicans, which includes damaging the cell structure, retarding hyphae transition, and inhibiting biofilm formation. Intriguingly, in the Galleria mellonella model with C. albicans infection, C18 could improve the survival rate of G. mellonella larvae to 70% and reduce C. albicans load from 5.01 × 107 to 5.62 × 104 CFU. For mechanistic action of C18, the level of reactive oxygen species (ROS) generation and cytosolic Ca2 + increased in the presence of C18, which is closely associated with mitochondrial dysfunction. Meanwhile, mitochondrial membrane potential (△Ψm) loss and ATP depletion of C. albicans occurred with the treatment of C18. We hypothesized that C18 might inhibit C. albicans via triggering mitochondrial dysfunction driven by ROS generation and Ca2 + accumulation. Our observation provides a basis for future research to explore the antifungal strategies and presents C18 as an attractive therapeutic candidate to be developed to treat candidiasis.
Collapse
Affiliation(s)
- Chao-Qin Sun
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Laboratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Long-Bing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zheng-Long Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Luo-Xiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Ru-Yu Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Li-Juan Zhu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zhu-Qing Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Ming-Jiao Huang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- *Correspondence: Guo Guo,
| |
Collapse
|
17
|
Tian T, Xie W, Liu L, Fan S, Zhang H, Qin Z, Yang C. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34955061 DOI: 10.1080/10408398.2021.2019673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Last several years, a rapid increase in drug resistance to traditional antibiotics has driven the emergence and development of antimicrobial peptides (AMPs). AMPs have also gained considerable attention from scientists due to their high potency in combatting infectious pathogens. A subset of analogues and their derivatives with specific targets have been successfully designed based on natural peptide patterns. In this review, scientific knowledge on the mechanisms of action related to biological activity and structure-activity relationship (SAR) of AMPs are summarized, and the biological applications in several important fields are critically discussed. SAR shows that the positive charge, secondary structure, special amino acid residues, hydrophobicity, and helicity of AMPs are closely related to their biological activities. The combination of nanotechnology, bioinformatics, and genetic engineering can accelerate to achieve the application of AMPs as effective, safe, economical, and nonresistant antimicrobial agents in medicine, the food and feed industries, and agriculture in coming years. Given the intense interest in AMPs, further investigations are needed in the future to evaluate the specific structure and function that make their use favorable in several industries. This review may provide a comprehensive reference for future studies on chemical modifications, mechanistic exploration, and applications of AMPs.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, China
| | - Luxuan Liu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Chao Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China.,State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied research in Medicine and Health, University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
18
|
Zolin GVS, da Fonseca FH, Zambom CR, Garrido SS. Histatin 5 Metallopeptides and Their Potential against Candida albicans Pathogenicity and Drug Resistance. Biomolecules 2021; 11:biom11081209. [PMID: 34439875 PMCID: PMC8391865 DOI: 10.3390/biom11081209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Usually caused by Candida albicans, buccal candidiasis begins with the morphological transition between yeast and hyphal cells. Over time and without the correct treatment, it can be disseminated through the bloodstream becoming a systemic infection with high mortality rates. C. albicans already shows resistance against antifungals commonly used in treatments. Therefore, the search for new drugs capable of overcoming antifungal resistance is essential. Histatin 5 (Hst5) is an antimicrobial peptide of the Histatin family, that can be found naturally in human saliva. This peptide presents high antifungal activity against C. albicans. However, Hst5 action can be decreased for interaction with enzymes and metal ions present in the oral cavity. The current work aims to bring a brief review of relevant aspects of the pathogenesis and resistance mechanisms already reported for C. albicans. In addition, are also reported here the main immune responses of the human body and the most common antifungal drugs. Finally, the most important aspects regarding Histatin 5 and the benefits of its interaction with metals are highlighted. The intention of this review is to show the promising use of Hst5 metallopeptides in the development of effective drugs.
Collapse
|
19
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Grafskaia E, Pavlova E, Babenko VV, Latsis I, Malakhova M, Lavrenova V, Bashkirov P, Belousov D, Klinov D, Lazarev V. The Hirudo Medicinalis Microbiome Is a Source of New Antimicrobial Peptides. Int J Mol Sci 2020; 21:E7141. [PMID: 32992666 PMCID: PMC7582656 DOI: 10.3390/ijms21197141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial peptides (AMPs) are considered a promising new class of anti-infectious agents. This study reports new antimicrobial peptides derived from the Hirudo medicinalis microbiome identified by a computational analysis method applied to the H. medicinalis metagenome. The identified AMPs possess a strong antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC range: 5.3 to 22.4 μM), including Staphylococcus haemolyticus, an opportunistic coagulase-negative pathogen. The secondary structure analysis of peptides via CD spectroscopy showed that all the AMPs except pept_352 have mostly disordered structures that do not change under different conditions. For peptide pept_352, the α-helical content increases in the membrane environment. The examination of the mechanism of action of peptides suggests that peptide pept_352 exhibits a direct membranolytic activity. Furthermore, the cytotoxicity assay demonstrated that the nontoxic peptide pept_1545 is a promising candidate for drug development. Overall, the analysis method implemented in the study may serve as an effective tool for the identification of new AMPs.
Collapse
Affiliation(s)
- Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Elizaveta Pavlova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow 141701, Russia
| | - Vladislav V. Babenko
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Ivan Latsis
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Maja Malakhova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Victoria Lavrenova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Department of biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Pavel Bashkirov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Dmitrii Belousov
- Sechenov First Moscow State Medical University Sechenov University, Moscow 119991, Russia;
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (E.P.); (V.V.B.); (I.L.); (M.M.); (V.L.); (P.B.); (D.K.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow 141701, Russia
| |
Collapse
|
21
|
Bhattacharjya S, Yang D, Yoon HS. Special Issue "Selected Papers from the 8th Asia-Pacific NMR (APNMR) Symposium: Recent Advances in NMR Spectroscopy". Int J Mol Sci 2020; 21:ijms21124419. [PMID: 32580280 PMCID: PMC7352290 DOI: 10.3390/ijms21124419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: (S.B.); (D.Y.); (H.S.Y.); Tel.: +65-6316-7997 (S.B.); +65-6516-1014 (D.Y.); +65-6316-2846 (H.S.Y.)
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Correspondence: (S.B.); (D.Y.); (H.S.Y.); Tel.: +65-6316-7997 (S.B.); +65-6516-1014 (D.Y.); +65-6316-2846 (H.S.Y.)
| | - Ho Sup Yoon
- School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: (S.B.); (D.Y.); (H.S.Y.); Tel.: +65-6316-7997 (S.B.); +65-6516-1014 (D.Y.); +65-6316-2846 (H.S.Y.)
| |
Collapse
|