1
|
Breaza GM, Closca RM, Cindrea AC, Hut FE, Cretu O, Sima LV, Rakitovan M, Zara F. Immunohistochemical Evaluation of the Tumor Immune Microenvironment in Pancreatic Ductal Adenocarcinoma. Diagnostics (Basel) 2025; 15:646. [PMID: 40075893 PMCID: PMC11899021 DOI: 10.3390/diagnostics15050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma is an aggressive neoplasm with a complex carcinogenesis process that must be understood through the interactions between tumor cells and tumor microenvironment cells. Methods: This study was retrospective with a chronological extension period of 16 years and included 56 cases of pancreatic ductal adenocarcinoma. This study identified, quantified, and correlated the cells of the tumor immune microenvironment in pancreatic ductal adenocarcinoma with major prognostic factors as well as overall survival, using an extensive panel of immunohistochemical markers. Results: Three tumor immunotypes were identified: subtype A (hot immunotype), subtype B (intermediate immunotype), and subtype C (cold immunotype). Patients with immunotype C exhibit considerably higher rates of both pancreatic fistulas and acute pancreatitis. Immunotypes B and C significantly increased the risk of this complication by factors of 3.68 (p = 0.002) and 3.94 (p = 0.001), respectively. The estimated probabilities of fistula formation for each immunotype are as follows: 2.5% for immunotype A, 25% for immunotype B, and 28% for immunotype C. There was a statistically significant difference in median survival times according to tumor immunotype (p < 0.001). Specifically, patients with immunotype C tumors had a median survival time of only 120.5 days, compared to 553.5 days for those with immunotype A and 331.5 for immunotype B tumors. Conclusions: The identification of the immunotype of pancreatic ductal adenocarcinoma can be a predictive factor for the occurrence of complications such as pancreatic fistula as well as for overall survival.
Collapse
Affiliation(s)
- Gelu Mihai Breaza
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (G.M.B.); (M.R.); (F.Z.)
- University Clinic of Surgery I, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (F.E.H.); (O.C.); (L.V.S.)
| | - Raluca Maria Closca
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (G.M.B.); (M.R.); (F.Z.)
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania
| | - Alexandru Cristian Cindrea
- Department of Surgery, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
- Emergency Department, Emergency Clinical Municipal Hospital, 300079 Timisoara, Romania
| | - Florin Emil Hut
- University Clinic of Surgery I, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (F.E.H.); (O.C.); (L.V.S.)
- Center for Hepato-Bilio-Pancreatic Surgery, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania
| | - Octavian Cretu
- University Clinic of Surgery I, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (F.E.H.); (O.C.); (L.V.S.)
| | - Laurentiu Vasile Sima
- University Clinic of Surgery I, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (F.E.H.); (O.C.); (L.V.S.)
| | - Marina Rakitovan
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (G.M.B.); (M.R.); (F.Z.)
- Oro-Maxillo-Facial Surgery Clinic, Emergency City Hospital, 300062 Timisoara, Romania
| | - Flavia Zara
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (G.M.B.); (M.R.); (F.Z.)
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania
| |
Collapse
|
2
|
Bartkeviciene A, Jasukaitiene A, Zievyte I, Stukas D, Ivanauskiene S, Urboniene D, Maimets T, Jaudzems K, Vitkauskiene A, Matthews J, Dambrauskas Z, Gulbinas A. Association between AHR Expression and Immune Dysregulation in Pancreatic Ductal Adenocarcinoma: Insights from Comprehensive Immune Profiling of Peripheral Blood Mononuclear Cells. Cancers (Basel) 2023; 15:4639. [PMID: 37760608 PMCID: PMC10526859 DOI: 10.3390/cancers15184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), has an immune suppressive environment that allows tumour cells to evade the immune system. The aryl-hydrocarbon receptor (AHR) is a transcription factor that can be activated by certain exo/endo ligands, including kynurenine (KYN) and other tryptophan metabolites. Once activated, AHR regulates the expression of various genes involved in immune responses and inflammation. Previous studies have shown that AHR activation in PDAC can have both pro-tumorigenic and anti-tumorigenic effects, depending on the context. It can promote tumour growth and immune evasion by suppressing anti-tumour immune responses or induce anti-tumour effects by enhancing immune cell function. In this study involving 30 PDAC patients and 30 healthy individuals, peripheral blood samples were analysed. PDAC patients were categorized into Low (12 patients) and High/Medium (18 patients) AHR groups based on gene expression in peripheral blood mononuclear cells (PBMCs). The Low AHR group showed distinct immune characteristics, including increased levels of immune-suppressive proteins such as PDL1, as well as alterations in lymphocyte and monocyte subtypes. Functional assays demonstrated changes in phagocytosis, nitric oxide production, and the expression of cytokines IL-1, IL-6, and IL-10. These findings indicate that AHR's expression level has a crucial role in immune dysregulation in PDAC and could be a potential target for early diagnostics and personalised therapeutics.
Collapse
Affiliation(s)
- Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Inga Zievyte
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Sandra Ivanauskiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| |
Collapse
|
3
|
Lu M, Zou Y, Fu P, Li Y, Wang P, Li G, Luo S, Chen Y, Guan G, Zhang S, Chen L. The tumor-stroma ratio and the immune microenvironment improve the prognostic prediction of pancreatic ductal adenocarcinoma. Discov Oncol 2023; 14:124. [PMID: 37405518 DOI: 10.1007/s12672-023-00744-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
Tumor-infiltrating immune cells and fibroblasts are significant components of the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC), and they participate in tumor progression as closely as tumor cells. However, the relationship between the features of the TME and patient outcomes and the interactions among TME components are still unclear. In this study, we evaluated the PDAC TME in terms of the quantity and location of cluster of differentiation (CD)4+ T cells, CD8+ T cells, macrophages, stromal maturity, and tumor-stroma ratio (TSR), as evaluated by immunohistochemical staining of serial whole-tissue sections from 116 patients with PDAC. The density of T cells and macrophages (mainly activated macrophages) was significantly higher at the invasive margins (IMs) than at the tumor center (TC). CD4+ T cells were significantly association with all the other tumor-associated immune cells (TAIs) including CD8, CD68 and CD206 positive cells. Tumors of the non-mature (intermediate and immature) stroma type harbored significantly more CD8+ T cells at the IMs and more CD68+ macrophages at the IMs and the TC. The density of CD4+, CD8+, and CD206+ cells at the TC; CD206+ cells at the IMs; and tumor-node-metastasis (TNM) staging were independent risk factors for patient outcomes, and the c-index of the risk nomogram for predicting the survival probability based on the TME features and TNM staging was 0.772 (95% confidence interval: 0.713-0.832). PDAC harbored a significantly immunosuppressive TME, of which the IMs were the hot zones for TAIs, while cells at the TC were more predictive of prognosis. Our results indicated that the model based on the features of the TME and TNM staging could predict patient outcomes.
Collapse
Affiliation(s)
- Mei Lu
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, Fujian, China
| | - Yi Zou
- Department of Pathology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peiling Fu
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yuyang Li
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Pengcheng Wang
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Guoping Li
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Sheng Luo
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yupeng Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Guoping Guan
- Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, Fujian, China
| | - Sheng Zhang
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
- Fujian Key Laboratory of Translational Research in Cancer and Nurodegernerative Diseases, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
5
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
6
|
Fang L, Chen S, Gong H, Xia S, Guan S, Quan N, Li Y, Zeng C, Chen Y, Du J, Liu S. Identification of an unfolded protein response-related signature for predicting the prognosis of pancreatic ductal adenocarcinoma. Front Oncol 2023; 12:1060508. [PMID: 36727081 PMCID: PMC9885260 DOI: 10.3389/fonc.2022.1060508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy. An effective prognosis prediction model is urgently needed for treatment optimization. Methods The differentially expressed unfolded protein response (UPR)‒related genes between pancreatic tumor and normal tissue were analyzed using the TCGA-PDAC dataset, and these genes that overlapped with UPR‒related prognostic genes from the E-MTAB-6134 dataset were further analyzed. Univariate, LASSO and multivariate Cox regression analyses were applied to establish a prognostic gene signature, which was evaluated by Kaplan‒Meier curve and receiver operating characteristic (ROC) analyses. E‒MTAB‒6134 was set as the training dataset, while TCGA-PDAC, GSE21501 and ICGC-PACA-AU were used for external validation. Subsequently, a nomogram integrating risk scores and clinical parameters was established, and gene set enrichment analysis (GSEA), tumor immunity analysis and drug sensitivity analysis were conducted. Results A UPR-related signature comprising twelve genes was constructed and divided PDAC patients into high- and low-risk groups based on the median risk score. The UPR-related signature accurately predicted the prognosis and acted as an independent prognostic factor of PDAC patients, and the AUCs of the UPR-related signature in predicting PDAC prognosis at 1, 2 and 3 years were all more than 0.7 in the training and validation datasets. The UPR-related signature showed excellent performance in outcome prediction even in different clinicopathological subgroups, including the female (p<0.0001), male (p<0.0001), grade 1/2 (p<0.0001), grade 3 (p=0.028), N0 (p=0.043), N1 (p<0.001), and R0 (p<0.0001) groups. Furthermore, multiple immune-related pathways were enriched in the low-risk group, and risk scores in the low-risk group were also associated with significantly higher levels of tumor-infiltrating lymphocytes (TILs). In addition, DepMap drug sensitivity analysis and our validation experiment showed that PDAC cell lines with high UPR-related risk scores or UPR activation are more sensitive to floxuridine, which is used as an antineoplastic agent. Conclusion Herein, we identified a novel UPR-related prognostic signature that showed high value in predicting survival in patients with PDAC. Targeting these UPR-related genes might be an alternative for PDAC therapy. Further experimental studies are required to reveal how these genes mediate ER stress and PDAC progression.
Collapse
Affiliation(s)
- Lishan Fang
- Department of Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China,*Correspondence: Shuguang Liu, ; Lishan Fang,
| | - Shaojing Chen
- Department of Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Hui Gong
- Department of Laboratory Medicine Center, Huazhong University of Science and Technology Union Shenzhen Hospital and the 6th Affliated Hospital of Shenzhen University, Shenzhen, China
| | - Shaohua Xia
- Department of Gastrointestinal Endoscopy Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Sainan Guan
- Department of Ultrasound Imaging, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Nali Quan
- Department of Clinical Laboratory, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Yajie Li
- Department of Orthopedics, Shenzhen Third People’s Hospital and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Chao Zeng
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Ya Chen
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Jianhang Du
- Department of Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China,*Correspondence: Shuguang Liu, ; Lishan Fang,
| |
Collapse
|
7
|
Circulating Monocytes Serve as Novel Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma Patients. Cancers (Basel) 2023; 15:cancers15020363. [PMID: 36672313 PMCID: PMC9856871 DOI: 10.3390/cancers15020363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) ranks among the most fatal cancer diseases, widely accepted to have the most dismal prognoses. Although immunotherapy has broadly revolutionized cancer treatment, its value in PDAC appears to be relatively low. Exhibiting protumoral effects, monocytes have recently been proposed as potential targets of such immunotherapeutic regimens. However, to date, the body of evidence on monocytes’ role in PDAC is scarce. Therefore, we analyzed monocytes in the peripheral blood of 58 PDAC patients prior to surgery and compared them to healthy individuals. PDAC patients showed increased levels of monocytes when compared to healthy controls In addition, patients with perineural infiltration demonstrated a higher percentage of monocytes compared to non-infiltrating tumors and PDAC G3 was associated with higher monocyte levels than PDAC G2. Patients with monocyte levels > 5% were found to have an 8.9-fold increased risk for a G3 and perineural infiltrated PDAC resulting in poorer survival compared to patients with <5% monocyte levels. Furthermore, PDAC patients showed increased expressions of CD86 and CD11c and decreased expressions of PD-L1 on monocytes compared to healthy individuals. Finally, levels of monocytes correlated positively with concentrations of IL-6 and TNF-α in plasma of PDAC patients. Based on our findings, we propose monocytes as a novel prognostic biomarker. Large-scale studies are needed to further decipher the role of monocytes in PDAC and investigate their potential as therapeutic targets.
Collapse
|
8
|
Li Q, Yu J, Zhang H, Meng Y, Liu YF, Jiang H, Zhu M, Li N, Zhou J, Liu F, Fang X, Li J, Feng X, Lu J, Shao C, Bian Y. Prediction of Tumor-Infiltrating CD20 + B-Cells in Patients with Pancreatic Ductal Adenocarcinoma Using a Multilayer Perceptron Network Classifier Based on Non-contrast MRI. Acad Radiol 2022; 29:e167-e177. [PMID: 34922828 DOI: 10.1016/j.acra.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/01/2022]
Abstract
RATIONALE AND OBJECTIVES Conventional chemotherapy has limited benefit in pancreatic ductal adenocarcinoma (PDAC), necessitating identification of novel therapeutic targets. Radiomics may enable non-invasive prediction of CD20 expression, a hypothesized therapeutic target in PDAC. To develop a machine learning classifier based on noncontrast magnetic resonance imaging for predicting CD20 expression in PDAC. MATERIALS AND METHODS Retrospective study was conducted on preoperative noncontrast magnetic resonance imaging of 156 patients with pathologically confirmed PDAC from January 2017 to April 2018. For each patient, 1409 radiomics features were selected using minimum absolute contraction and selective operator logistic regression algorithms. CD20 expression was quantified using immunohistochemistry. A multilayer perceptron network classifier was developed using the training and validation set. RESULTS A log-rank test showed that the CD20-high group (22.37 months, 95% CI: 19.10-25.65) had significantly longer survival than the CD20-low group (14.9 months, 95% CI: 10.96-18.84). The predictive model showed good differentiation in training (area under the curve [AUC], 0.79) and validation (AUC, 0.79) sets. Sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 73.21%, 75.47%, 0.74, 0.76, and 0.73, respectively, for the training set and 69.23%, 80.95%, 0.74, 0.82, and 0.68, respectively, for the validation set. CONCLUSION Multilayer perceptron classifier based on noncontrast magnetic resonance imaging scanning can predict the level of CD20 expression in PDAC patients.
Collapse
Affiliation(s)
- Qi Li
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jieyu Yu
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hao Zhang
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yinghao Meng
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Fang Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengmeng Zhu
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Na Li
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jian Zhou
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Fang Liu
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xu Fang
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jing Li
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xiaochen Feng
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
9
|
Melzer MK, Breunig M, Arnold F, Wezel F, Azoitei A, Roger E, Krüger J, Merkle J, Schütte L, Resheq Y, Hänle M, Zehe V, Zengerling F, Azoitei N, Klein L, Penz F, Singh SK, Seufferlein T, Hohwieler M, Bolenz C, Günes C, Gout J, Kleger A. Organoids at the PUB: The Porcine Urinary Bladder Serves as a Pancreatic Niche for Advanced Cancer Modeling. Adv Healthc Mater 2022; 11:e2102345. [PMID: 35114730 PMCID: PMC11468201 DOI: 10.1002/adhm.202102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Despite intensive research and progress in personalized medicine, pancreatic ductal adenocarcinoma remains one of the deadliest cancer entities. Pancreatic duct-like organoids (PDLOs) derived from human pluripotent stem cells (PSCs) or pancreatic cancer patient-derived organoids (PDOs) provide unique tools to study early and late stage dysplasia and to foster personalized medicine. However, such advanced systems are neither rapidly nor easily accessible and require an in vivo niche to study tumor formation and interaction with the stroma. Here, the establishment of the porcine urinary bladder (PUB) is revealed as an advanced organ culture model for shaping an ex vivo pancreatic niche. This model allows pancreatic progenitor cells to enter the ductal and endocrine lineages, while PDLOs further mature into duct-like tissue. Accordingly, the PUB offers an ex vivo platform for earliest pancreatic dysplasia and cancer if PDLOs feature KRASG12D mutations. Finally, it is demonstrated that PDOs-on-PUB i) resemble primary pancreatic cancer, ii) preserve cancer subtypes, iii) enable the study of niche epithelial crosstalk by spiking in pancreatic stellate and immune cells into the grafts, and finally iv) allow drug testing. In summary, the PUB advances the existing pancreatic cancer models by adding feasibility, complexity, and customization at low cost and high flexibility.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of UrologyUlm UniversityUlm89081Germany
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Markus Breunig
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Frank Arnold
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Felix Wezel
- Department of UrologyUlm UniversityUlm89081Germany
| | - Anca Azoitei
- Department of UrologyUlm UniversityUlm89081Germany
| | - Elodie Roger
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Jana Krüger
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Jessica Merkle
- Department of Internal Medicine IUlm UniversityUlm89081Germany
- Core Facility OrganoidsUlm UniversityUlm89081Germany
| | - Lena Schütte
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Yazid Resheq
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Mark Hänle
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Viktor Zehe
- Department of UrologyUlm UniversityUlm89081Germany
| | | | - Ninel Azoitei
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Lukas Klein
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medicine GoettingenGoettingen37075Germany
| | - Frederike Penz
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medicine GoettingenGoettingen37075Germany
| | - Shiv K. Singh
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medicine GoettingenGoettingen37075Germany
| | | | - Meike Hohwieler
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | | | | | - Johann Gout
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Alexander Kleger
- Department of Internal Medicine IUlm UniversityUlm89081Germany
- Core Facility OrganoidsUlm UniversityUlm89081Germany
| |
Collapse
|
10
|
Chung YM, Tsai WB, Khan PP, Ma J, Berek JS, Larrick JW, Hu MCT. FOXO3-dependent suppression of PD-L1 promotes anticancer immune responses via activation of natural killer cells. Am J Cancer Res 2022; 12:1241-1263. [PMID: 35411241 PMCID: PMC8984903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023] Open
Abstract
Boosting anticancer immunity by blocking immune checkpoints such as the programmed death-1 (PD-1) or its ligand (PD-L1) is a breakthrough anticancer therapy. However, many cancer patients do not respond well to immune checkpoint blockades (ICBs) alone. Here we show that low-dose pharmacological immunoactivators (e.g., SN38, topotecan, sorafenib, etc.) notably downregulate PD-L1 and upregulate FOXO3 expression in various human and murine cancer cell lines. In a mouse tumor model, low-dose SN38 treatment markedly suppresses tumor growth, reduces PD-L1 expression, and enhances FOXO3 expression in primary tumor specimens. SN38 therapy engages the tumor-infiltrating mouse NK1.1/CD49b/NKG2D-positive natural killer (NK) cells to attack tumor cells by inducing mouse IFN-γ and granzyme-B secretion in the tumor microenvironment (TME) in vivo. SN38 treatment also promotes tumor cell apoptosis in the TME. SN38 treatment significantly decreases STAT3-pY705 and IL-6 protein levels; FOXO3 is essential for SN38-mediated PD-L1 downregulation. Collectively, these findings may contribute to future translational or clinical investigations tackling difficult-to-treat cancers with immune-activating medicines or combined with ICB immunotherapy.
Collapse
Affiliation(s)
- Young Min Chung
- Panorama Institute of Molecular Medicine & Panorama Research InstituteSunnyvale, CA 94089, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of MedicineStanford, CA 94305, USA
| | - Wen Bin Tsai
- Panorama Institute of Molecular Medicine & Panorama Research InstituteSunnyvale, CA 94089, USA
- Department of Genomic Medicine, University of Texas M. D. Anderson Cancer CenterHouston, TX 77030, USA
| | - Pragya P Khan
- Panorama Institute of Molecular Medicine & Panorama Research InstituteSunnyvale, CA 94089, USA
| | - Jessica Ma
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of MedicineStanford, CA 94305, USA
| | - Jonathan S Berek
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of MedicineStanford, CA 94305, USA
| | - James W Larrick
- Panorama Institute of Molecular Medicine & Panorama Research InstituteSunnyvale, CA 94089, USA
| | - Mickey C-T Hu
- Panorama Institute of Molecular Medicine & Panorama Research InstituteSunnyvale, CA 94089, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford University School of MedicineStanford, CA 94305, USA
| |
Collapse
|
11
|
Kiryu S, Ito Z, Suka M, Bito T, Kan S, Uchiyama K, Saruta M, Hata T, Takano Y, Fujioka S, Misawa T, Yamauchi T, Yanagisawa H, Sato N, Ohkusa T, Sugiyama H, Koido S. Prognostic value of immune factors in the tumor microenvironment of patients with pancreatic ductal adenocarcinoma. BMC Cancer 2021; 21:1197. [PMID: 34758773 PMCID: PMC8582170 DOI: 10.1186/s12885-021-08911-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Both activated tumor-infiltrating lymphocytes (TILs) and immune-suppressive cells, such as regulatory T cells (Tregs), in the tumor microenvironment (TME) play an important role in the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). METHODS The densities of TILs, programmed death receptor 1 (PD-1) + T cells, and forkhead box P3 (Foxp3) + T cells were analyzed by immunohistochemical staining. The associations of the immunological status of the PDAC microenvironment with overall survival (OS) time and disease-free survival (DFS) time were evaluated. RESULTS PDAC patients with a high density of TILs in the TME or PD-1-positive T cells in tertiary lymphoid aggregates (TLAs) demonstrated a significantly better prognosis than those with a low density of TILs or PD-1-negativity, respectively. Moreover, PDAC patients with high levels of Foxp3-expressing T cells showed a worse prognosis than those with low levels of Foxp3-expressing T cells. Importantly, even with a high density of the TILs in TME or PD-1-positive T cells in TLAs, PDAC patients with high levels of Foxp3-expressing T cells showed a worse prognosis than patients with low levels of Foxp3-expressing T cells. A PDAC TME with a high density of TILs/high PD-1 positivity/low Foxp3 expression was an independent predictive marker associated with superior prognosis. CONCLUSION Combined assessment of TILs, PD-1+ cells, and Foxp3+ T cells in the TME may predict the prognosis of PDAC patients following surgical resection.
Collapse
Affiliation(s)
- Sachie Kiryu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Tsuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Taigo Hata
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Yuki Takano
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Shuichi Fujioka
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Takashi Yamauchi
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, 3-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, 3-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita-city, Osaka, 565-0871 Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| |
Collapse
|
12
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
13
|
Arnold F, Gout J, Wiese H, Weissinger SE, Roger E, Perkhofer L, Walter K, Scheible J, Prelli Bozzo C, Lechel A, Ettrich TJ, Azoitei N, Hao L, Fürstberger A, Kaminska EK, Sparrer KMJ, Rasche V, Wiese S, Kestler HA, Möller P, Seufferlein T, Frappart PO, Kleger A. RINT1 Regulates SUMOylation and the DNA Damage Response to Preserve Cellular Homeostasis in Pancreatic Cancer. Cancer Res 2021; 81:1758-1774. [PMID: 33531371 DOI: 10.1158/0008-5472.can-20-2633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) still presents with a dismal prognosis despite intense research. Better understanding of cellular homeostasis could identify druggable targets to improve therapy. Here we propose RAD50-interacting protein 1 (RINT1) as an essential mediator of cellular homeostasis in PDAC. In a cohort of resected PDAC, low RINT1 protein expression correlated significantly with better survival. Accordingly, RINT1 depletion caused severe growth defects in vitro associated with accumulation of DNA double-strand breaks (DSB), G2 cell cycle arrest, disruption of Golgi-endoplasmic reticulum homeostasis, and cell death. Time-resolved transcriptomics corroborated by quantitative proteome and interactome analyses pointed toward defective SUMOylation after RINT1 loss, impairing nucleocytoplasmic transport and DSB response. Subcutaneous xenografts confirmed tumor response by RINT1 depletion, also resulting in a survival benefit when transferred to an orthotopic model. Primary human PDAC organoids licensed RINT1 relevance for cell viability. Taken together, our data indicate that RINT1 loss affects PDAC cell fate by disturbing SUMOylation pathways. Therefore, a RINT1 interference strategy may represent a new putative therapeutic approach. SIGNIFICANCE: These findings provide new insights into the aggressive behavior of PDAC, showing that RINT1 directly correlates with survival in patients with PDAC by disturbing the SUMOylation process, a crucial modification in carcinogenesis.
Collapse
Affiliation(s)
- Frank Arnold
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Johann Gout
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Heike Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | | | - Elodie Roger
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Karolin Walter
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Jeanette Scheible
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | | | - André Lechel
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Thomas J Ettrich
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | - Li Hao
- Center for Translational Imaging (MoMAN), Ulm University, Ulm, Germany
| | - Axel Fürstberger
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Ewa K Kaminska
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Volker Rasche
- Center for Translational Imaging (MoMAN), Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Medical Centre Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany
| | | | - Alexander Kleger
- Department of Internal Medicine I, University Medical Centre Ulm, Ulm, Germany.
| |
Collapse
|