1
|
Rajczykowski M, Olbryt M, Galwas K, Idasiak A, Stobiecka E, Suwiński R. Sustained Immunotherapy Response in Metastatic Brain Melanoma Through 2 Pregnancies. AMERICAN JOURNAL OF CASE REPORTS 2025; 26:e945533. [PMID: 40083082 PMCID: PMC11918453 DOI: 10.12659/ajcr.945533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/27/2025] [Accepted: 11/28/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND Metastatic brain melanoma is a deadly form of cancer with a high mortality rate and short overall survival. Immunotherapy with immune checkpoint inhibitors is the first treatment option for BRAF wild-type patients. Pregnancy is the exclusion criterion for immunotherapy and may promote the progression of melanoma. This report shows the long-lasting response of a patient with metastasis in multiple locations, including the brain, to immunotherapy and radiotherapy, who delivered 2 healthy boys during the disease. CASE REPORT A 39-year-old woman was diagnosed with BRAF(-)/NRAS(+) skin melanoma, pT2bN2aM0 (IIIB). Due to pregnancy, she did not receive adjuvant therapy. Upon delivery, the disease manifested with multiple extracranial and symptomatic brain metastasis. She was treated with whole-brain radiation and immunotherapy with ipilimumab and nivolumab followed by nivolumab. A partial response of the brain metastases and an extracranial complete response were observed. During the immunotherapy, she became pregnant and the therapy was discontinued. She was under regular medical surveillance, during which she delivered a healthy boy. The last CT scan and magnetic resonance brain examination showed a maintenance response for 43 months after initiation of immunotherapy and 31 months after therapy completion. CONCLUSIONS A long-lasting response to radiotherapy and interrupted immunotherapy is possible in the case of symptomatic metastatic brain melanoma developing during pregnancy, and healthy deliveries are possible despite the mother's progressive melanoma or exposure of the fetus to nivolumab (first trimester).
Collapse
Affiliation(s)
- Marcin Rajczykowski
- II Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Katarzyna Galwas
- II Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Adam Idasiak
- II Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Ewa Stobiecka
- Department of Tumor Pathology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Rafał Suwiński
- II Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
2
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
3
|
Major E, Lin KH, Lee SC, Káldi K, Győrffy B, Tigyi GJ, Benyó Z. LPA suppresses HLA-DR expression in human melanoma cells: a potential immune escape mechanism involving LPAR1 and DR6-mediated release of IL-10. Acta Pharmacol Sin 2025; 46:222-230. [PMID: 39187677 PMCID: PMC11696067 DOI: 10.1038/s41401-024-01373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
While immune checkpoint inhibitors (ICIs) are promising in the treatment of metastatic melanoma, about half of patients do not respond well to them. Low levels of human leukocyte antigen-DR (HLA-DR) in tumors have been shown to negatively influence prognosis and response to ICIs. Lysophosphatidic acid (LPA) is produced in large amounts by melanoma and is abundantly present in the tumor microenvironment. LPA induces the release of various cytokines and chemokines from tumor cells, which affect cancer development, metastasis, and tumor immunity. In the present study, we investigated the role of LPA-induced IL-10 release in regulating HLA-DR expression and the underlying mechanisms in human melanoma cells. We showed that LPA (0.001-10 μM) dose-dependently increased DR6 transcript levels through activating LPAR1 in HEK293T cells. Knockdown of NF-κB1 abrogated the LPA-increased DR6 expression without affecting basal DR6 expression in both A2058 and A375 melanoma cell lines. LPA (10 µM) significantly increased IL-10 transcripts in A2058 and A375 melanoma cells, the effect was abolished by pharmacological inhibition of LPAR1 or knockdown of DR6. We found a statistically significant correlation between the expression of LPAR1, DR6 and IL-10 in human melanoma tissue and an association between increased expression of LPAR1 and reduced effectiveness of ICI therapy. We demonstrated that LPA (10 µM) markedly suppressed HLA-DR expression in both A375 and A2058 melanoma cells via activating the LPAR1-DR6-IL-10 pathway. These data suggest that the LPAR1-DR6-IL-10 autocrine loop could constitute a novel mechanism used by tumor cells to evade immunosurveillance by decreasing HLA-DR expression.
Collapse
Affiliation(s)
- Enikő Major
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Disease Research Group, Budapest, Hungary
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, China
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Krisztina Káldi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor J Tigyi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
- HUN-REN-SU Cerebrovascular and Neurocognitive Disease Research Group, Budapest, Hungary.
| |
Collapse
|
4
|
Chowdhury D, Das A, Mishra M, Khutere T, Bodakhe SH. Physiological markers for immunotherapeutics: a review. J Chemother 2024:1-24. [PMID: 39711144 DOI: 10.1080/1120009x.2024.2443701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Immunotherapy has been advanced through multiple approaches, including immunogenic cytokines, monoclonal antibodies, therapeutic vaccinations, adoptive cell transfer, stem cell transplantation, and oncolytic viruses. This review analyses various strategies in genomics, transcriptomics, single-cell techniques, computational analysis, big data, and imaging technologies for the identification of tumour microbiota and microenvironments. Immunotherapy is becoming acknowledged as a feasible cancer treatment method, facilitating innovative cancer medicines and personalized medicine techniques.
Collapse
Affiliation(s)
- Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Mrityunjay Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Trinkal Khutere
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
5
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
7
|
Pavelescu LA, Enache RM, Roşu OA, Profir M, Creţoiu SM, Gaspar BS. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int J Mol Sci 2024; 25:9659. [PMID: 39273605 PMCID: PMC11395316 DOI: 10.3390/ijms25179659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
8
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 PMCID: PMC11352263 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India;
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India;
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| |
Collapse
|
9
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
10
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
11
|
Indacochea A, Guitart T, Boada A, Peg V, Quer A, Laayouni H, Condal L, Espinosa P, Manzano JL, Gebauer F. CSDE1 Intracellular Distribution as a Biomarker of Melanoma Prognosis. Int J Mol Sci 2024; 25:2319. [PMID: 38396995 PMCID: PMC10889260 DOI: 10.3390/ijms25042319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
RNA-binding proteins are emerging as critical modulators of oncogenic cell transformation, malignancy and therapy resistance. We have previously found that the RNA-binding protein Cold Shock Domain containing protein E1 (CSDE1) promotes invasion and metastasis of melanoma, the deadliest form of skin cancer and also a highly heterogeneous disease in need of predictive biomarkers and druggable targets. Here, we design a monoclonal antibody useful for IHC in the clinical setting and use it to evaluate the prognosis potential of CSDE1 in an exploratory cohort of 149 whole tissue sections including benign nevi and primary tumors and metastasis from melanoma patients. Contrary to expectations for an oncoprotein, we observed a global decrease in CSDE1 levels with increasing malignancy. However, the CSDE1 cytoplasmic/nuclear ratio exhibited a positive correlation with adverse clinical features of primary tumors and emerged as a robust indicator of progression free survival in cutaneous melanoma, highlighting the potential of CSDE1 as a biomarker of prognosis. Our findings provide a novel feature for prognosis assessment and highlight the intricacies of RNA-binding protein dynamics in cancer progression.
Collapse
Affiliation(s)
- Alberto Indacochea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Aram Boada
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, Institut d’investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (L.C.)
| | - Vicente Peg
- Pathology Department, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Ariadna Quer
- Pathology Department, Hospital Universitari Germans Trias I Pujol, Institut d’Investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain;
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, C/Wellington 30, 08006 Barcelona, Spain
| | - Laura Condal
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, Institut d’investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (L.C.)
| | - Pablo Espinosa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Jose Luis Manzano
- Medical Oncology Department, Catalonian Institute of Oncology, (ICO), Hospital Germans Trias I Pujol, 08916 Badalona, Spain;
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
12
|
Yang W, Liu S, Mao M, Gong Y, Li X, Lei T, Liu C, Wu S, Hu Q. T-cell infiltration and its regulatory mechanisms in cancers: insights at single-cell resolution. J Exp Clin Cancer Res 2024; 43:38. [PMID: 38303018 PMCID: PMC10835979 DOI: 10.1186/s13046-024-02960-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Tumor-infiltrating T cells recognize, attack, and clear tumor cells, playing a central role in antitumor immune response. However, certain immune cells can impair this response and help tumor immune escape. Therefore, exploring the factors that influence T-cell infiltration is crucial to understand tumor immunity and improve therapeutic effect of cancer immunotherapy. The use of single-cell RNA sequencing (scRNA-seq) allows the high-resolution analysis of the precise composition of immune cells with different phenotypes and other microenvironmental factors, including non-immune stromal cells and the related molecules in the tumor microenvironment of various cancer types. In this review, we summarized the research progress on T-cell infiltration and the crosstalk of other stromal cells and cytokines during T-cell infiltration using scRNA-seq to provide insights into the mechanisms regulating T-cell infiltration and contribute new perspectives on tumor immunotherapy.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shimao Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mengyun Mao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xiaohui Li
- Department of Medical Oncology, Peking University First Hospital, Beijing, 100034, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Shikai Wu
- Department of Medical Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
13
|
Tabasum S, Thapa D, Giobbie-Hurder A, Weirather JL, Campisi M, Schol PJ, Li X, Li J, Yoon CH, Manos MP, Barbie DA, Hodi FS. EDIL3 as an Angiogenic Target of Immune Exclusion Following Checkpoint Blockade. Cancer Immunol Res 2023; 11:1493-1507. [PMID: 37728484 PMCID: PMC10618652 DOI: 10.1158/2326-6066.cir-23-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint blockade (ICB) has become the standard of care for several solid tumors. Multiple combinatorial approaches have been studied to improve therapeutic efficacy. The combination of antiangiogenic agents and ICB has demonstrated efficacy in several cancers. To improve the mechanistic understanding of synergies with these treatment modalities, we performed screens of sera from long-term responding patients treated with ipilimumab and bevacizumab. We discovered a high-titer antibody response against EGF-like repeats and discoidin I-like domains protein 3 (EDIL3) that correlated with favorable clinical outcomes. EDIL3 is an extracellular protein, previously identified as a marker of poor prognosis in various malignancies. Our Tumor Immune Dysfunction and Exclusion analysis predicted that EDIL3 was associated with immune exclusion signatures for cytotoxic immune cell infiltration and nonresponse to ICB. Cancer-associated fibroblasts (CAF) were predicted as the source of EDIL3 in immune exclusion-related cells. Furthermore, The Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) and CheckMate 064 data analyses correlated high levels of EDIL3 with increased pan-fibroblast TGFβ response, enrichment of angiogenic signatures, and induction of epithelial-to-mesenchymal transition. Our in vitro studies validated EDIL3 overexpression and TGFβ regulation in patient-derived CAFs. In pretreatment serum samples from patients, circulating levels of EDIL3 were associated with circulating levels of VEGF, and like VEGF, EDIL3 increased the angiogenic abilities of patient-derived tumor endothelial cells (TEC). Mechanistically, three-dimensional microfluidic cultures and two-dimensional transmigration assays with TEC endorsed EDIL3-mediated disruption of the lymphocyte function-associated antigen-1 (LFA-1)-ICAM-1 interaction as a possible means of T-cell exclusion. We propose EDIL3 as a potential target for improving the transendothelial migration of immune cells and efficacy of ICB therapy.
Collapse
Affiliation(s)
- Saba Tabasum
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Dinesh Thapa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L. Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Pieter J. Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Xiaoyu Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jingjing Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Charles H. Yoon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael P. Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Zhang M, Yang L, Wang Y, Zuo Y, Chen D, Guo X. Comprehensive prediction of immune microenvironment and hot and cold tumor differentiation in cutaneous melanoma based on necroptosis-related lncRNA. Sci Rep 2023; 13:7299. [PMID: 37147395 PMCID: PMC10163022 DOI: 10.1038/s41598-023-34238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
As per research, causing cancer cells to necroptosis might be used as a therapy to combat cancer drug susceptibility. Long non-coding RNA (lncRNA) modulates the necroptosis process in Skin Cutaneous Melanoma (SKCM), even though the precise mechanism by which it does so has yet been unknown. RNA sequencing and clinical evidence of SKCM patients were accessed from The Cancer Genome Atlas database, and normal skin tissue sequencing data was available from the Genotype-Tissue Expression database. Person correlation analysis, differential screening, and univariate Cox regression were successively utilized to identify necroptosis-related hub lncRNAs. Following this, we adopt the least absolute shrinkage and selection operator regression analysis to construct a risk model. The model was evaluated on various clinical characteristics using many integrated approaches to ensure it generated accurate predictions. Through risk score comparisons and consistent cluster analysis, SKCM patients were sorted either high-risk or low-risk subgroups as well as distinct clusters. Finally, the effect of immune microenvironment, m7G methylation, and viable anti-cancer drugs in risk groups and potential clusters was evaluated in further detail. Included USP30-AS1, LINC01711, LINC00520, NRIR, BASP1-AS1, and LINC02178, the 6 necroptosis-related hub lncRNAs were utilized to construct a novel prediction model with excellent accuracy and sensitivity, which was not influenced by confounding clinical factors. Immune-related, necroptosis, and apoptosis pathways were enhanced in the model structure, as shown by Gene Set Enrichment Analysis findings. TME score, immune factors, immune checkpoint-related genes, m7G methylation-related genes, and anti-cancer drug sensitivity differed significantly between the high-risk and low-risk groups. Cluster 2 was identified as a hot tumor with a better immune response and therapeutic effect. Our study may provide potential biomarkers for predicting prognosis in SKCM and provide personalized clinical therapy for patients based on hot and cold tumor classification.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lushan Yang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yizhi Wang
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuzhi Zuo
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Dengdeng Chen
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xing Guo
- Department of Plastic and Burns Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
15
|
Xin Z, You L, Na F, Li J, Chen M, Song J, Bai L, Chen J, Zhou J, Ying B. Immunogenetic variations predict immune-related adverse events for PD-1/PD-L1 inhibitors. Eur J Cancer 2023; 184:124-136. [PMID: 36917924 DOI: 10.1016/j.ejca.2023.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND PD-1/PD-L1 inhibitors have brought remarkable benefits but can cause profound immune-related adverse events (irAEs). The host immunogenetic background is likely to play a role in irAE susceptibility. In this study, we aimed to identify potential immunogenetic biomarkers to predict irAEs. METHODS Patients with solid tumours receiving PD-1/PD-L1 blockade were recruited and followed up. Genes considered pivotal contributors to tumour-immunity and autoimmune diseases were screened out via protein-protein interaction network and Cytoscape. Consequently, thirty-nine variants in eighteen genes were genotyped using the multiplex genotyping assay. Association analysis between genetic variants and irAEs as well as irAEs-free survival was performed. RESULTS Four immunogenetic variants as predictive biomarkers of irAEs were identified. The C allele of Mitogen-Activated Protein Kinase 1 (MAPK1) rs3810610 (odds ratio [OR] = 1.495, 95% confidence interval [CI] = 1.093-2.044, P = 0.012) was a risk predictor while the A allele of PTPRC rs6428474 (OR = 0.717, 95% CI = 0.521-0.987, P = 0.041) was a protective factor for all-grade irAEs. The A allele of ADAD1 rs17388568 (OR = 2.599, 95% CI = 1.355-4.983, P = 0.003) increased the risk while the G allele of IL6 rs1800796 (OR = 0.425, 95% CI = 0.205-0.881, P = 0.018) protected patients from high-grade irAEs. Significant immunogenetic variants reached a similar tendency in PD-1 blockade or lung cancer subgroups. In multivariate Cox regression analysis, the MAPK1 rs3810610 was an independent factor regarding all-grade irAEs-free survival (CC versus CT or TT: hazard ratio [HR] = 0.71, 95% CI = 0.52-0.99, P = 0.042). ADAD1 rs17388568 (AA versus AG or GG: HR = 0.11, 95% CI = 0.025-0.49, P = 0.004) and IL6 rs1800796 (GG or GC versus CC: HR = 3.10, 95% CI = 1.315-7.29, P = 0.01) were independent variables for high-grade irAEs-free survival. CONCLUSION We first identified several immunogenetic polymorphisms associated with irAEs and irAEs-free survival in PD-1/PD-L1 blockade-treated tumour patients, and they may serve as potential predictive biomarkers.
Collapse
Affiliation(s)
- Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Feifei Na
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Min Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan Province 570100, PR China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
16
|
Vanni I, Pastorino L, Tanda ET, Andreotti V, Dalmasso B, Solari N, Mascherini M, Cabiddu F, Guadagno A, Coco S, Allavena E, Bruno W, Pietra G, Croce M, Gangemi R, Piana M, Zoppoli G, Ferrando L, Spagnolo F, Queirolo P, Ghiorzo P. Whole-Exome Sequencing and cfDNA Analysis Uncover Genetic Determinants of Melanoma Therapy Response in a Real-World Setting. Int J Mol Sci 2023; 24:4302. [PMID: 36901733 PMCID: PMC10002464 DOI: 10.3390/ijms24054302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Although several studies have explored the molecular landscape of metastatic melanoma, the genetic determinants of therapy resistance are still largely unknown. Here, we aimed to determine the contribution of whole-exome sequencing and circulating free DNA (cfDNA) analysis in predicting response to therapy in a consecutive real-world cohort of 36 patients, undergoing fresh tissue biopsy and followed during treatment. Although the underpowered sample size limited statistical analysis, samples from non-responders had higher copy number variations and mutations in melanoma driver genes compared to responders in the BRAF V600+ subset. In the BRAF V600- subset, Tumor Mutational Burden (TMB) was twice that in responders vs. non-responders. Genomic layout revealed commonly known and novel potential intrinsic/acquired resistance driver gene variants. Among these, RAC1, FBXW7, GNAQ mutations, and BRAF/PTEN amplification/deletion were present in 42% and 67% of patients, respectively. Both Loss of Heterozygosity (LOH) load and tumor ploidy were inversely associated with TMB. In immunotherapy-treated patients, samples from responders showed higher TMB and lower LOH and were more frequently diploid compared to non-responders. Secondary germline testing and cfDNA analysis proved their efficacy in finding germline predisposing variants carriers (8.3%) and following dynamic changes during treatment as a surrogate of tissue biopsy, respectively.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - Enrica Teresa Tanda
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Nicola Solari
- Surgical Oncology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Mascherini
- Surgical Clinic Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Cabiddu
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Antonio Guadagno
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Eleonora Allavena
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - Gabriella Pietra
- IRCCS Ospedale Policlinico San Martino, U.O. Immunologia, 16132 Genoa, Italy
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy
| | - Michela Croce
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Rosaria Gangemi
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Michele Piana
- Dipartimento di Matematica (MIDA), University of Genoa, 16132 Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Ferrando
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Spagnolo
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), University of Genoa, 16132 Genoa, Italy
| | - Paola Queirolo
- Melanoma, Sarcoma & Rare Tumors Division, European Institute of Oncology (IEO), 20141 Milan, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
17
|
Spiliopoulou P, Vornicova O, Genta S, Spreafico A. Shaping the Future of Immunotherapy Targets and Biomarkers in Melanoma and Non-Melanoma Cutaneous Cancers. Int J Mol Sci 2023; 24:1294. [PMID: 36674809 PMCID: PMC9862040 DOI: 10.3390/ijms24021294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in treating cutaneous melanoma have resulted in impressive patient survival gains. Refinement of disease staging and accurate patient risk classification have significantly improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the most important step towards optimizing patient outcomes has been the advent of cancer immunotherapy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal role in the management of both early and late-stage melanoma. Through leveraging outcomes in melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review, we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed light on future research directions.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Olga Vornicova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada
| | - Sofia Genta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
18
|
The Association of CD8+ Cytotoxic T Cells and Granzyme B+ Lymphocytes with Immunosuppressive Factors, Tumor Stage and Prognosis in Cutaneous Melanoma. Biomedicines 2022; 10:biomedicines10123209. [PMID: 36551965 PMCID: PMC9775436 DOI: 10.3390/biomedicines10123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) consists of suppressive cells producing a variety of immunomodulatory proteins, such as programmed death ligand 1 (PD-L1) and indoleamine-2,3-dioxygenase (IDO). Although granzyme B (GrB) is known to convey the cytolytic activities of CD8+ cytotoxic lymphocytes, it is also expressed by other cells, such as regulatory T and B cells, for immunosuppressive purposes. The role of GrB+ lymphocytes in melanoma has not been examined extensively. In this study, benign, premalignant, and malignant melanocytic tumors were stained immunohistochemically for CD8 and GrB. PD-L1 was also stained from malignant samples that had accompanying clinicopathological data. The association of CD8+ and GrB+ lymphocytes with PD-L1 expression, tumor stage, prognosis, and previously analyzed immunosuppressive factors were evaluated. Our aim was to obtain a more comprehensive perception of the immunosuppressive TME in melanoma. The results show that both CD8+ and GrB+ lymphocytes were more abundant in pT4 compared to pT1 melanomas, and in lymph node metastases compared to primary melanomas. Surprisingly, a low GrB/CD8 ratio was associated with better recurrence-free survival in primary melanomas, which indicates that GrB+ lymphocytes might represent activated immunosuppressive lymphocytes rather than cytotoxic T cells. In the present study, CD8+ lymphocytes associated positively with both tumor and stromal immune cell PD-L1 and IDO expression. In addition, PD-L1+ tumor and stromal immune cells associated positively with IDO+ stromal immune and melanoma cells. The data suggest that IDO and PD-L1 seem to be key immunosuppressive factors in CD8+ lymphocyte-predominant tumors in CM.
Collapse
|
19
|
Ahmed YB, Al-Bzour AN, Ababneh OE, Abushukair HM, Saeed A. Genomic and Transcriptomic Predictors of Response to Immune Checkpoint Inhibitors in Melanoma Patients: A Machine Learning Approach. Cancers (Basel) 2022; 14:cancers14225605. [PMID: 36428698 PMCID: PMC9688789 DOI: 10.3390/cancers14225605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) became one of the most revolutionary cancer treatments, especially in melanoma. While they have been proven to prolong survival with lesser side effects compared to chemotherapy, the accurate prediction of response remains to be an unmet gap. Thus, we aim to identify accurate clinical and transcriptomic biomarkers for ICI response in melanoma. We also provide mechanistic insight into how high-performing markers impose their effect on the tumor microenvironment (TME). Clinical and transcriptomic data were retrieved from melanoma studies administering ICIs from cBioportal and GEO databases. Four machine learning models were developed using random-forest classification (RFC) entailing clinical and genomic features (RFC7), differentially expressed genes (DEGs, RFC-Seq), survival-related DEGs (RFC-Surv) and a combination model. The xCELL algorithm was used to investigate the TME. A total of 212 ICI-treated melanoma patients were identified. All models achieved a high area under the curve (AUC) and bootstrap estimate (RFC7: 0.71, 0.74; RFC-Seq: 0.87, 0.75; RFC-Surv: 0.76, 0.76, respectively). Tumor mutation burden, GSTA3, and VNN2 were the highest contributing features. Tumor infiltration analyses revealed a direct correlation between upregulated genes and CD8+, CD4+ T cells, and B cells and inversely correlated with myeloid-derived suppressor cells. Our findings confirmed the accuracy of several genomic, clinical, and transcriptomic-based RFC models, that could further support the use of TMB in predicting response to ICIs. Novel genes (GSTA3 and VNN2) were identified through RFC-seq and RFC-surv models that could serve as genomic biomarkers after robust validation.
Collapse
Affiliation(s)
- Yaman B. Ahmed
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayah N. Al-Bzour
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hassan M. Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, KS 66205, USA
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1-913-588-6077
| |
Collapse
|
20
|
Lee JH, Hyung S, Lee J, Choi SH. Visceral adiposity and systemic inflammation in the obesity paradox in patients with unresectable or metastatic melanoma undergoing immune checkpoint inhibitor therapy: a retrospective cohort study. J Immunother Cancer 2022; 10:jitc-2022-005226. [PMID: 36002189 PMCID: PMC9413167 DOI: 10.1136/jitc-2022-005226] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The obesity paradox is a topic of increasing interest in oncology and epidemiology research. Although this phenomenon has been observed in melanoma patients receiving immune checkpoint inhibitors, little is known about its mechanism. We aim to investigate the prognostic value of obesity and its association with adiposity and systemic inflammation. METHODS This retrospective study evaluates the data of patients who received pembrolizumab or nivolumab for unresectable or metastatic melanoma between June 2015 and April 2021. The skeletal muscle index (SMI) and visceral fat index (VFI) (cm2/m2) were calculated by dividing the cross-sectional areas of skeletal muscle and visceral fat by height squared. The systemic immune-inflammation index (SII) was defined as the total peripheral platelet count×neutrophil/lymphocyte ratio. Cox proportional hazard regression analysis was conducted to determine the association with overall survival. RESULTS We analyzed 266 patients with a median age of 60 years (IQR 51-69 years; 135 men and 131 women). The protective effect of obesity was independent of covariates (HR 0.60; 95% CI 0.37 to 0.99; p=0.048), but disappeared after adjusting for VFI (HR 0.76; 95% CI 0.41 to 1.40; p=0.380) or SII (HR 0.71; 95% CI 0.42 to 1.18; p=0.186). An increase of 10 cm2/m2 in VFI was associated with longer overall survival after adjusting for covariates (HR 0.88; 95% CI 0.79 to 0.99; p=0.029). The prognostic value of VFI remained and predicted favorable overall survival after additional adjustment for SMI (HR 0.86; 95% CI 0.76 to 0.98; p=0.025), but disappeared with adjustment for SII (HR 0.92; 95% CI 0.82 to 1.03; p=0.142). An increase of 100×109/L in SII was associated with poor overall survival when adjusted for covariates (HR 1.08; 95% CI 1.05 to 1.11; p<0.001) or when additionally adjusted for VFI (HR 1.07; 95% CI 1.04 to 1.10; p<0.001). CONCLUSIONS Visceral adiposity and systemic inflammation are significant prognostic factors in patients with unresectable or metastatic melanoma receiving immune checkpoint inhibitors. The prognostic impact of visceral adiposity is dependent on systemic inflammation status.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, The Republic of Korea
| | - Sujin Hyung
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, The Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, The Republic of Korea
| | - Sang-Hee Choi
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, The Republic of Korea
| |
Collapse
|
21
|
Casado-Pelaez M, Bueno-Costa A, Esteller M. Single cell cancer epigenetics. Trends Cancer 2022; 8:820-838. [PMID: 35821003 DOI: 10.1016/j.trecan.2022.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Bulk sequencing methodologies have allowed us to make great progress in cancer research. Unfortunately, these techniques lack the resolution to fully unravel the epigenetic mechanisms that govern tumor heterogeneity. Consequently, many novel single cell-sequencing methodologies have been developed over the past decade, allowing us to explore the epigenetic components that regulate different aspects of cancer heterogeneity, namely: clonal heterogeneity, tumor microenvironment (TME), spatial organization, intratumoral differentiation programs, metastasis, and resistance mechanisms. In this review, we explore the different sequencing techniques that enable researchers to study different aspects of epigenetics (DNA methylation, chromatin accessibility, histone modifications, DNA-protein interactions, and chromatin 3D architecture) at the single cell level, their potential applications in cancer, and their current technical limitations.
Collapse
Affiliation(s)
- Marta Casado-Pelaez
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Alberto Bueno-Costa
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
22
|
Thornton J, Chhabra G, Singh CK, Guzmán-Pérez G, Shirley CA, Ahmad N. Mechanisms of Immunotherapy Resistance in Cutaneous Melanoma: Recognizing a Shapeshifter. Front Oncol 2022; 12:880876. [PMID: 35515106 PMCID: PMC9066268 DOI: 10.3389/fonc.2022.880876] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022] Open
Abstract
Melanoma is one of the seven most common cancers in the United States, and its incidence is still increasing. Since 2011, developments in targeted therapies and immunotherapies have been essential for significantly improving overall survival rates. Prior to the advent of targeted and immunotherapies, metastatic melanoma was considered a death sentence, with less than 5% of patients surviving more than 5 years. With the implementation of immunotherapies, approximately half of patients with metastatic melanoma now survive more than 5 years. Unfortunately, this also means that half of the patients with melanoma do not respond to current therapies and live less than 5 years after diagnosis. One major factor that contributes to lower response in this population is acquired or primary resistance to immunotherapies via tumor immune evasion. To improve the overall survival of melanoma patients new treatment strategies must be designed to minimize the risk of acquired resistance and overcome existing primary resistance. In recent years, many advances have been made in identifying and understanding the pathways that contribute to tumor immune evasion throughout the course of immunotherapy treatment. In addition, results from clinical trials focusing on treating patients with immunotherapy-resistant melanoma have reported some initial findings. In this review, we summarize important mechanisms that drive resistance to immunotherapies in patients with cutaneous melanoma. We have focused on tumor intrinsic characteristics of resistance, altered immune function, and systemic factors that contribute to immunotherapy resistance in melanoma. Exploring these pathways will hopefully yield novel strategies to prevent acquired resistance and overcome existing resistance to immunotherapy treatment in patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Jessica Thornton
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | | | - Carl A Shirley
- Department of Dermatology, University of Wisconsin, Madison, WI, United States
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, United States.,William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| |
Collapse
|
23
|
Biomarkers of treatment benefit with atezolizumab plus vemurafenib plus cobimetinib in BRAFV600 mutation–positive melanoma. Ann Oncol 2022; 33:544-555. [DOI: 10.1016/j.annonc.2022.01.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
|
24
|
Serna-Higuita LM, Amaral T, Forschner A, Leiter U, Flatz L, Seeber O, Thomas I, Garbe C, Eigentler TK, Martus P. Association between Immune-Related Adverse Events and Survival in 319 Stage IV Melanoma Patients Treated with PD-1-Based Immunotherapy: An Approach Based on Clinical Chemistry. Cancers (Basel) 2021; 13:cancers13236141. [PMID: 34885249 PMCID: PMC8657404 DOI: 10.3390/cancers13236141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Nivolumab combined with ipilimumab has improved the prognosis of patients with advanced melanoma. However, this therapy is frequently associated with immune-related adverse events. Published data suggested that objective responses rates appear to be superior in patients who developed immune-related adverse events. The primary aim of this study was to evaluate the association between immune-related adverse events and disease control rate, progressive-free survival, and overall survival in patients with stage IV melanoma treated with first-line PD-1-based immunotherapy. In this manuscript, we show that the presence of immune related side effects is related to better overall response and longer survival in patients with advance stage melanoma treated immuno-therapy, suggesting that immune-related adverse events might be a predictive factor of response in those patients. Abstract (1) Background: Immune checkpoint inhibitors have improved the prognosis of patients with advanced melanoma. Published data suggested that the objective response rates appear to be superior in patients who developed immune-related adverse events (irAEs). (2) The primary aim of this cohort study was to evaluate the association between irAEs and disease control rate in patients with stage IV melanoma treated with first-line PD-1-based immunotherapy. (3) Among 319 patients, 53% experienced at least one irAE. A higher percentage of patients with irAEs had disease control compared to those without irAEs (69.8% vs. 49.3%). In multivariate analysis, development of grade 3 and 4 irAEs was significantly associated with a protective effect for the outcome primary resistance (OR: 0.40 95% CI 0.23–0.70, p = 0.001). The presence of any grade irAEs was significantly associated with longer OS (irAEs grade 1–2 HRadj: 0.61 95% CI: 0.4–0.93, p = 0.02, irAEs grade 3–4 HRadj: 0.55 95% CI 0.31–0.99, p = 0.04), but not with PFS (irAEs grade 1–2 HRadj: 1.21 95% CI: 0.91–1.79, p = 0.16, irAEs grade 3–4 HRadj: 1.14 95% CI 0.83–2.02, p = 0.24). (4) The presence of irAEs with laboratorial expression is positively associated with response and OS, suggesting that irAEs might be a predictive factor in this setting.
Collapse
Affiliation(s)
- Lina María Serna-Higuita
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany;
- Correspondence: ; Tel.: +49-7071-29-85902
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany; (T.A.); (A.F.); (U.L.); (L.F.); (O.S.); (I.T.); (C.G.); (T.K.E.)
| | - Andrea Forschner
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany; (T.A.); (A.F.); (U.L.); (L.F.); (O.S.); (I.T.); (C.G.); (T.K.E.)
| | - Ulrike Leiter
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany; (T.A.); (A.F.); (U.L.); (L.F.); (O.S.); (I.T.); (C.G.); (T.K.E.)
| | - Lukas Flatz
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany; (T.A.); (A.F.); (U.L.); (L.F.); (O.S.); (I.T.); (C.G.); (T.K.E.)
| | - Olivia Seeber
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany; (T.A.); (A.F.); (U.L.); (L.F.); (O.S.); (I.T.); (C.G.); (T.K.E.)
| | - Ioannis Thomas
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany; (T.A.); (A.F.); (U.L.); (L.F.); (O.S.); (I.T.); (C.G.); (T.K.E.)
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany; (T.A.); (A.F.); (U.L.); (L.F.); (O.S.); (I.T.); (C.G.); (T.K.E.)
| | - Thomas Kurt Eigentler
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany; (T.A.); (A.F.); (U.L.); (L.F.); (O.S.); (I.T.); (C.G.); (T.K.E.)
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Peter Martus
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany;
| |
Collapse
|
25
|
Xue L, Wu P, Zhao X, Jin X, Wang J, Shi Y, Yang X, She Y, Li Y, Li C. Using Immune-Related lncRNA Signature for Prognosis and Response to Immunotherapy in Cutaneous Melanoma. Int J Gen Med 2021; 14:6463-6475. [PMID: 34675614 PMCID: PMC8518697 DOI: 10.2147/ijgm.s335266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Cutaneous melanoma is a highly malignant skin tumor, and most patients have a poor prognosis. In recent years, immunotherapy has assumed an important role in the treatment of advanced cutaneous melanoma, but only a small percentage of patients benefit from immunotherapy. A growing number of studies have demonstrated that the prognosis of patients with cutaneous melanoma is closely related to long non-coding RNA and the tumor immune microenvironment. Methods We downloaded RNA expression data and immune-related gene lists of cutaneous melanoma patients separately from The Cancer Genome Atlas database and ImmPort website and identified immune-related lncRNAs by co-expression analysis. The prognostic model was constructed by applying least absolute shrinkage and selection operator regression, and all patients were classified into high- and low-risk groups according to the risk score of the model. We evaluated the differences between the two groups in terms of survival outcomes, immune infiltration, pathway enrichment, chemotherapeutic drug sensitivity and immune checkpoint gene expression to verify the impact of lncRNA signature on clinical prognosis and immunotherapy efficacy. Results By correlation analysis and LASSO regression analysis, we constructed an immune-related lncRNA prognostic model based on five lncRNA: HLA-DQB1-AS1, MIR205HG, RP11-643G5.6, USP30-AS1 and RP11-415F23.4. Based on this model, we plotted Kaplan-Meier survival curves and time-dependent ROC curves and analyzed its ability as an independent prognostic factor for cutaneous melanoma in combination with clinicopathological features. The results showed that these lncRNA signature was an independent prognostic factor of cutaneous melanoma with favorable prognostic ability. Our results also show a higher degree of immune infiltration, higher expression of immune checkpoint-associated genes, and better outcome of immunotherapy in the low-risk group of the lncRNA signature. Conclusion The 5 immune-related lncRNA signatures constructed in our study can predict the prognosis of cutaneous melanoma and contribute to the selection of immunotherapy.
Collapse
Affiliation(s)
- Ling Xue
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Pingfan Wu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Xiaowen Zhao
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Xiaojie Jin
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Jingjing Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Yuxiang Shi
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Xiaojing Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Yali She
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yaling Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Changtian Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
26
|
Vukadin S, Khaznadar F, Kizivat T, Vcev A, Smolic M. Molecular Mechanisms of Resistance to Immune Checkpoint Inhibitors in Melanoma Treatment: An Update. Biomedicines 2021; 9:835. [PMID: 34356899 PMCID: PMC8301472 DOI: 10.3390/biomedicines9070835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICI) have revolutionized the treatment of advanced melanoma and ensured significant improvement in overall survival versus chemotherapy. ICI or targeted therapy are now the first line treatment in advanced melanoma, depending on the tumor v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutational status. While these new approaches have changed the outcomes for many patients, a significant proportion of them still experience lack of response, known as primary resistance. Mechanisms of primary drug resistance are not fully elucidated. However, many alterations have been found in ICI-resistant melanomas and possibly contribute to that outcome. Furthermore, some tumors which initially responded to ICI treatment ultimately developed mechanisms of acquired resistance and subsequent tumor progression. In this review, we give an overview of tumor primary and acquired resistance mechanisms to ICI and discuss future perspectives with regards to new molecular targets and combinatorial therapies.
Collapse
Affiliation(s)
- Sonja Vukadin
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Farah Khaznadar
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Nuclear Medicine and Oncology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Aleksandar Vcev
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Department of Pathophysiology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Internal Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
27
|
Garutti M, Bonin S, Buriolla S, Bertoli E, Pizzichetta MA, Zalaudek I, Puglisi F. Find the Flame: Predictive Biomarkers for Immunotherapy in Melanoma. Cancers (Basel) 2021; 13:cancers13081819. [PMID: 33920288 PMCID: PMC8070445 DOI: 10.3390/cancers13081819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has revolutionized the therapeutic landscape of melanoma. In particular, checkpoint inhibition has shown to increase long-term outcome, and, in some cases, it can be virtually curative. However, the absence of clinically validated predictive biomarkers is one of the major causes of unpredictable efficacy of immunotherapy. Indeed, the availability of predictive biomarkers could allow a better stratification of patients, suggesting which type of drugs should be used in a certain clinical context and guiding clinicians in escalating or de-escalating therapy. However, the difficulty in obtaining clinically useful predictive biomarkers reflects the deep complexity of tumor biology. Biomarkers can be classified as tumor-intrinsic biomarkers, microenvironment biomarkers, and systemic biomarkers. Herein we review the available literature to classify and describe predictive biomarkers for checkpoint inhibition in melanoma with the aim of helping clinicians in the decision-making process. We also performed a meta-analysis on the predictive value of PDL-1.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Correspondence:
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34123 Trieste, Italy;
| | - Silvia Buriolla
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Dipartimento di Oncologia, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Elisa Bertoli
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Maria Antonietta Pizzichetta
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy;
| | - Iris Zalaudek
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy;
| | - Fabio Puglisi
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
28
|
Wang F, Zhou L, Chen N, Li X. The effect of pretreatment BMI on the prognosis and serum immune cells in advanced LSCC patients who received ICI therapy. Medicine (Baltimore) 2021; 100:e24664. [PMID: 33663076 PMCID: PMC7909129 DOI: 10.1097/md.0000000000024664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
This study aims to evaluate the prognosis and serum immune cells of patients with different pretreatment body mass index (BMI) values. The data of 61 newly diagnosed patients with advanced lung squamous cell carcinoma (LSCC) who received immune checkpoint inhibitors (ICIs) combined with chemotherapy were obtained from the database of Rizhao People's Hospital (Rizhao, Shandong). According to the cutoff value of BMI (23.2 kg/m2), 32 patients had a high BMI and the remaining 29 patients had a low BMI. The effects of different BMIs on the prognosis and serum immune cells of patients were analyzed. The median progression-free survival (PFS) times were 7.72 months in the high BMI group and 4.83 months in the low BMI group [adjusted hazard ratio (HR), 0.23; 95% confidence interval (CI), 0.11-0.48; P < .001]. In terms of the overall survival (OS), the median times of the high BMI group and low BMI group were 18.10 and 13.90 months, respectively (adjusted HR, 0.15; 95% CI, 0.07-0.32; P < .001). After 4 cycles of ICI therapy combined with chemotherapy, the objective response rate was 59.4% for the high BMI group and 20.7% for the low BMI group (P = .002). In addition, the number of serum immune cells in patients with high BMI was significantly higher than that in patients with low BMI (all P < .001). There was a linear relationship between BMI value and the number of serum immune cells (all R2 > 0.7). The current results showed that high BMI is associated with better prognosis in LSCC patients who received ICIs, which may be related to higher levels of serum immune cells.
Collapse
|
29
|
Zhang JA, Zhou XY, Huang D, Luan C, Gu H, Ju M, Chen K. Development of an Immune-Related Gene Signature for Prognosis in Melanoma. Front Oncol 2021; 10:602555. [PMID: 33585219 PMCID: PMC7874014 DOI: 10.3389/fonc.2020.602555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma remains a potentially deadly malignant tumor. The incidence of melanoma continues to rise. Immunotherapy has become a new treatment method and is widely used in a variety of tumors. Original melanoma data were downloaded from TCGA. ssGSEA was performed to classify them. GSVA software and the "hclust" package were used to analyze the data. The ESTIMATE algorithm screened DEGs. The edgeR package and Venn diagram identified valid immune-related genes. Univariate, LASSO and multivariate analyses were used to explore the hub genes. The "rms" package established the nomogram and calibrated the curve. Immune infiltration data were obtained from the TIMER database. Compared with that of samples in the high immune cell infiltration cluster, we found that the tumor purity of samples in the low immune cell infiltration cluster was higher. The immune score, ESTIMATE score and stromal score in the low immune cell infiltration cluster were lower. In the high immune cell infiltration cluster, the immune components were more abundant, while the tumor purity was lower. The expression levels of TIGIT, PDCD1, LAG3, HAVCR2, CTLA4 and the HLA family were also higher in the high immune cell infiltration cluster. Survival analysis showed that patients in the high immune cell infiltration cluster had shorter OS than patients in the low immune cell infiltration cluster. IGHV1-18, CXCL11, LTF, and HLA-DQB1 were identified as immune cell infiltration-related DEGs. The prognosis of melanoma was significantly negatively correlated with the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells, neutrophils and macrophages. In this study, we identified immune-related melanoma core genes and relevant immune cell subtypes, which may be used in targeted therapy and immunotherapy of melanoma.
Collapse
Affiliation(s)
- Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Xu-Yue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
30
|
The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13020210. [PMID: 33430105 PMCID: PMC7827203 DOI: 10.3390/cancers13020210] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Immunotherapy improved the therapeutic landscape for patients with advanced cancer diseases. However, many patients do not benefit from immunotherapy. The bidirectional crosstalk between myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) contributes to immune evasion, limiting the success of immunotherapy by checkpoint inhibitors. This review aims to outline the current knowledge of the role and the immunosuppressive properties of MDSC and Treg within the tumor microenvironment (TME). Furthermore, we will discuss the importance of the functional crosstalk between MDSC and Treg for immunosuppression, issuing particularly the role of cell adhesion molecules. Lastly, we will depict the impact of this interaction for cancer research and discuss several strategies aimed to target these pathways for tumor therapy. Abstract Immune checkpoint inhibitors (ICI) have led to profound and durable tumor regression in some patients with metastatic cancer diseases. However, many patients still do not derive benefit from immunotherapy. Here, the accumulation of immunosuppressive cell populations within the tumor microenvironment (TME), such as myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), and regulatory T cells (Treg), contributes to the development of immune resistance. MDSC and Treg expand systematically in tumor patients and inhibit T cell activation and T effector cell function. Numerous studies have shown that the immunosuppressive mechanisms exerted by those inhibitory cell populations comprise soluble immunomodulatory mediators and receptor interactions. The latter are also required for the crosstalk of MDSC and Treg, raising questions about the relevance of cell–cell contacts for the establishment of their inhibitory properties. This review aims to outline the current knowledge on the crosstalk between these two cell populations, issuing particularly the potential role of cell adhesion molecules. In this regard, we further discuss the relevance of β2 integrins, which are essential for the differentiation and function of leukocytes as well as for MDSC–Treg interaction. Lastly, we aim to describe the impact of such bidirectional crosstalk for basic and applied cancer research and discuss how the targeting of these pathways might pave the way for future approaches in immunotherapy.
Collapse
|
31
|
Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. Int J Mol Sci 2020; 21:ijms21239324. [PMID: 33297519 PMCID: PMC7730562 DOI: 10.3390/ijms21239324] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, modern therapies involving immune checkpoint inhibitors, cytokines, and oncolytic virus have been developed. Because of the limited treatment effect of modern therapy alone, the immunostimulatory effect of radiotherapy attracted increasing attention. The combined use of radiotherapy and modern therapy has been examined clinically and non-clinically, and its effectiveness has been confirmed recently. Because melanomas have high immunogenicity, better therapeutic outcomes are desired when using immunotherapy. However, sufficient therapeutic effects have not yet been achieved. Thus far, radiotherapy has been used only for local control of tumors. Although extremely rare, radiotherapy has also been reported for systemic control, i.e., abscopal effect. This is thought to be due to an antitumor immune response. Therefore, we herein summarize past information on not only the mechanism of immune effects on radiotherapy but also biomarkers reported in case reports on abscopal effects. We also reviewed the animal model suitable for evaluating abscopal effects. These results pave the way for further basic research or clinical studies on new treatment methods for melanoma. Currently, palliative radiation is administered to patients with metastatic melanoma for local control. If it is feasible to provide both systemic and local control, the treatment benefit for the patients is very large.
Collapse
|