1
|
Kordana N, Johnson A, Quinn K, Obar JJ, Cramer RA. Recent developments in Aspergillus fumigatus research: diversity, drugs, and disease. Microbiol Mol Biol Rev 2025; 89:e0001123. [PMID: 39927770 PMCID: PMC11948498 DOI: 10.1128/mmbr.00011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold Aspergillus fumigatus. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of A. fumigatus disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified A. fumigatus as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant A. fumigatus isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic A. fumigatus genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of A. fumigatus heterogeneity and its pathogenesis in diverse host populations.
Collapse
Affiliation(s)
- Nicole Kordana
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Angus Johnson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine Quinn
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Agnusdei A, De Miccolis Angelini RM, Faretra F, Pollastro S, Gerin D. AcOTApks Gene-Based Molecular Tools to Improve Quantitative Detection of the Mycotoxigenic Fungus Aspergillus carbonarius. Foods 2024; 14:65. [PMID: 39796355 PMCID: PMC11719998 DOI: 10.3390/foods14010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin, a common contaminant of grapes and their derivatives, such as wine, and classified as possible human carcinogen (group 2B) by the International Agency for Research on Cancer (IARC). Aspergillus carbonarius is the main producer of OTA in grapes. The stability of the molecule and the poor availability of detoxification systems makes the control of A. carbonarius in vineyards the main strategy used to reduce OTA contamination risk. Several molecular methods are available for A. carbonarius detection, but the correlation between the abundance of fungal population and OTA contamination needs to be improved. This study aimed at the development of innovative quantitative PCR (qPCR) and digital droplet PCR (ddPCR) tools to quantify the mycotoxigenic fractions of A. carbonarius strains on grapes, based on the key gene AcOTApks in the pathway of OTA biosynthesis. Different primers/probe sets were assessed, based on their specificity and sensitivity. This method allowed to quantify up to 100 fg∙µL-1 [cycle of quantification (Cq) = 37] and 10 fg∙µL-1 (0.38 copies∙µL-1) of genomic DNA (gDNA) from A. carbonarius mycelium in qPCR and ddPCR, respectively. The sensitivity as to artificially contaminated must samples was up to 100 conidia (Cq = 38) and 1 conidium (0.13 copies∙µL-1) with qPCR and ddPCR, respectively. Finally, the methods were validated on naturally infected must samples, and the quantification of the fungus was in both cases highly correlated (r = +0.8) with OTA concentrations in the samples. The results showed that both analytical methods can be suitable for improving the sustainable management of OTA contamination in grapes and their derivatives.
Collapse
Affiliation(s)
| | | | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.A.); (R.M.D.M.A.); (D.G.)
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.A.); (R.M.D.M.A.); (D.G.)
| | | |
Collapse
|
3
|
Dass M, Ghai M. Development of a multiplex PCR assay and quantification of microbial markers by ddPCR for identification of saliva and vaginal fluid. Forensic Sci Int 2024; 362:112147. [PMID: 39067179 DOI: 10.1016/j.forsciint.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
The identification of biological fluids at crime scenes contributes to crime scene reconstruction and provides investigative leads. Traditional methods for body fluid identification are limited in terms of sensitivity and are mostly presumptive. Emerging methods based on mRNA and DNA methylation require high quality template source. An exploitable characteristic of body fluids is their distinct microbial profiles allowing for the discrimination of body fluids based on microbiome content. Microbial DNA is highly abundant within the body, robust and stable and can persist in the environment long after human DNA has degraded. 16S rRNA sequencing is the gold standard for microbial analysis; however, NGS is costly, and requires intricate workflows and interpretation. Also, species level resolution is not always achievable. Based on the current challenges, the first objective of this study was to develop a multiplex conventional PCR assay to identify vaginal fluid and saliva by targeting species-specific 16S rRNA microbial markers. The second objective was to employ droplet digital PCR (ddPCR) as a novel approach to quantify bacterial species alone and in a mixture of body fluids. Lactobacillus crispatus and Streptococcus salivarius were selected because of high abundance within vaginal fluid and saliva respectively. While Fusobacterium nucleatum and Gardnerella vaginalis, though present in healthy humans, are also frequently found in oral and vaginal infections, respectively. The multiplex PCR assay detected L. crispatus and G. vaginalis in vaginal fluid while F. nucleatum and S. salivarius was detected in saliva. Multiplex PCR detected F. nucleatum, S. salivarius and L. crispatus in mixed body fluid samples while, G. vaginalis was undetected in mixtures containing vaginal fluid. For samples exposed at room temperature for 65 days, L. crispatus and G. vaginalis were detected in vaginal swabs while only S. salivarius was detected in saliva swabs. The limit of detection was 0.06 copies/µl for F. nucleatum (2.5 ×10-9 ng/µl) and S. salivarius (2.5 ×10-6 ng/µl). L. crispatus and G. vaginalis had detection limits of 0.16 copies/µl (2.5 ×10-4 ng/µl) and 0.48 copies/µl (2.5 ×10-7 ng/µl). All 4 bacterial species were detected in mixtures and aged samples by ddPCR. No significant differences were observed in quantity of bacterial markers in saliva and vaginal fluid. The present research reports for the first time the combination of the above four bacterial markers for the detection of saliva and vaginal fluid and highlights the sensitivity of ddPCR for bacterial quantification in pure and mixed body fluids.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| |
Collapse
|
4
|
Keri VC, Chandrasekar PH. Polymerase chain reaction in the diagnosis of invasive aspergillosis: approaches for appropriate use. Leuk Lymphoma 2023; 64:1330-1334. [PMID: 37211858 DOI: 10.1080/10428194.2023.2209683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Detection of aspergillus by PCR is a helpful tool for early diagnosis. The test has excellent sensitivity and specificity with a high negative predictive value. Well-accepted, standardized method for DNA extraction for PCR testing is to be adopted for all commercial assays and conclusive validation data are awaited in varied clinical settings. This perspective offers guidance for utilizing PCR testing while awaiting such data. Quantification by PCR, species-specific identification assays and detection of resistance genetic markers are of future promise. Herein, we summarize the available data on aspergillus PCR and describe its potential utility through a clinical case scenario-based approach.
Collapse
Affiliation(s)
- Vishakh C Keri
- Division of Infectious diseases, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
5
|
Jenks JD, White PL, Kidd SE, Goshia T, Fraley SI, Hoenigl M, Thompson GR. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev Mol Diagn 2023; 23:1135-1152. [PMID: 37801397 PMCID: PMC10842420 DOI: 10.1080/14737159.2023.2267977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Invasive fungal infections cause millions of infections annually, but diagnosis remains challenging. There is an increased need for low-cost, easy to use, highly sensitive and specific molecular assays that can differentiate between colonized and pathogenic organisms from different clinical specimens. AREAS COVERED We reviewed the literature evaluating the current state of molecular diagnostics for invasive fungal infections, focusing on current and novel molecular tests such as polymerase chain reaction (PCR), digital PCR, high-resolution melt (HRM), and metagenomics/next generation sequencing (mNGS). EXPERT OPINION PCR is highly sensitive and specific, although performance can be impacted by prior/concurrent antifungal use. PCR assays can identify mutations associated with antifungal resistance, non-Aspergillus mold infections, and infections from endemic fungi. HRM is a rapid and highly sensitive diagnostic modality that can identify a wide range of fungal pathogens, including down to the species level, but multiplex assays are limited and HRM is currently unavailable in most healthcare settings, although universal HRM is working to overcome this limitation. mNGS offers a promising approach for rapid and hypothesis-free diagnosis of a wide range of fungal pathogens, although some drawbacks include limited access, variable performance across platforms, the expertise and costs associated with this method, and long turnaround times in real-world settings.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - P. Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, United Kingdom and Centre for trials research/Division of Infection/Immunity, Cardiff University, Cardiff, UK
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tyler Goshia
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
6
|
He Y, Dong L, Yi H, Zhang L, Shi X, Su L, Gan B, Guo R, Wang Y, Luo Q, Li X. Improper preanalytical processes on peripheral blood compromise RNA quality and skew the transcriptional readouts of mRNA and LncRNA. Front Genet 2023; 13:1091685. [PMID: 36685907 PMCID: PMC9845260 DOI: 10.3389/fgene.2022.1091685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Genetic and epigenetic reprogramming caused by disease states in other tissues is always systemically reflected in peripheral blood leukocytes (PBLs). Accurate transcriptional readouts of Messenger RNA (mRNA) and Long non-coding RNA (lncRNA) in peripheral blood leukocytes are fundamental for disease-related study, diagnosis and treatment. However, little is known about the impact of preanalytical variables on RNA quality and downstream messenger RNA and Long non-coding RNA readouts. In this study, we explored the impact of RNA extraction kits and timing of blood placement on peripheral blood leukocyte-derived RNA quality. A novel enhanced evaluation system including RNA yields, purity, RNA integrity number (RIN) values and β-actin copies was employed to more sensitively identify RNA quality differences. The expression levels of informative mRNAs and Long non-coding RNAs in patients with chronic obstructive pulmonary disease (COPD) or triple-negative breast cancer (TNBC) were measured by Quantitative reverse transcription polymerase chain reaction (qRT-PCR) to investigate the impact of RNA quality on transcriptional readouts. Our results showed that the quality of RNA extracted by different kits varies greatly, and commercial kits should be evaluated and managed before batch RNA extraction. In addition, the quality of extracted RNA was highly correlated with the timing of blood placement, and the copy number of β-actin was significantly decreased after leaving blood at RT over 12 h. More importantly, compromised RNA leads to skewed transcriptional readouts of informative mRNAs and Long non-coding RNAs in patients with chronic obstructive pulmonary disease or triple-negative breast cancer. These findings have significant implications for peripheral blood leukocyte-derived RNA quality management and suggest that quality control is necessary prior to the analysis of patient messenger RNA and Long non-coding RNA expression.
Collapse
Affiliation(s)
- Yinli He
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lele Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Linpei Zhang
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xue Shi
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Su
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Baoyu Gan
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruirui Guo
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Xiaojiao Li, ; Qinying Luo, ; Yawen Wang,
| | - Qinying Luo
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Xiaojiao Li, ; Qinying Luo, ; Yawen Wang,
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Xiaojiao Li, ; Qinying Luo, ; Yawen Wang,
| |
Collapse
|
7
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
8
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
9
|
Tiew PY, Thng KX, Chotirmall SH. Clinical Aspergillus Signatures in COPD and Bronchiectasis. J Fungi (Basel) 2022; 8:jof8050480. [PMID: 35628736 PMCID: PMC9146266 DOI: 10.3390/jof8050480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
Pulmonary mycoses remain a global threat, causing significant morbidity and mortality. Patients with airways disease, including COPD and bronchiectasis, are at increased risks of pulmonary mycoses and its associated complications. Frequent use of antibiotics and corticosteroids coupled with impaired host defenses predispose patients to fungal colonization and airway persistence, which are associated with negative clinical consequences. Notably, Aspergillus species remain the best-studied fungal pathogen and induce a broad spectrum of clinical manifestations in COPD and bronchiectasis ranging from colonization and sensitization to more invasive disease. Next-generation sequencing (NGS) has gained prominence in the field of respiratory infection, and in some cases is beginning to act as a viable alternative to traditional culture. NGS has revolutionized our understanding of airway microbiota and in particular fungi. In this context, it permits the identification of the previously unculturable, fungal composition, and dynamic change within microbial communities of the airway, including potential roles in chronic respiratory disease. Furthermore, inter-kingdom microbial interactions, including fungi, in conjunction with host immunity have recently been shown to have important clinical roles in COPD and bronchiectasis. In this review, we provide an overview of clinical Aspergillus signatures in COPD and bronchiectasis and cover the current advances in the understanding of the mycobiome in these disease states. The challenges and limitations of NGS will be addressed.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 168753, Singapore;
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|
10
|
White PL, Alanio A, Brown L, Cruciani M, Hagen F, Gorton R, Lackner M, Millon L, Morton CO, Rautemaa-Richardson R, Barnes RA, Donnelly JP, Loffler J. An overview of using fungal DNA for the diagnosis of invasive mycoses. Expert Rev Mol Diagn 2022; 22:169-184. [PMID: 35130460 DOI: 10.1080/14737159.2022.2037423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Fungal PCR has undergone considerable standardization and together with the availability of commercial assays, external quality assessment schemes and extensive performance validation data, is ready for widespread use for the screening and diagnosis of invasive fungal disease (IFD). AREAS COVERED Drawing on the experience and knowledge of the leads of the various working parties of the Fungal PCR initiative, this review will address general considerations concerning the use of molecular tests for the diagnosis of IFD, before focussing specifically on the technical and clinical aspects of molecular testing for the main causes of IFD and recent technological developments. EXPERT OPINION For infections caused by Aspergillus, Candida and Pneumocystis jirovecii, PCR testing is recommended, combination with serological testing will likely enhance the diagnosis of these diseases. For other IFD (e.g. Mucormycosis) molecular diagnostics, represent the only non-classical mycological approach towards diagnoses and continued performance validation and standardization has improved confidence in such testing. The emergence of antifungal resistance can be diagnosed, in part, through molecular testing. Next-generation sequencing has the potential to significantly improve our understanding of fungal phylogeny, epidemiology, pathogenesis, mycobiome/microbiome and interactions with the host, while identifying novel and existing mechanisms of antifungal resistance and novel diagnostic/therapeutic targets.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, UK CF14 4XW
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université de Paris, Paris, France.,Institut Pasteur, CNRS UMR2000, Unité de Mycologie Moléculaire, Centre National de Reference Mycoses invasives et Antifongiques, Paris, France
| | - Lottie Brown
- NHS Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Wythenshawe Hospital; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands & Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rebecca Gorton
- Dept. of Infection Sciences, Health Services Laboratories (HSL) LLP, London, UK
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Medical Microbiology and Publics Health, Medical University Innsbruck, Innsbruck, Austria
| | - Laurence Millon
- Parasitology-Mycology Department, University Hospital of Besançon, 25000 Besançon, France.,UMR 6249 CNRS Chrono-Environnement, University of Bourgogne Franche-Comté, 25000 Besançon, France
| | - C Oliver Morton
- Western Sydney University, School of Science, Campbelltown, NSW 2560, Australia
| | - Riina Rautemaa-Richardson
- NHS Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Wythenshawe Hospital; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | | | - Juergen Loffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
11
|
Yi J, Wang N, Wu J, Tang Y, Zhang J, Zhu L, Rui X, Guo Y, Xu Y. Development of a Droplet Digital Polymerase Chain Reaction for Sensitive Detection of Pneumocystis jirovecii in Respiratory Tract Specimens. Front Med (Lausanne) 2021; 8:761788. [PMID: 35004733 PMCID: PMC8727342 DOI: 10.3389/fmed.2021.761788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background:Pneumocystis jirovecii is a human-specific opportunistic fungus that causes Pneumocystis pneumonia (PCP), a life-threatening opportunistic lung infection that affects immunocompromised patients. P. jirovecii colonization may be linked to the transmission of the infection. The detection of P. jirovecii in immunocompromised patients is thus especially important. The low fungal load and the presence of PCR inhibitors limit the usefulness of quantitative PCR (qPCR) for accurate absolute quantification of P. jirovecii in specimens. Droplet digital PCR (ddPCR), however, presents a methodology that allows higher sensitivity and accuracy. Here, we developed a ddPCR method for detecting P. jirovecii DNA in respiratory specimens, and evaluated its sensitivity against qPCR. Materials and Methods: One bronchoalveolar fluid (BALF) sample each was collected from 82 patients with potential PCP to test the presence of P. jirovecii DNA using both ddPCR and qPCR, and samples with inconsistent results between the two methods were further tested by metagenomic next generation sequencing (mNGS). In addition, 37 sputum samples from 16 patients diagnosed with PCP, as well as continuous respiratory tract specimens from nine patients with PCP and treated with sulfonamides, were also collected for P. jirovecii DNA testing using both ddPCR and qPCR. Results: ddPCR and qPCR gave the same results for 95.12% (78/82) of the BALF samples. The remaining four specimens tested positive using ddPCR but negative using qPCR, and they were found to be positive by mNGS. Detection results of 78.37% (29/37) sputum samples were consistent between ddPCR and qPCR, while the other eight samples tested positive using ddPCR but negative using qPCR. The P. jirovecii load of patients with PCP decreased to undetectable levels after treatment according to qPCR, but P. jirovecii was still detectable using ddPCR. Conclusions: ddPCR was more sensitive than qPCR, especially at detecting low-pathogen-load P. jirovecii. Thus, ddPCR represents a useful, viable, and reliable alternative to qPCR in P. jirovecii testing in patients with immunodeficiency.
Collapse
Affiliation(s)
- Jie Yi
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wang
- Human Genetic Resource Center, National Research Institute for Family Planning, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jie Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yueming Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjia Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Xiao Rui
- TargetingOne Corporation, Beijing, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- Yong Guo
| | - Yingchun Xu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yingchun Xu
| |
Collapse
|
12
|
Hiillos A, Thonig A, Knott KE. Droplet digital PCR as a tool for investigating dynamics of cryptic symbionts. Ecol Evol 2021; 11:17381-17396. [PMID: 34938515 PMCID: PMC8668802 DOI: 10.1002/ece3.8372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Interactions among symbiotic organisms and their hosts are major drivers of ecological and evolutionary processes. Monitoring the infection patterns among natural populations and identifying factors affecting these interactions are critical for understanding symbiont-host relationships. However, many of these interactions remain understudied since the knowledge about the symbiont species is lacking, which hinders the development of appropriate tools. In this study, we developed a digital droplet PCR (ddPCR) assay based on apicomplexan COX1 gene to detect an undescribed agamococcidian symbiont. We show that the method gives precise and reproducible results and enables detecting cryptic symbionts in low target concentration. We further exemplify the assay's use to survey seasonally sampled natural host (Pygospio elegans) populations for symbiont infection dynamics. We found that symbiont prevalence differs spatially but does not show seasonal changes. Infection load differed between populations and was low in spring and significantly increased towards fall in all populations. We also found that the symbiont prevalence is affected by host length and population density. Larger hosts were more likely to be infected, and high host densities were found to have a lower probability of infection. The observed variations could be due to characteristics of both symbiont and host biology, especially the seasonal variation in encounter rates. Our findings show that the developed ddPCR assay is a robust tool for detecting undescribed symbionts that are otherwise difficult to quantify, enabling further insight into the impact cryptic symbionts have on their hosts.
Collapse
Affiliation(s)
- Anna‐Lotta Hiillos
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anne Thonig
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - Karelyn Emily Knott
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
13
|
Huang Y, Pan H, Xu X, Lv P, Wang X, Zhao Z. Droplet digital PCR (ddPCR) for the detection and quantification of Ureaplasma spp. BMC Infect Dis 2021; 21:804. [PMID: 34380416 PMCID: PMC8359095 DOI: 10.1186/s12879-021-06355-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ureaplasma spp. are associated with various infectious diseases in females, but there is still limited evidence regarding whether they are related to nonspecific cervicitis. The aim of this study was to develop and evaluate a digital droplet PCR (ddPCR) assay for the detection and quantification of Ureaplasma spp. in cervical swabs. METHODS A total of 267 non-specific cervicitis (NSC) patients and 195 asymptomatic females were included in this study. We produced standard curves for Ureaplasma spp. to evaluate the analytical performance of the ddPCR assay. Then, we detected and quantified the bacterial load of Ureaplasma spp. in cervical swabs. RESULTS The prevalences of U. parvum were 37.8% (101/267) and 29.7% (58/195), U. urealyticum were 9.0% (24/267) and 8.7% (17/195) in the NSC group and control group, respectively. In addition, the median copy number of U. parvum was 2.5 × 104 copies/ml (n = 101) in the NSC group and 9.2 × 103 copies/ml (n = 58) in the control group. The U. parvum load in the NSC group was significantly higher than that in the asymptomatic individuals (P < 0.001). whereas the median load of U. urealyticum was 8.4 × 103 copies/ml (n = 24) and 1.4 × 103 (n = 17) copies/ml in the two groups, respectively, , the difference was not statistically significant (P = 0.450). CONCLUSIONS Our study is the first to develop a droplet digital PCR (ddPCR) method for the detection and quantification of Ureaplasma spp. in clinical samples, and the method has excellent analytical performance and a wide range of clinical application prospects.
Collapse
Affiliation(s)
- Yanfang Huang
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China
| | - Huifen Pan
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China
| | - Xiaoqin Xu
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China
| | - Panpan Lv
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China
| | - Xinxin Wang
- Department of Molecular Medicine, Biomed-Union Co. Ltd. Shanghai, Shanghai, China
| | - Zhen Zhao
- Clinical Laboratory, Minhang Hospital, Fudan University, No. 170, Xinsong Road, Shanghai, China.
| |
Collapse
|
14
|
Lei S, Chen S, Zhong Q. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol 2021; 184:750-759. [PMID: 34171259 DOI: 10.1016/j.ijbiomac.2021.06.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022]
Abstract
Pathogens pose a severe threat to food safety and human health. The traditional methods for pathogen detection can't meet the growing diagnosis and control need. Digital PCR (dPCR) attracts a considerable attention for its ability to absolutely quantify pathogens with features of high selectivity, simplicity, accuracy and rapidity. The dPCR technique that achieves absolute quantification based on end-point measurement without standard curve offers a guideline for further genetic analysis and molecular diagnosis. It could contribute to the quantification of low level of nucleic acid, early detection and timely prevention of pathogenic diseases. In this review, 1442 publications about dPCR were selected and the detections of various pathogens by dPCR were reviewed comprehensively, including viruses, bacteria, parasites and fungi. A number of examples are cited to illustrate that dPCR is a new powerful tool with desired accuracy, sensitivity, and reproducibility for quantification of different types of pathogens. Moreover, the benefits, challenges and future prospects of the dPCR were also highlighted in this review.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Qin Z, Xiang X, Xue L, Cai W, Gao J, Yang J, Liang Y, Wang L, Chen M, Pang R, Li Y, Zhang J, Hu Y, Wu Q. Development of a novel RAA-based microfluidic chip for absolute quantitative detection of human norovirus. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
White PL, Bretagne S, Caliendo AM, Loeffler J, Patterson TF, Slavin M, Wingard JR. Aspergillus Polymerase Chain Reaction-An Update on Technical Recommendations, Clinical Applications, and Justification for Inclusion in the Second Revision of the EORTC/MSGERC Definitions of Invasive Fungal Disease. Clin Infect Dis 2021; 72:S95-S101. [PMID: 33709129 DOI: 10.1093/cid/ciaa1865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aspergillus polymerase chain reaction testing of blood and respiratory samples has recently been included in the second revision of the EORTC/MSGERC definitions for classifying invasive fungal disease. This is a result of considerable efforts to standardize methodology, the availability of commercial assays and external quality control programs, and additional clinical validation. This supporting article provides both clinical and technical justifications for its inclusion while also summarizing recent advances and likely future developments in the molecular diagnosis of invasive aspergillosis.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Mycology Reference Laboratory, Cardiff, United Kingdom
| | - Stephane Bretagne
- Mycology Laboratory, Saint Louis Hospital, Paris and Université de Paris, France
| | - Angela M Caliendo
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Juergen Loeffler
- Department of Molecular Biology and Infection, University Hospital Wuerzburg, Medical Hospital II, Wuerzburg, Germany
| | - Thomas F Patterson
- Department of Medicine, University of Texas Health San Antonio and the South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Monica Slavin
- National Centre for Infections in Cancer, Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Australia
| | - John R Wingard
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
17
|
Respiratory Mycoses in COPD and Bronchiectasis. Mycopathologia 2021; 186:623-638. [PMID: 33709335 DOI: 10.1007/s11046-021-00539-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and bronchiectasis represent chronic airway diseases associated with significant morbidity and mortality. Bacteria and viruses are commonly implicated in acute exacerbations; however the significance of fungi in these airways remains poorly defined. While COPD and bronchiectasis remain recognized risk factors for the occurrence of Aspergillus-associated disease including chronic and invasive aspergillosis, underlying mechanisms that lead to the progression from colonization to invasive disease remain uncertain. Nonetheless, advances in molecular technologies have improved our detection, identification and understanding of resident fungi characterizing these airways. Mycobiome sequencing has revealed the complex varied and myriad profile of airway fungi in COPD and bronchiectasis, including their association with disease presentation, progression, and mortality. In this review, we outline the emerging evidence for the clinical importance of fungi in COPD and bronchiectasis, available diagnostic modalities, mycobiome sequencing approaches and association with clinical outcomes.
Collapse
|
18
|
Chen B, Jiang Y, Cao X, Liu C, Zhang N, Shi D. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clin Chim Acta 2021; 517:156-161. [PMID: 33662358 DOI: 10.1016/j.cca.2021.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The microbial infectious diseases (infectious diseases) represent the leading global public health problem, and the effective treatment depends on rapid and accurate detection of pathogens. Droplet digital PCR (ddPCR), a new assay that combines microfluidics technology with TaqMan-based PCR, provides absolute quantification without the need of the standard curves. With the development of ddPCR, it has become an ideal tool for microorganism detection. In this review, we summarized the major literature with regard to the application of ddPCR in detecting the pathogenic microorganisms of infectious diseases, including bacteria, fungi, and virus. The ddPCR method has the advantages of detecting the targeted DNA of infectious microorganisms, with high sensitivity, high precision, and absolute quantification. Thus, ddPCR has emerged as a promising and reliable tool in detecting pathogenicmicroorganisms.
Collapse
Affiliation(s)
- Biao Chen
- Postdoctoral of Shandong University of Traditional Chinese Medicine, Jinan 210355, China; The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272111, China
| | - Yufeng Jiang
- Postdoctoral of Shandong University of Traditional Chinese Medicine, Jinan 210355, China; Department of Medical Laboratory, Jining No. 1 People's Hospital, Jining 272111, China
| | - Xiaohua Cao
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining 272111, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272111, China
| | - Ning Zhang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272111, China
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272111, China; Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong Province, China.
| |
Collapse
|
19
|
Recent Advances and Novel Approaches in Laboratory-Based Diagnostic Mycology. J Fungi (Basel) 2021; 7:jof7010041. [PMID: 33440757 PMCID: PMC7827937 DOI: 10.3390/jof7010041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
What was once just culture and microscopy the field of diagnostic mycology has significantly advanced in recent years and continues to incorporate novel assays and strategies to meet the changes in clinical demand. The emergence of widespread resistance to antifungal therapy has led to the development of a range of molecular tests that target mutations associated with phenotypic resistance, to complement classical susceptibility testing and initial applications of next-generation sequencing are being described. Lateral flow assays provide rapid results, with simplicity allowing the test to be performed outside specialist centres, potentially as point-of-care tests. Mycology has responded positively to an ever-diversifying patient population by rapidly identifying risk and developing diagnostic strategies to improve patient management. Nowadays, the diagnostic repertoire of the mycology laboratory employs classical, molecular and serological tests and should be keen to embrace diagnostic advancements that can improve diagnosis in this notoriously difficult field.
Collapse
|
20
|
Ali NABM, Ivan FX, Mac Aogáin M, Narayana JK, Lee SY, Lim CL, Chotirmall SH. The Healthy Airway Mycobiome in Individuals of Asian Descent. Chest 2020; 159:544-548. [PMID: 32926873 DOI: 10.1016/j.chest.2020.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
| | | | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shuen Yee Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|