1
|
Makowska K, Fagundes KRC, de Britto Mari R, Gonkowski S. Cocaine- and amphetamine-regulated transcript (CART) peptide-positive neuron populations in the enteric nervous system of the porcine descending colon depend on age and gender. PLoS One 2025; 20:e0321339. [PMID: 40184385 PMCID: PMC11970693 DOI: 10.1371/journal.pone.0321339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/05/2025] [Indexed: 04/06/2025] Open
Abstract
The enteric nervous system (ENS) is a complex structure located in the wall of the gastrointestinal tract. One of the less-known active substances found in the ENS is cocaine- and amphetamine-regulated transcript peptide (CART). It is known that CART-positive enteric neurons take part in the reactions to pathological stimuli, but knowledge of physiological stimuli-dependent changes in their population is extremely limited. The aim of the present study was to investigate the age- and gender-dependent diversities in the distribution of CART-positive neurons in the porcine colonic ENS using the double immunofluorescence technique. The obtained results have shown that age affects the number of CART-positive neurons in the colonic ENS and the character and intensity of age-caused changes depend on the type of the enteric plexus, and the most visible changes have been noted in the myenteric plexus in which the percentage of CART-positive neurons amounted to 22.3 ± 0.2% in young females, 20.7 ± 0.4% in young males, 23.7 ± 0.2% in adult females and 25.8 ± 01% in adult males. Moreover, during the present study, sex-dependent diversities in the percentage of CART-positive neurons were found, especially in adult animals. The obtained results suggest that CART in the ENS takes part in neuroplasticity processes occurring during the development, maturation and/or aging of the gastrointestinal tract, as well as that the number of CART-positive neurons is controlled by sex hormones and depends on the gender. However, the elucidation of all aspects connected with the influence of age and gender on the population of CART-positive neurons in the ENS requires further comprehensive studies.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kainã R. C. Fagundes
- Institute of Biosciences – Coastal Campus, São Paulo State University (Unesp), São Paulo, Brasil
| | - Renata de Britto Mari
- Institute of Biosciences – Coastal Campus, São Paulo State University (Unesp), São Paulo, Brasil
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
2
|
Xu C, Jiang C, Tian Y, Liu Y, Zhang H, Xiang Z, Xue H, Gu L, Xu Q. Nervous system in colorectal cancer. Cancer Lett 2024; 611:217431. [PMID: 39725147 DOI: 10.1016/j.canlet.2024.217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
3
|
Zhang HY, Wang ZJ, Han JG. Impact of self-expanding metal stents on long-term survival outcomes as a bridge to surgery in patients with colon cancer obstruction: Current state and future prospects. Dig Endosc 2024; 36:1312-1327. [PMID: 39188169 DOI: 10.1111/den.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Since self-expanding metal stents (SEMS) were first introduced in acute colon cancer obstruction, the increased rate of primary anastomosis and improved quality of life following SEMS placement have been clearly shown. However, it was demonstrated that SEMS are associated with higher recurrence rates. Although several trials have shown that overall and disease-free survival in patients following SEMS placement is similar with patients undergoing emergency surgery, obstruction and a high incidence of recurrence imposed many concerns. The optimal time interval from SEMS to surgery is still a matter of debate. Some studies have recommended a time interval of ~2 weeks between SEMS insertion and elective surgery. A prolonged interval of time from SEMS insertion to elective surgery and the administration of neoadjuvant chemotherapy (NAC) has been proposed. SEMS-NAC might have advantages for improving the surgical and long-term survival outcomes of patients with acute colon cancer obstruction, which is an optional approach in the management of acute colon cancer obstruction.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen-Jun Wang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jia-Gang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Iżycka-Świeszewska E, Gulczyński J, Sejda A, Kitlińska J, Galli S, Rogowski W, Sigorski D. Remarks on Selected Morphological Aspects of Cancer Neuroscience: A Microscopic Photo Review. Biomedicines 2024; 12:2335. [PMID: 39457647 PMCID: PMC11505290 DOI: 10.3390/biomedicines12102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND This short review and pictorial essay presents a morphological insight into cancer neuroscience, which is a complex and dynamic area of the pathobiology of tumors. METHODS We discuss the different methods and issues connected with structural research on tumor innervation, interactions between neoplastic cells and the nervous system, and dysregulated neural influence on cancer phenotypes. RESULTS Perineural invasion (PNI), the most-visible cancer-nerve relation, is briefly presented, focusing on its pathophysiology and structural diversity as well as its clinical significance. The morphological approach to cancer neurobiology further includes the analysis of neural density/axonogenesis, neural network topographic distribution, and composition of fiber types and size. Next, the diverse range of neurotransmitters and neuropeptides and the neuroendocrine differentiation of cancer cells are reviewed. Another morphological area of cancer neuroscience is spatial or quantitative neural-related marker expression analysis through different detection, description, and visualization methods, also on experimental animal or cellular models. CONCLUSIONS Morphological studies with systematic methodologies provide a necessary insight into the structure and function of the multifaceted tumor neural microenvironment and in context of possible new therapeutic neural-based oncological solutions.
Collapse
Affiliation(s)
- Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Pathomorphology, Copernicus Hospital, 80-803 Gdansk, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Pathomorphology, Copernicus Hospital, 80-803 Gdansk, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology an Forensic Medicine, Collegium Medicum, University of Warmia and Mazury, 10-561 Olsztyn, Poland
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (J.K.); (S.G.)
| | - Susana Galli
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; (J.K.); (S.G.)
| | - Wojciech Rogowski
- Institute of Health Sciences, Pomeranian University, 70-204 Slupsk, Poland
| | - Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, 10-228 Olsztyn, Poland
| |
Collapse
|
5
|
Jiang TQ, Wang H, Cheng WX, Xie C. Modulation of host N6-methyladenosine modification by gut microbiota in colorectal cancer. World J Gastroenterol 2024; 30:4175-4193. [PMID: 39493326 PMCID: PMC11525875 DOI: 10.3748/wjg.v30.i38.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
As a research hotspot in the field of molecular biology, N6-methyladenosine (m6A) modification has made progress in the treatment of colorectal cancer (CRC), leukemia and other cancers. Numerous studies have demonstrated that the tumour microenvironment (TME) regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells, thus affecting the progression and prognosis of CRC. However, with the diversity in the composition of TME factors, this action is reciprocal and complex. Encouragingly, some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation. This review summarizes the data, supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC. We also review the role of m6A modification in the diagnosis, treatment, and prognostic assessment of CRC and discuss the current status, limitations, and potential clinical value of m6A modification in this field. We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
Collapse
Affiliation(s)
- Tian-Qi Jiang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hao Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wang-XinJun Cheng
- Queen Mary College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
6
|
Massen M, Thijssen MS, Rademakers G, Idris M, Wouters KAD, van der Meer JRM, Buekers N, Huijgen D, Samarska IV, Weijenberg MP, van den Brandt PA, van Engeland M, Gijbels MJ, Boesmans W, Smits KM, Melotte V. Neuronal Distribution in Colorectal Cancer: Associations With Clinicopathological Parameters and Survival. Mod Pathol 2024; 37:100565. [PMID: 39025405 DOI: 10.1016/j.modpat.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Over the past years, insights in the cancer neuroscience field increased rapidly, and a potential role for neurons in colorectal carcinogenesis has been recognized. However, knowledge on the neuronal distribution, subtypes, origin, and associations with clinicopathological characteristics in human studies is sparse. In this study, colorectal tumor tissues from the Netherlands Cohort Study on diet and cancer (n = 490) and an in-cohort validation population (n = 529) were immunohistochemically stained for the pan-neuronal markers neurofilament (NF) and protein gene product 9.5 (PGP9.5) to study the association between neuronal marker expression and clinicopathological characteristics. In addition, tumor and healthy colon tissues were stained for neuronal subtype markers, and their immunoreactivity in colorectal cancer (CRC) stroma was analyzed. NF-positive and PGP9.5-positive nerve fibers were found within the tumor stroma and mostly characterized by the neuronal subtype markers vasoactive intestinal peptide and neuronal nitric oxide synthase, suggesting that inhibitory neurons are the most prominent neuronal subtype in CRC. NF and PGP9.5 protein expression were not consistently associated with tumor stage, sublocation, differentiation grade, and median survival. NF immunoreactivity was associated with a worse CRC-specific survival in the study cohort (P = .025) independent of other prognostic factors (hazard ratio, 2.31; 95% CI, 1.33-4.03; P = .003), but these results were not observed in the in-cohort validation group. PGP9.5, in contrast, was associated with a worse CRC-specific survival in the in-cohort validation (P = .046) but not in the study population. This effect disappeared in multivariate analyses (hazard ratio, 0.81; 95% CI, 0.50-1.32; P = .393), indicating that this effect was dependent on other prognostic factors. This study demonstrates that the tumor stroma of CRC patients mainly harbors inhibitory neurons and that NF as a single marker is significantly associated with a poorer CRC-specific survival in the study cohort but necessitates future validation.
Collapse
Affiliation(s)
- Maartje Massen
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Meike S Thijssen
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands; Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Glenn Rademakers
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Musa Idris
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kim A D Wouters
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaleesa R M van der Meer
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nikkie Buekers
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Desirée Huijgen
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Iryna V Samarska
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marion J Gijbels
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis & Ischemic Syndrome and Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam University Medical Center Location, University of Amsterdam, Amsterdam, The Netherlands
| | - Werend Boesmans
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands; Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Kim M Smits
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Hu J, Wu Y, Dong X, Zeng Y, Wang Y. The Diagnostic and Prognostic Value of Neurotransmitter Receptor-Related Genes in Colon Adenocarcinoma. Mol Biotechnol 2024; 66:2934-2945. [PMID: 37833465 DOI: 10.1007/s12033-023-00910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumor with high morbidity and mortality in the world. This study aimed to find receptor-related genes (NRGs) with diagnostic and prognostic value in colon adenocarcinoma (COAD). The Cancer Genome Atlas (TCGA) and the Human Protein Atlas database databases were applied to find differential expression NRGs between COAD and normal colonic tissues. Subsequently, Cox regression analysis and minimum absolute contraction and selection operator algorithm were used to construct a prognosis nomogram based on TCGA and Gene Expression Omnibus databases. Expression levels of 35 NRGs were significant differences in COAD and normal colonic tissues. ROC curves showed that 24 NRGs had high diagnostic accuracy (AUC > 0.850) in COAD. Risk score was constructed based on 10 NRGs for the first time. Cox regression analysis revealed risk score was an independent risk factor and a higher risk score predicts a later TNM stage. Finally, a prognostic nomogram containing risk score and clinical features was established. Calibration curves and C-index suggested the powerful predictable value of the model. This study identified the NRGs with diagnostic value and prognostic value, providing a direction for treatment of COAD patients.
Collapse
Affiliation(s)
- Jia Hu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
- Research Center of Digestive Disease, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yun Wu
- National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Xiaoping Dong
- National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yong Zeng
- National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Research Center of Digestive Disease, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Rodríguez-Santiago Y, Garay-Canales CA, Nava-Castro KE, Morales-Montor J. Sexual dimorphism in colorectal cancer: molecular mechanisms and treatment strategies. Biol Sex Differ 2024; 15:48. [PMID: 38867310 PMCID: PMC11170921 DOI: 10.1186/s13293-024-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION Sexual dimorphism significantly influences cancer incidence and prognosis. Notably, females exhibit a lower risk and favorable prognosis for non-reproductive cancers compared to males, a pattern observable beyond the scope of risk behaviors such as alcohol consumption and smoking. Colorectal cancer, ranking third in global prevalence and second in mortality, disproportionately affects men. Sex steroid hormones, particularly estrogens and androgens, play crucial roles in cancer progression, considering epidemiological in vivo and in vitro, in general estrogens imparting a protective effect in females and androgens correlating with an increasing risk of colorectal cancer development. MAIN BODY The hormonal impact on immune response is mediated by receptor interactions, resulting in heightened inflammation, modulation of NF-kB, and fostering an environment conducive to cancer progression and metastasis. These molecules also influence the enteric nervous system, that is a pivotal in neuromodulator release and intestinal neuron stimulation, also contributes to cancer development, as evidenced by nerve infiltration into tumors. Microbiota diversity further intersects with immune, hormonal, and neural mechanisms, influencing colorectal cancer dynamics. A comprehensive understanding of hormonal influences on colorectal cancer progression, coupled with the complex interplay between immune responses, microbiota diversity and neurotransmitter imbalances, underpins the development of more targeted and effective therapies. CONCLUSIONS Estrogens mitigate colorectal cancer risk by modulating anti-tumor immune responses, enhancing microbial diversity, and curbing the pro-tumor actions of the sympathetic and enteric nervous systems. Conversely, androgens escalate tumor growth by dampening anti-tumor immune activity, reducing microbial diversity, and facilitating the release of tumor-promoting factors by the nervous system. These findings hold significant potential for the strategic purposing of drugs to fine-tune the extensive impacts of sex hormones within the tumor microenvironment, promising advancements in colorectal cancer therapies.
Collapse
Affiliation(s)
- Yair Rodríguez-Santiago
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1er piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Claudia Angelica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosféricas, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México.
| |
Collapse
|
10
|
Palus K, Chmielewska-Krzesińska M, Jana B, Całka J. Glyphosate-induced changes in the expression of galanin and GALR1, GALR2 and GALR3 receptors in the porcine small intestine wall. Sci Rep 2024; 14:8905. [PMID: 38632282 PMCID: PMC11024183 DOI: 10.1038/s41598-024-59581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Glyphosate is the active ingredient of glyphosate-based herbicides and the most commonly used pesticide in the world. The goal of the present study was to verify whether low doses of glyphosate (equivalent to the environmental exposure) evoke changes in galanin expression in intramural neurons in the small intestine in pigs and to quantitatively determine changes in the level of galanin receptor encoding mRNA (GALR1, GALR2, GALR3) in the small intestine wall. The experiment was conducted on 15 sexually immature gilts divided into three study groups: control (C)-animals receiving empty gelatin capsules; experimental 1 (G1)-animals receiving a low dose of glyphosate (0.05 mg/kg b.w./day); experimental 2 (G2)-animals receiving a higher dose of glyphosate (0.5 mg/kg b.w./day) orally in gelatine capsules for 28 days. Glyphosate ingestion led to an increase in the number of GAL-like immunoreactive intramural neurons in the porcine small intestine. The results of RT-PCR showed a significant increase in the expression of mRNA, which encodes the GAL-receptors in the ileum, a decreased expression in the duodenum and no significant changes in the jejunum. Additionally, intoxication with glyphosate increased the expression of SOD2-encoding mRNA in the duodenum and decreased it in the jejunum and ileum, but it did not affect SOD1 expression. The results suggest that it may be a consequence of the cytotoxic and/or neurotoxic properties of glyphosate and/or its ability to induce oxidative stress.
Collapse
MESH Headings
- Animals
- Female
- Galanin/metabolism
- Glyphosate/metabolism
- Glyphosate/toxicity
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Receptor, Galanin, Type 2/drug effects
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- RNA, Messenger/metabolism
- Sus scrofa/genetics
- Swine
- Receptor, Galanin, Type 1/drug effects
- Receptor, Galanin, Type 1/genetics
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 3/drug effects
- Receptor, Galanin, Type 3/genetics
- Receptor, Galanin, Type 3/metabolism
- Herbicides/toxicity
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Małgorzata Chmielewska-Krzesińska
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-078, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
11
|
Ke C, Zhou H, Xia T, Xie X, Jiang B. GTP binding protein 2 maintains the quiescence, self-renewal, and chemoresistance of mouse colorectal cancer stem cells via promoting Wnt signaling activation. Heliyon 2024; 10:e27159. [PMID: 38468952 PMCID: PMC10926081 DOI: 10.1016/j.heliyon.2024.e27159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and the second most deadly cancer across the globe. Colorectal cancer stem cells (CCSCs) fuel CRC growth, metastasis, relapse, and chemoresistance. A complete understanding of the modulatory mechanisms of CCSC biology is essential for developing efficacious CRC treatment. In the current study, we characterized the expression and function of GTP binding protein 2 (GTPBP2) in a chemical-induced mouse CRC model. We found that GTPBP2 was expressed at a higher level in CD133+CD44+ CCSCs compared with other CRC cells. Using a lentivirus-based Cas9/sgRNA system, GTPBP2 expression was ablated in CRC cells in vitro. GTPBP2 deficiency caused the following effects on CCSCs: 1) Significantly accelerating proliferation and increasing the proportions of cells at G1, S, and G2/M phase; 2) Impairing resistance to 5-Fluorouracil; 3) Weakening self-renewal but not impacting cell migration. In addition, GTPBP2 deficiency remarkably decreased β-catenin expression while increasing β-catenin phosphorylation in CCSCs. These effects of GTPBP2 were present in CCSCs but not in other CRC cell populations. The Wnt agonist SKL2001 completely abolished these changes in GTPBP2-deficient CCSCs. When GTPBP2-deficient CCSCs were implanted in nude mice, they exhibited consistent changes compared with GTPBP2-expressing CCSCs. Collectively, this study indicates that GTPBP2 positively modulates Wnt signaling to reinforce the quiescence, self-renewal, and chemoresistance of mouse CCSCs. Therefore, we disclose a novel mechanism underlying CCSC biology and GTPBP2 could be a therapeutic target in future CRC treatment.
Collapse
Affiliation(s)
- Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Tian Xia
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province, 430060, China
| |
Collapse
|
12
|
Kmiec Z, Kieżun J, Krazinski BE, Kwiatkowski P, Godlewski J. The role of galanin in the progression and prognosis of colorectal cancer: the unfinished story. Eur J Histochem 2024; 68:3990. [PMID: 38568200 PMCID: PMC11017717 DOI: 10.4081/ejh.2024.3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
The paper presents a summary of immunohistochemical (IHC) and biochemical investigations on the presence of galanin (Gal), one of the neuropeptides abundant in the enteric nervous systems, and three types of its receptors (GalR1-3) in colorectal cancer (CRC) tissue and non-involved colon wall and their associations with clinical-pathological data of the CRC patients. We were the first to morphologically demonstrate the presence of endogenous Gal in CRC sections and measure its content in homogenates of tumor tissue and dissected compartments of unchanged colon wall. The prominent atrophy of myenteric plexuses displaying Gal immunoreactivity (Gal-Ir) located close to the tumor invasion was found to be accompanied by higher Gal content in the tumor-adjacent muscularis externa than in tumor-distant tissue. In further studies for the first time, we demonstrated by the IHC technique the presence of the GalR1-3 receptors in the CRC tumors and the colon mucosa and found that higher GalR3-Ir in the tumor tissue correlated with longer overall survival of CRC patients. Furthermore, we discovered that lower GalR1 expression in submucosal plexuses located near the tumor correlated with a better prognosis in patients with CRC. These findings suggest that GalR1 could be considered as a novel therapeutic target in CRC. In conclusion, our morphological investigations provided novel data documenting the involvement of Gal and its receptors in the progression of CRC and showed the usefulness of the IHC technique for the prognosis of CRC patients.
Collapse
Affiliation(s)
- Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk; Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn.
| | - Jacek Kieżun
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn.
| | - Bartlomiej E Krazinski
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn.
| | - Przemyslaw Kwiatkowski
- Department of Hematology with Bone Marrow Transplantation Unit, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre in Olsztyn.
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn.
| |
Collapse
|
13
|
Mariant CL, Bacola G, Van Landeghem L. Mini-Review: Enteric glia of the tumor microenvironment: An affair of corruption. Neurosci Lett 2023; 814:137416. [PMID: 37572875 PMCID: PMC10967235 DOI: 10.1016/j.neulet.2023.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The tumor microenvironment corresponds to a complex mixture of bioactive products released by local and recruited cells whose normal functions have been "corrupted" by cues originating from the tumor, mostly to favor cancer growth, dissemination and resistance to therapies. While the immune and the mesenchymal cellular components of the tumor microenvironment in colon cancer have been under intense scrutiny over the last two decades, the influence of the resident neural cells of the gut on colon carcinogenesis has only very recently begun to draw attention. The vast majority of the resident neural cells of the gastrointestinal tract belong to the enteric nervous system and correspond to enteric neurons and enteric glial cells, both of which have been understudied in the context of colon cancer development and progression. In this review, we especially discuss available evidence on enteric glia impact on colon carcinogenesis. To highlight "corrupted" functioning in enteric glial cells of the tumor microenvironment and its repercussion on tumorigenesis, we first review the main regulatory effects of enteric glial cells on the intestinal epithelium in homeostatic conditions and we next present current knowledge on enteric glia influence on colon tumorigenesis. We particularly examine how enteric glial cell heterogeneity and plasticity require further appreciation to better understand the distinct regulatory interactions enteric glial cell subtypes engage with the various cell types of the tumor, and to identify novel biological targets to block enteric glia pro-carcinogenic signaling.
Collapse
Affiliation(s)
- Chloe L Mariant
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Gregory Bacola
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Strelez C, Perez R, Chlystek JS, Cherry C, Yoon AY, Haliday B, Shah C, Ghaffarian K, Sun RX, Jiang H, Lau R, Schatz A, Lenz HJ, Katz JE, Mumenthaler SM. Integration of Patient-Derived Organoids and Organ-on-Chip Systems: Investigating Colorectal Cancer Invasion within the Mechanical and GABAergic Tumor Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557797. [PMID: 37745376 PMCID: PMC10515884 DOI: 10.1101/2023.09.14.557797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Three-dimensional (3D) in vitro models are essential in cancer research, but they often neglect physical forces. In our study, we combined patient-derived tumor organoids with a microfluidic organ-on-chip system to investigate colorectal cancer (CRC) invasion in the tumor microenvironment (TME). This allowed us to create patient-specific tumor models and assess the impact of physical forces on cancer biology. Our findings showed that the organoid-on-chip models more closely resembled patient tumors at the transcriptional level, surpassing organoids alone. Using 'omics' methods and live-cell imaging, we observed heightened responsiveness of KRAS mutant tumors to TME mechanical forces. These tumors also utilized the γ-aminobutyric acid (GABA) neurotransmitter as an energy source, increasing their invasiveness. This bioengineered model holds promise for advancing our understanding of cancer progression and improving CRC treatments.
Collapse
Affiliation(s)
- Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Rachel Perez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - John S Chlystek
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | | | - Ah Young Yoon
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Bethany Haliday
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Curran Shah
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kimya Ghaffarian
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Ren X Sun
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Hannah Jiang
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Roy Lau
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Aaron Schatz
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan E Katz
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Zhang WJ, Li YY, Xiang ZH, Deng J, Li W, Lin QL, Fang Y, Liu F, Bai J, Zhang L, Li J. Emerging evidence on the effects of plant-derived microRNAs in colorectal cancer: a review. Food Funct 2023; 14:691-702. [PMID: 36625207 DOI: 10.1039/d2fo03477h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Food nutrition and human health are still interesting international issues. Early detection, risk assessment and diet are vital to mitigate the load of intestinal diseases and enhance the quality of life. Plant-derived microRNAs could be transferred to mammalian organisms by cross-kingdom regulation which adjusts relevant target genes for their participation in the process of carcinogenesis. But the mechanism of plant-derived microRNAs in colorectal cancer is still unclear. This review aims to summarize the current pathways of plant-derived microRNAs in colorectal cancer including intestinal bacteria, the tumor microenvironment, plant active substances and protein, discuss the direct or indirect effects of plant-derived microRNAs on the occurrence and/or progression of colorectal cancer and explain why plant-derived microRNAs can be used as a potential anti-cancer agent. Moreover, the drawbacks of plant-derived microRNAs are also discussed in terms of both edible plants and synthetic delivery vectors for RNAi interference technology for human disease treatment. This review will provide a potential way for plant-derived microRNAs to target colorectal cancer.
Collapse
Affiliation(s)
- Wen Jing Zhang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Ying Yi Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Zhen Hang Xiang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China. .,College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Qin Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Fang Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Lin Zhang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Juan Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
16
|
Jin X, Cai C, Zhao J, Huang L, Jin B, Jia Y, Lyu B. Opportunistic colonoscopy in healthy individuals: A non-trivial risk of adenoma. PLoS One 2023; 18:e0283575. [PMID: 37053293 PMCID: PMC10101387 DOI: 10.1371/journal.pone.0283575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/11/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Opportunistic colonoscopy may be beneficial in reducing the incidence of CRC by detecting its precursors. AIM To determine the risk of colorectal adenomas in a population who underwent opportunistic colonoscopy, and demonstrate the need for opportunistic colonoscopy. METHODS A questionnaire was distributed to patients who underwent colonoscopy in the First Affiliated Hospital of Zhejiang Chinese Medical University from December 2021 to January 2022. The patients were divided into two groups, the opportunistic colonoscopy group who underwent a health examination including colonoscopy without intestinal symptoms due to other diseases, and the non-opportunistic group. The risk of adenomas and influence factors were analyzed. RESULTS Patients who underwent opportunistic colonoscopy had a similar risk to the non-opportunistic group, in terms of overall polyps (40.8% vs. 40.5%, P = 0.919), adenomas (25.8% vs. 27.6%, P = 0.581), advanced adenomas (8.7% vs. 8.6%, P = 0.902) and CRC (0.6% vs. 1.2%, P = 0.473). Patients with colorectal polyps and adenomas in the opportunistic colonoscopy group were younger (P = 0.004). There was no difference in the detection rate of polyps between patients who underwent colonoscopy as part of a health examination and those who underwent colonoscopy for other reasons. In patients with intestinal symptoms, abnormal intestinal motility and changes in stool characteristics were frequent (P = 0.014). CONCLUSION The risk of overall colonic polyps, advanced adenomas in healthy people undergoing opportunistic colonoscopy no less than that in the patients with intestinal symptoms, positive FOBT, abnormal tumor markers, and who accepted re-colonoscopy after polypectomy. Our study indicates that more attention should be paid to the population without intestinal symptoms, especially smokers and those older than 40 years.
Collapse
Affiliation(s)
- Xiaoliang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Hangzhou, China
| | - Chang Cai
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Hangzhou, China
| | - Jing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Hangzhou, China
| | - Liang Huang
- Department of Endoscopy Center, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Hangzhou, China
| | - Bo Jin
- Department of Endoscopy Center, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Hangzhou, China
| | - Yixin Jia
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Bin Lyu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Hangzhou, China
| |
Collapse
|
17
|
The Comparison of the Influence of Bisphenol A (BPA) and Its Analogue Bisphenol S (BPS) on the Enteric Nervous System of the Distal Colon in Mice. Nutrients 2022; 15:nu15010200. [PMID: 36615857 PMCID: PMC9824883 DOI: 10.3390/nu15010200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Bisphenol A (BPA), commonly used as a plasticizer in various branches of industry has a strong negative effect on living organisms. Therefore, more and more often it is replaced in production of plastics by other substances. One of them is bisphenol S (BPS). This study for the first time compares the impact of BPA and BPS on the enteric neurons using double immunofluorescence technique. It has been shown that both BPA and BPS affect the number of enteric neurons containing substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuronal isoform of nitric oxide synthase (nNOS-a marker of nitrergic neurons) and/or vesicular acetylcholine transporter (VAChT- a marker of cholinergic neurons). The changes noted under the impact of both bisphenols are similar and consisted of an increase in the number of enteric neurons immunoreactive to all neuronal factors studied. The impact of BPS on some populations of neurons was stronger than that noted under the influence of BPA. The obtained results clearly show that BPS (similarly to BPA) administered for long time is not neutral for the enteric neurons even in relatively low doses and may be more potent than BPA for certain neuronal populations.
Collapse
|
18
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
19
|
Kiezun J, Kiezun M, Krazinski BE, Paukszto L, Koprowicz-Wielguszewska A, Kmiec Z, Godlewski J. Galanin Receptors (GALR1, GALR2, and GALR3) Immunoexpression in Enteric Plexuses of Colorectal Cancer Patients: Correlation with the Clinico-Pathological Parameters. Biomolecules 2022; 12:biom12121769. [PMID: 36551197 PMCID: PMC9775555 DOI: 10.3390/biom12121769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Galanin (GAL) is an important neurotransmitter released by the enteric nervous system (ENS) neurons located in the muscularis externa and submucosa enteric plexuses that acts by binding to GAL receptors 1, 2 and 3 (GALR1, 2 and 3). In our previous studies, the GAL immunoexpression was compared in colorectal cancer (CRC) tissue and the adjacent parts of the large intestine wall including myenteric and submucosal plexuses. Recently we have also found that expression levels of GALR1 and GALR3 proteins are elevated in CRC tissue as compared with their expression in epithelial cells of unchanged mucosa. Moreover, higher GALR3 immunoreactivity in CRC cells correlated with better prognosis of CRC patients. To understand the distribution of GALRs in enteric plexuses distal and close to CRC invasion, in the present study we decided to evaluate GALRs expression within the myenteric and submucosal plexuses located proximally and distally to the cancer invasion and correlated the GALRs expression levels with the clinico-pathological data of CRC patients. The immunohistochemical and immunofluorescent methods showed only slightly decreased immunoexpression of GALR1 and GALR3 in myenteric plexuses close to cancer but did not reveal any correlation in the immunoexpression of all three GAL receptors in myenteric plexuses and tumour progression. No significant changes were found between the expression levels of GALRs in submucosal plexuses distal and close to the tumour. However, elevated GALR1 expression in submucosal plexuses in vicinity of CRC correlated with poor prognosis, higher tumour grading and shorter overall survival. When myenteric plexuses undergo morphological and functional alterations characteristic for atrophy, GALRs maintain or only slightly decrease their expression status. In contrast, the correlation between high expression of GALR1 in the submucosal plexuses and overall survival of CRC patients suggest that GAL and GALRs can act as a components of local neuro-paracrine pro-proliferative pathways accelerating the invasion and metastasis of cancer cell. The obtained results suggest an important role of GALR1 in submucosal plexuses function during the progression of CRC and imply that GALR1 expression in submucosal plexuses of ENS could be an important predictive factor for CRC progression.
Collapse
Affiliation(s)
- Jacek Kiezun
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska Street 30, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-53-06
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-719 Olsztyn, Poland
| | - Bartlomiej Emil Krazinski
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska Street 30, 10-082 Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-719 Olsztyn, Poland
| | - Anna Koprowicz-Wielguszewska
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska Street 30, 10-082 Olsztyn, Poland
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Sklodowskiej-Curie Street 3a, 80-211 Gdansk, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska Street 30, 10-082 Olsztyn, Poland
| |
Collapse
|
20
|
Sánchez ML, Coveñas R. The Galaninergic System: A Target for Cancer Treatment. Cancers (Basel) 2022; 14:3755. [PMID: 35954419 PMCID: PMC9367524 DOI: 10.3390/cancers14153755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to show the involvement of the galaninergic system in neuroendocrine (phaeochromocytomas, insulinomas, neuroblastic tumors, pituitary tumors, small-cell lung cancer) and non-neuroendocrine (gastric cancer, colorectal cancer, head and neck squamous cell carcinoma, glioma) tumors. The galaninergic system is involved in tumorigenesis, invasion/migration of tumor cells and angiogenesis, and this system has been correlated with tumor size/stage/subtypes, metastasis and recurrence rate. In the galaninergic system, epigenetic mechanisms have been related with carcinogenesis and recurrence rate. Galanin (GAL) exerts both proliferative and antiproliferative actions in tumor cells. GAL receptors (GALRs) mediate different signal transduction pathways and actions, depending on the particular G protein involved and the tumor cell type. In general, the activation of GAL1R promoted an antiproliferative effect, whereas the activation of GAL2R induced antiproliferative or proliferative actions. GALRs could be used in certain tumors as therapeutic targets and diagnostic markers for treatment, prognosis and surgical outcome. The current data show the importance of the galaninergic system in the development of certain tumors and suggest future potential clinical antitumor applications using GAL agonists or antagonists.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratorio de Neuroanatomía de los Sistema Peptidérgicos (Lab. 14), Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain;
| | - Rafael Coveñas
- Laboratorio de Neuroanatomía de los Sistema Peptidérgicos (Lab. 14), Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain;
- Grupo GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
21
|
Talaat IM, Yakout NM, Soliman AS, Venkatachalam T, Vinod A, Eldohaji L, Nair V, Hareedy A, Kandil A, Abdel-Rahman WM, Hamoudi R, Saber-Ayad M. Evaluation of Galanin Expression in Colorectal Cancer: An Immunohistochemical and Transcriptomic Study. Front Oncol 2022; 12:877147. [PMID: 35707368 PMCID: PMC9190230 DOI: 10.3389/fonc.2022.877147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer (CRC) represents around 10% of all cancers, with an increasing incidence in the younger age group. The gut is considered a unique organ with its distinctive neuronal supply. The neuropeptide, human galanin, is widely distributed in the colon and expressed in many cancers, including the CRC. The current study aimed to explore the role of galanin at different stages of CRC. Eighty-one CRC cases (TNM stages I - IV) were recruited, and formalin-fixed paraffin-embedded samples were analyzed for the expression of galanin and galanin receptor 1 (GALR1) by immunohistochemistry (IHC). Galanin intensity was significantly lower in stage IV (n= 6) in comparison to other stages (p= 0.037 using the Mann-Whitney U test). Whole transcriptomics analysis using NGS was performed for selected samples based on the galanin expression by IHC [early (n=5) with high galanin expression and late (n=6) with low galanin expression]. Five differentially regulated pathways (using Absolute GSEA) were identified as drivers for tumor progression and associated with higher galanin expression, namely, cell cycle, cell division, autophagy, transcriptional regulation of TP53, and immune system process. The top shared genes among the upregulated pathways are AURKA, BIRC5, CCNA1, CCNA2, CDC25C, CDK2, CDK6, EREG, LIG3, PIN1, TGFB1, TPX2. The results were validated using real-time PCR carried out on four cell lines [two primaries (HCT116 and HT29) and two metastatic (LoVo and SK-Co-1)]. The current study shows galanin as a potential negative biomarker. Galanin downregulation is correlated with advanced CRC staging and linked to cell cycle and division, autophagy, transcriptional regulation of TP53 and immune system response.
Collapse
Affiliation(s)
- Iman M. Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nada M. Yakout
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Physiology and Immunology, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Arya Vinod
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Leen Eldohaji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Vidhya Nair
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Amal Hareedy
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Kandil
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Alexandria University, Cairo, Egypt
| | - Wael M. Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Pharmacology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Ma J, Guo D, Miao W, Wang Y, Yan L, Wu F, Zhang C, Zhang R, Zuo P, Yang G, Wang Z. The value of 18F-FDG PET/CT-based radiomics in predicting perineural invasion and outcome in non-metastatic colorectal cancer. Abdom Radiol (NY) 2022; 47:1244-1254. [PMID: 35218381 DOI: 10.1007/s00261-022-03453-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Perineural invasion (PNI) has been recognized as an important prognosis factor in patients with colorectal cancer (CRC). The purpose of this retrospective study was to investigate the value of 18F-FDG PET/CT-based radiomics integrating clinical information, PET/CT features, and metabolic parameters for preoperatively predicting PNI and outcome in non-metastatic CRC and establish an easy-to-use nomogram. METHODS A total of 131 patients with non-metastatic CRC who undergo PET/CT scan were retrospectively enrolled. Univariate analysis was used to compare the differences between PNI-present and PNI-absent groups. Multivariate logistic regression was performed to select the independent predictors for PNI status. Akaike information criterion (AIC) was used to select the best prediction models for PNI status. CT radiomics signatures (RSs) and PET-RSs were selected by maximum relevance minimum redundancy (mRMR) and the least absolute shrinkage and selection operator algorithm (LASSO) regression and radiomics scores (Rad-scores) were calculated for each patient. The prediction models with or without Rad-score were established. According to the nomogram, nomogram scores (Nomo-scores) were calculated for each patient. The performance of different models was assessed with the area under the curve (AUC), specificity, and sensitivity. The clinical usefulness was assessed by decision curve (DCA). Multivariate Cox regression was used to selected independent predictors of progression-free survival (PFS). RESULTS Among all the clinical information, PET/CT features, and metabolic parameters, CEA, lymph node metastatic on PET/CT (N stage), and total lesion glycolysis (TLG) were independent predictors for PNI (p < 0.05). Six CT-RSs and 12 PET-RSs were selected as the most valuable factors to predict PNI. The Rad-score calculated with these RSs was significantly different between PNI-present and PNI-absent groups (p < 0.001). The AUC of the constructed model was 0.90 (95%CI: 0.83-0.97) in the training cohort and 0.80 (95%CI: 0.65-0.95) in the test cohort. The nomogram's predicting sensitivity was 0.84 and the specificity was 0.83 in the training cohort. The clinical model's predicting sensitivity and specificity were 0.66 and 0.85 in the training cohort, respectively. Besides, DCA showed that patients with non-metastatic CRC could get more benefit with our model. The results also indicated that N stage, PNI status, and the Nomo-score were independent predictors of PFS in patients with non-metastatic CRC. CONCLUSION The nomogram, integrating clinical data, PET/CT features, metabolic parameters, and radiomics, performs well in predicting PNI status and is associated with the outcome in patients with non-metastatic CRC.
Collapse
Affiliation(s)
- Jie Ma
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Dong Guo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjie Miao
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Yangyang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Lei Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Fengyu Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China
| | - Chuantao Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ran Zhang
- Huiying Medical Technology Co.Ltd, Beijing, China
| | - Panli Zuo
- Huiying Medical Technology Co.Ltd, Beijing, China
| | - Guangjie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China.
| | - Zhenguang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 59 Hair Road, Qingdao, Shandong, China.
| |
Collapse
|
23
|
Kiezun J, Godlewski J, Krazinski BE, Kozielec Z, Kmiec Z. Galanin Receptors (GalR1, GalR2, and GalR3) Expression in Colorectal Cancer Tissue and Correlations to the Overall Survival and Poor Prognosis of CRC Patients. Int J Mol Sci 2022; 23:ijms23073735. [PMID: 35409094 PMCID: PMC8998502 DOI: 10.3390/ijms23073735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer in women and the third in men. The postoperative pathomorphological evaluation of patients with CRC is extremely important for future therapeutic decisions. Although our previous studies demonstrated high galanin (GAL) presence within tumor tissue and an elevated concentration of GAL in the serum of CRC patients, to date, there is a lack of data regarding GAL receptor (GalR) protein expression in CRC cells. Therefore, the aim of this study was to evaluate the presence of all three types of GalRs (GalR1, GalR2 and GalR3) within epithelial cells of the human colon and CRC tissue with the use of the immunohistochemical method and to correlate the results with the clinical-pathological data. We found stronger immunoreactivity of GalR1 and GalR3 in CRC cells compared to epithelial cells of the unchanged mucosa of the large intestine. No differences in the GalR2 protein immunoreactivity between the studied tissues were noted. We also found that the increased immunoexpression of the GalR3 in CRC tissue correlated with the better prognosis and longer survival (p < 0.0079) of CRC patients (n = 55). The obtained results suggest that GalR3 may play the role of a prognostic factor for CRC patients. Based on data from the TCGA-COAD project deposited in the GDC Data Portal, we also found that GalR mRNA in cancer samples and the adjacent normal tissue did not correlate with immunoexpression of the GalR proteins in CRC cells and epithelial cells of the unchanged mucosa.
Collapse
MESH Headings
- Colorectal Neoplasms/genetics
- Female
- Humans
- Male
- RNA, Messenger/metabolism
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/metabolism
- Receptors, Galanin/genetics
- Receptors, Galanin/metabolism
Collapse
Affiliation(s)
- Jacek Kiezun
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (J.G.); (B.E.K.)
- Correspondence: ; Tel.: +48-89-524-53-06
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (J.G.); (B.E.K.)
| | - Bartlomiej E. Krazinski
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (J.G.); (B.E.K.)
| | - Zygmunt Kozielec
- Department of Pathomorphology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland;
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
24
|
Anghel SA, Ioniță-Mîndrican CB, Luca I, Pop AL. Promising Epigenetic Biomarkers for the Early Detection of Colorectal Cancer: A Systematic Review. Cancers (Basel) 2021; 13:4965. [PMID: 34638449 PMCID: PMC8508438 DOI: 10.3390/cancers13194965] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In CRC, screening compliance is decreased due to the experienced discomfort associated with colonoscopy, although this method is the gold standard in terms of sensitivity and specificity. Promoter DNA methylation (hypomethylation or hypermethylation) has been linked to all CRC stages. Study objectives: to systematically review the current knowledge on approved biomarkers, reveal new potential ones, and inspect tactics that can improve performance. This research was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines; the risk of bias was evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies criteria (QUADAS-2). The Web of Science® Core Collection, MEDLINE® and Scopus® databases were searched for original articles published in peer-reviewed journals with the specific keywords "colorectal cancer", "early detection", "early-stage colorectal cancer", "epigenetics", "biomarkers", "DNA methylation biomarkers", "stool or blood or tissue or biopsy", "NDRG4", "BMP3", "SEPT9", and "SDC2". Based on eligibility criteria, 74 articles were accepted for analysis. mSDC2 and mSEPT9 were frequently assessed in studies, alone or together as part of the ColoDefense panel test-the latter with the greatest performance. mBMP3 may not be an appropriate marker for detecting CRC. A panel of five methylated binding sites of the CTCF gene holds the promise for early-stage specific detection of CRC. CRC screening compliance and accuracy can be enhanced by employing a stool mt-DNA methylation test.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Ioana Luca
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| |
Collapse
|
25
|
Paulsen JD, Polydorides AD. Pathology and Prognosis of Colonic Adenocarcinomas With Intermediate Primary Tumor Stage Between pT2 and pT3. Arch Pathol Lab Med 2021; 146:591-602. [PMID: 34473229 DOI: 10.5858/arpa.2021-0109-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Primary tumor stage (pT) is an important prognostic indicator in colonic adenocarcinomas; however, cases that have no muscle fibers beyond the advancing tumor edge but also show no extension beyond the apparent outer border of muscularis propria (termed pT2int), have not been previously studied. OBJECTIVE.— To address the clinicopathologic characteristics and prognosis of pT2int tumors. DESIGN.— We recharacterized 168 colon carcinomas and compared pT2int cases to bona fide pT2 and pT3 tumors. RESULTS.— In side-by-side analysis, 21 pT2int cases diverged from 29 pT2 tumors only in terms of larger size (P = .03), but they were less likely to show high-grade (P = .03), lymphovascular (P < .001), and extramural venous invasion (P = .04); discontinuous tumor deposits (P = .02); lymph node involvement (P = .001); and advanced stage (P = .001), compared with 118 pT3 tumors. Combining pT2int with pT2 cases (versus pT3) was a better independent predictor of negative lymph nodes in multivariate analysis (P = .04; odds ratio [OR], 3.96; CI, 1.09-14.42) and absent distant metastasis in univariate analysis (P = .04), compared with sorting pT2int with pT3 cases (versus pT2). Proportional hazards regression showed that pT2 and pT2int cases together were associated with better disease-free survival compared with pT3 tumors (P = .04; OR, 3.65; CI, 1.05-12.70). Kaplan-Meier analysis demonstrated that when pT2int were grouped with pT2 tumors, they were significantly less likely to show disease progression compared with pT3 (P = .002; log-rank test) and showed a trend toward better disease-specific survival (P = .06), during a mean patient follow-up of 44.9 months. CONCLUSIONS.— These data support the conclusion that pT2int carcinomas have clinicopathologic characteristics and are associated with patient outcomes more closely aligned with pT2 rather than pT3 tumors.
Collapse
Affiliation(s)
- John D Paulsen
- From the Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexandros D Polydorides
- From the Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
26
|
Maria-Ferreira D, Dallazen JL, Corso CR, Nascimento AM, Cipriani TR, da Silva Watanabe P, de Mello Gonçales Sant'Ana D, Baggio CH, de Paula Werner MF. Rhamnogalacturonan polysaccharide inhibits inflammation and oxidative stress and alleviates visceral pain. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Brzozowska M, Całka J. Review: Occurrence and Distribution of Galanin in the Physiological and Inflammatory States in the Mammalian Gastrointestinal Tract. Front Immunol 2021; 11:602070. [PMID: 33552060 PMCID: PMC7862705 DOI: 10.3389/fimmu.2020.602070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Galanin (GAL) is a broad-spectrum peptide that was first identified 37 years ago. GAL, which acts through three specific receptor subtypes, is one of the most important molecules on an ever-growing list of neurotransmitters. Recent studies indicate that this peptide is commonly present in the gastrointestinal (GI) tract and GAL distribution can be seen in the enteric nervous system (ENS). The function of the GAL in the gastrointestinal tract is, inter alia, to regulate motility and secretion. It should be noted that the distribution of neuropeptides is largely dependent on the research model, as well as the part of the gastrointestinal tract under study. During the development of digestive disorders, fluctuations in GAL levels were observed. The occurrence of GAL largely depends on the stage of the disease, e.g., in porcine experimental colitis GAL secretion is caused by infection with Brachyspira hyodysenteriae. Many authors have suggested that increased GAL presence is related to the involvement of GAL in organ renewal. Additionally, it is tempting to speculate that GAL may be used in the treatment of gastroenteritis. This review aims to present the function of GAL in the mammalian gastrointestinal tract under physiological conditions. In addition, since GAL is undoubtedly involved in the regulation of inflammatory processes, and the aim of this publication is to provide up-to-date knowledge of the distribution of GAL in experimental models of gastrointestinal inflammation, which may help to accurately determine the role of this peptide in inflammatory diseases and its potential future use in the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
28
|
Cohesive cancer invasion of the biophysical barrier of smooth muscle. Cancer Metastasis Rev 2021; 40:205-219. [PMID: 33398621 DOI: 10.1007/s10555-020-09950-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
Smooth muscle is found around organs in the digestive, respiratory, and reproductive tracts. Cancers arising in the bladder, prostate, stomach, colon, and other sites progress from low-risk disease to high-risk, lethal metastatic disease characterized by tumor invasion into, within, and through the biophysical barrier of smooth muscle. We consider here the unique biophysical properties of smooth muscle and how cohesive clusters of tumor use mechanosensing cell-cell and cell-ECM (extracellular matrix) adhesion receptors to move through a structured muscle and withstand the biophysical forces to reach distant sites. Understanding integrated mechanosensing features within tumor cluster and smooth muscle and potential triggers within adjacent adipose tissue, such as the unique damage-associated molecular pattern protein (DAMP), eNAMPT (extracellular nicotinamide phosphoribosyltransferase), or visfatin, offers an opportunity to prevent the first steps of invasion and metastasis through the structured muscle.
Collapse
|
29
|
Pawolski V, Schmidt MHH. Neuron-Glia Interaction in the Developing and Adult Enteric Nervous System. Cells 2020; 10:E47. [PMID: 33396231 PMCID: PMC7823798 DOI: 10.3390/cells10010047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
The enteric nervous system (ENS) constitutes the largest part of the peripheral nervous system. In recent years, ENS development and its neurogenetic capacity in homeostasis and allostasishave gained increasing attention. Developmentally, the neural precursors of the ENS are mainly derived from vagal and sacral neural crest cell portions. Furthermore, Schwann cell precursors, as well as endodermal pancreatic progenitors, participate in ENS formation. Neural precursorsenherite three subpopulations: a bipotent neuron-glia, a neuronal-fated and a glial-fated subpopulation. Typically, enteric neural precursors migrate along the entire bowel to the anal end, chemoattracted by glial cell-derived neurotrophic factor (GDNF) and endothelin 3 (EDN3) molecules. During migration, a fraction undergoes differentiation into neurons and glial cells. Differentiation is regulated by bone morphogenetic proteins (BMP), Hedgehog and Notch signalling. The fully formed adult ENS may react to injury and damage with neurogenesis and gliogenesis. Nevertheless, the origin of differentiating cells is currently under debate. Putative candidates are an embryonic-like enteric neural progenitor population, Schwann cell precursors and transdifferentiating glial cells. These cells can be isolated and propagated in culture as adult ENS progenitors and may be used for cell transplantation therapies for treating enteric aganglionosis in Chagas and Hirschsprung's diseases.
Collapse
Affiliation(s)
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany;
| |
Collapse
|