1
|
Pierre M, Djemai M, Pouliot V, Poulin H, Gollob MH, Chahine M. Exploring SCN5A variants associated with atrial fibrillation in atrial cardiomyocytes derived from human induced pluripotent stem cells: A characterization study. Heart Rhythm 2024:S1547-5271(24)03303-4. [PMID: 39260661 DOI: 10.1016/j.hrthm.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) poses a major risk for heart failure, myocardial infarction, and stroke. Several studies have linked SCN5A variants to AF, but their precise mechanistic contribution remains unclear. Human induced pluripotent stem cells (hiPSCs) provide a promising platform for modeling AF-linked SCN5A variants and their functional alterations. OBJECTIVE The purpose of this study was to assess the electrophysiological impact of 3 AF-linked SCN5A variants (K1493R, M1875T, N1986K) identified in 3 unrelated individuals. METHODS CRISPR-Cas9 was used to generate a new hiPSC line in which NaV1.5 was knocked out. Following differentiation into specific atrial cardiomyocyte by using retinoic acid, the adult wild-type (WT) and 3 AF variants were introduced into the NaV1.5 knockout (KO) line through transfection. Subsequent analysis including molecular biology, optical mapping, and electrophysiology were performed. RESULTS The absence of NaV1.5 channels altered the expression of key cardiac genes. NaV1.5 KO atrial-like cardiomyocytes derived from human induced pluripotent stem cells displayed slower conduction velocities, altered action potential (AP) parameters, and impaired calcium transient propagation. The transfection of the WT channel restored sodium current density, AP characteristics and the expression of several cardiac genes. Among the AF variants, 1 induced a loss of function (N1986K) while the other 2 induced a gain of function in NaV1.5 channel activity. Cellular excitability alterations and early afterdepolarizations were observed in AF variants. CONCLUSION Our findings suggest that distinct alterations in NaV1.5 channel properties may trigger altered atrial excitability and arrhythmogenic activity in AF. Our KO model offers an innovative approach for investigating SCN5A variants in an adult human cardiac environment.
Collapse
Affiliation(s)
- Marion Pierre
- CERVO Brain Research Centre, Quebec City, Quebec, Canada
| | | | | | - Hugo Poulin
- CERVO Brain Research Centre, Quebec City, Quebec, Canada
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
2
|
Avila-Jaque D, Martin F, Bustamante ML, Luna Álvarez M, Fernández JM, Dávila Ortiz de Montellano DJ, Pardo R, Varela D, Miranda M. The Phenotypic Spectrum of Spinocerebellar Ataxia Type 19 in a Series of Latin American Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1727-1732. [PMID: 38180701 DOI: 10.1007/s12311-023-01654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Spinocerebellar ataxia 19 (SCA19) represents a rare autosomal dominant genetic disorder resulting in progressive ataxia and cerebellar atrophy. SCA19 is caused by variants in the KCND3 gene, which encodes a voltage-gated potassium channel subunit essential for cerebellar Purkinje cell function. We describe six cases from Chile and Mexico, representing the largest report on SCA19 in Latin America. These cases encompass a range of clinical presentations, highlighting the phenotypic variability within SCA19 from an early-onset, severe disease to a late-onset, slowly progressive condition with normal lifespan. While some patients present with pure ataxia, others also show cognitive impairment, dystonia, and other neurological symptoms. The correlations between specific KCND3 variants and phenotypic outcomes are complex and warrant further investigation. As the genomic landscape of spinocerebellar ataxias evolves, comprehensive genetic testing is becoming pivotal in improving diagnostic accuracy. This study contributes to a better understanding of the clinical spectrum of SCA19, laying the groundwork for further genotype-phenotype correlations and functional studies to elucidate the underlying pathophysiology.
Collapse
Affiliation(s)
| | | | - M Leonor Bustamante
- Fundación Diagnosis, Santiago, Chile
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago, Chile
| | | | - José Manuel Fernández
- Clínica Alemana, Santiago, Chile
- Centro de Trastornos del Movimiento (CETRAM), Santiago, Chile
| | | | - Rosa Pardo
- Sección de Genética, Departamento de Medicina, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Marcelo Miranda
- Fundación Diagnosis, Santiago, Chile.
- Clínica MEDS, Santiago, Chile.
| |
Collapse
|
3
|
Park NK, Choi SW, Park SJ, Woo J, Kim HJ, Kim WK, Moon SH, Park HJ, Kim SJ. Requirement of β subunit for the reduced voltage-gated Na + current of a Brugada syndrome patient having novel double missense mutation (p.A385T/R504T) of SCN5A. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:313-322. [PMID: 38926839 PMCID: PMC11211759 DOI: 10.4196/kjpp.2024.28.4.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 06/28/2024]
Abstract
Mutations within the SCN5A gene, which encodes the α-subunit 5 (NaV1.5) of the voltage-gated Na+ channel, have been linked to three distinct cardiac arrhythmia disorders: long QT syndrome type 3, Brugada syndrome (BrS), and cardiac conduction disorder. In this study, we have identified novel missense mutations (p.A385T/R504T) within SCN5A in a patient exhibiting overlap arrhythmia phenotypes. This study aims to elucidate the functional consequences of SCN5A mutants (p.A385T/R504T) to understand the clinical phenotypes. Whole-cell patch-clamp technique was used to analyze the NaV1.5 current (INa) in HEK293 cells transfected with the wild-type and mutant SCN5A with or without SCN1B co-expression. The amplitude of INa was not altered in mutant SCN5A (p.A385T/R504T) alone. Furthermore, a rightward shift of the voltage-dependent inactivation and faster recovery from inactivation was observed, suggesting a gain-of-function state. Intriguingly, the coexpression of SCN1B with p.A385T/R504T revealed significant reduction of INa and slower recovery from inactivation, consistent with the loss-of-function in Na+ channels. The SCN1B dependent reduction of INa was also observed in a single mutation p.R504T, but p.A385T co-expressed with SCN1B showed no reduction. In contrast, the slower recovery from inactivation with SCN1B was observed in A385T while not in R504T. The expression of SCN1B is indispensable for the electrophysiological phenotype of BrS with the novel double mutations; p.A385T and p.R504T contributed to the slower recovery from inactivation and reduced current density of NaV1.5, respectively.
Collapse
Affiliation(s)
- Na Kyeong Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Soon-Jung Park
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - JooHan Woo
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Korea
- Department of Internal Medicine Graduate School of Medicine, Dongguk University, Goyang 10326, Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Uijeonbu St.Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Physiology & Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
4
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
5
|
Liantonio A, Bertini M, Mele A, Balla C, Dinoi G, Selvatici R, Mele M, De Luca A, Gualandi F, Imbrici P. Brugada Syndrome: More than a Monogenic Channelopathy. Biomedicines 2023; 11:2297. [PMID: 37626795 PMCID: PMC10452102 DOI: 10.3390/biomedicines11082297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac channelopathy first diagnosed in 1992 but still considered a challenging disease in terms of diagnosis, arrhythmia risk prediction, pathophysiology and management. Despite about 20% of individuals carrying pathogenic variants in the SCN5A gene, the identification of a polygenic origin for BrS and the potential role of common genetic variants provide the basis for applying polygenic risk scores for individual risk prediction. The pathophysiological mechanisms are still unclear, and the initial thinking of this syndrome as a primary electrical disease is evolving towards a partly structural disease. This review focuses on the main scientific advancements in the identification of biomarkers for diagnosis, risk stratification, pathophysiology and therapy of BrS. A comprehensive model that integrates clinical and genetic factors, comorbidities, age and gender, and perhaps environmental influences may provide the opportunity to enhance patients' quality of life and improve the therapeutic approach.
Collapse
Affiliation(s)
- Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Matteo Bertini
- Cardiological Center, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy; (M.B.); (C.B.)
| | - Antonietta Mele
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Cristina Balla
- Cardiological Center, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy; (M.B.); (C.B.)
| | - Giorgia Dinoi
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Rita Selvatici
- Medical Genetics Unit, Department of Mother and Child, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy;
| | - Marco Mele
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
- Cardiothoracic Department, Policlinico Riuniti Foggia, 71122 Foggia, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Mother and Child, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy;
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.M.); (G.D.); (M.M.); (A.D.L.)
| |
Collapse
|
6
|
Juarez B, Kong MS, Jo YS, Elum JE, Yee JX, Ng-Evans S, Cline M, Hunker AC, Quinlan MA, Baird MA, Elerding AJ, Johnson M, Ban D, Mendez A, Goodwin NL, Soden ME, Zweifel LS. Temporal scaling of dopamine neuron firing and dopamine release by distinct ion channels shape behavior. SCIENCE ADVANCES 2023; 9:eadg8869. [PMID: 37566654 PMCID: PMC10421029 DOI: 10.1126/sciadv.adg8869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Dopamine is broadly implicated in reinforcement learning, but how patterns of dopamine activity are generated is poorly resolved. Here, we demonstrate that two ion channels, Kv4.3 and BKCa1.1, regulate the pattern of dopamine neuron firing and dopamine release on different time scales to influence separate phases of reinforced behavior in mice. Inactivation of Kv4.3 in VTA dopamine neurons increases ex vivo pacemaker activity and excitability that is associated with increased in vivo firing rate and ramping dynamics before lever press in a learned instrumental paradigm. Loss of Kv4.3 enhances performance of the learned response and facilitates extinction. In contrast, loss of BKCa1.1 increases burst firing and phasic dopamine release that enhances learning of an instrumental response and enhances extinction burst lever pressing in early extinction that is associated with a greater change in activity between reinforced and unreinforced actions. These data demonstrate that disruption of intrinsic regulators of neuronal activity differentially affects dopamine dynamics during reinforcement and extinction learning.
Collapse
Affiliation(s)
- Barbara Juarez
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Mi-Seon Kong
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Yong S. Jo
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Jordan E. Elum
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Joshua X. Yee
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Scott Ng-Evans
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Marcella Cline
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Avery C. Hunker
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Meagan A. Quinlan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Madison A. Baird
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Mia Johnson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Derek Ban
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Adriana Mendez
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Marta E. Soden
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
8
|
Antzelevitch C, Di Diego JM. J wave syndromes: What's new? Trends Cardiovasc Med 2022; 32:350-363. [PMID: 34256120 PMCID: PMC8743304 DOI: 10.1016/j.tcm.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Among the inherited ion channelopathies associated with potentially life-threatening ventricular arrhythmia syndromes in nominally structurally normal hearts are the J wave syndromes, which include the Brugada (BrS) and early repolarization (ERS) syndromes. These ion channelopathies are responsible for sudden cardiac death (SCD), most often in young adults in the third and fourth decade of life. Our principal goal in this review is to briefly outline the clinical characteristics, as well as the molecular, ionic, cellular, and genetic mechanisms underlying these primary electrical diseases that have challenged the cardiology community over the past two decades. In addition, we discuss our recently developed whole-heart experimental model of BrS, providing compelling evidence in support of the repolarization hypothesis for the BrS phenotype as well as novel findings demonstrating that voltage-gated sodium and transient outward current channels can modulate each other's function via trafficking and gating mechanisms with implications for improved understanding of the genetics of both cardiac and neuronal syndromes.
Collapse
Affiliation(s)
- Charles Antzelevitch
- Distinguished Professor Emeritus and Executive Director, Cardiovascular Research, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; Lankenau Institute for Medical Research, Wynnwoddm PA USA; Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia PA, USA.
| | | |
Collapse
|
9
|
Wang M, Tu X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front Cardiovasc Med 2022; 9:891399. [PMID: 35783865 PMCID: PMC9240357 DOI: 10.3389/fcvm.2022.891399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that occurs in structurally normal heart and no transient or reversible arrhythmia factors, such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without structural heart disease can be induced by multiple factors, including genetics and environment, which involve different genetic and epigenetic regulation. Familial genetic analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are two major causes of this type of heart disease. Genome-wide association studies have identified some genetic susceptibility loci associated with ventricular tachycardia and ventricular fibrillation, yet relatively few loci associated with no structural heart disease. The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually being revealed. This article aims to review the knowledge of ventricular arrhythmia without structural heart disease in genetics, and summarizes the current state of epigenetic regulation.
Collapse
|
10
|
SCN5A Overlap Syndromes: an open-minded approach. Heart Rhythm 2022; 19:1363-1368. [DOI: 10.1016/j.hrthm.2022.03.1223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
11
|
Patocskai B. Repolarization defects can recapitulate arrhythmic and electrographic abnormalities in Brugada syndrome. Heart Rhythm 2021; 19:405-406. [PMID: 34890807 DOI: 10.1016/j.hrthm.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Bence Patocskai
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| |
Collapse
|
12
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
13
|
Cercós P, Peraza DA, de Benito-Bueno A, Socuéllamos PG, Aziz-Nignan A, Arrechaga-Estévez D, Beato E, Peña-Acevedo E, Albert A, González-Vera JA, Rodríguez Y, Martín-Martínez M, Valenzuela C, Gutiérrez-Rodríguez M. Pharmacological Approaches for the Modulation of the Potassium Channel K V4.x and KChIPs. Int J Mol Sci 2021; 22:ijms22031419. [PMID: 33572566 PMCID: PMC7866805 DOI: 10.3390/ijms22031419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Ion channels are macromolecular complexes present in the plasma membrane and intracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named channelopathies, which represent an extraordinary challenge for study and treatment. In this review, we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family. The activation of these channels generates outward currents operating at subthreshold membrane potentials as recorded from myocardial cells (ITO, transient outward current) and from the somata of hippocampal neurons (ISA). In the heart, KV4 dysfunctions are related to Brugada syndrome, atrial fibrillation, hypertrophy, and heart failure. In hippocampus, KV4.x channelopathies are linked to schizophrenia, epilepsy, and Alzheimer's disease. KV4.x channels need to assemble with other accessory subunits (β) to fully reproduce the ITO and ISA currents. β Subunits affect channel gating and/or the traffic to the plasma membrane, and their dysfunctions may influence channel pharmacology. Among KV4 regulatory subunits, this review aims to analyze the KV4/KChIPs interaction and the effect of small molecule KChIP ligands in the A-type currents generated by the modulation of the KV4/KChIP channel complex. Knowledge gained from structural and functional studies using activators or inhibitors of the potassium current mediated by KV4/KChIPs will better help understand the underlying mechanism involving KV4-mediated-channelopathies, establishing the foundations for drug discovery, and hence their treatments.
Collapse
Affiliation(s)
- Pilar Cercós
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (P.C.); (M.M.-M.)
| | - Diego A. Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angela de Benito-Bueno
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula G. Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Abdoul Aziz-Nignan
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Dariel Arrechaga-Estévez
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Escarle Beato
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Emilio Peña-Acevedo
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Armando Albert
- Instituto de Química Física Rocasolano (IQFR-CSIC), 28006 Madrid, Spain;
| | - Juan A. González-Vera
- Departamento de Físicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
| | - Yoel Rodríguez
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; (C.V.); (M.G.-R.); Tel.: +34-91-585-4493 (C.V.); +34-91-258-7493 (M.-G.R.)
| | - Marta Gutiérrez-Rodríguez
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (P.C.); (M.M.-M.)
- Correspondence: ; (C.V.); (M.G.-R.); Tel.: +34-91-585-4493 (C.V.); +34-91-258-7493 (M.-G.R.)
| |
Collapse
|
14
|
Paucar M, Ågren R, Li T, Lissmats S, Bergendal Å, Weinberg J, Nilsson D, Savichetva I, Sahlholm K, Nilsson J, Svenningsson P. V374A KCND3 Pathogenic Variant Associated With Paroxysmal Ataxia Exacerbations. NEUROLOGY-GENETICS 2021; 7:e546. [PMID: 33575485 PMCID: PMC7862093 DOI: 10.1212/nxg.0000000000000546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
Abstract
Objective Ataxia channelopathies share common features such as slow motor progression and variable degrees of cognitive dysfunction. Mutations in potassium voltage-gated channel subfamily D member 3 (KCND3), encoding the K+ channel, Kv4.3, are associated with spinocerebellar ataxia (SCA) 19, allelic with SCA22. Mutations in potassium voltage-gated channel subfamily C member 3 (KCNC3), encoding another K+ channel, Kv3.3, cause SCA13. First, a comprehensive phenotype assessment was carried out in a family with autosomal dominant ataxia harboring 2 genetic variants in KCNC3 and KCND3. To evaluate the physiological impact of these variants on channel currents, in vitro studies were performed. Methods Clinical and psychometric evaluations, neuroimaging, and genotyping of a family (mother and son) affected by ataxia were carried out. Heterozygous and homozygous Kv3.3 A671V and Kv4.3 V374A variants were evaluated in Xenopus laevis oocytes using 2-electrode voltage-clamp. The influence of Kv4 conductance on neuronal activity was investigated computationally using a Purkinje neuron model. Results The main clinical findings were consistent with adult-onset ataxia with cognitive dysfunction and acetazolamide-responsive paroxysmal motor exacerbations in the index case. Despite cognitive deficits, fluorodeoxyglucose (FDG)-PET displayed hypometabolism mainly in the severely atrophic cerebellum. Genetic analyses revealed the new variant c.1121T>C (V374A) in KCND3 and c.2012T>C (A671V) in KCNC3. In vitro electrophysiology experiments on Xenopus oocytes demonstrated that the V374A mutant was nonfunctional when expressed on its own. Upon equal co-expression of wild-type (WT) and V374A channel subunits, Kv4.3 currents were significantly reduced in a dominant negative manner, without alterations of the gating properties of the channel. By contrast, Kv3.3 A671V, when expressed alone, exhibited moderately reduced currents compared with WT, with no effects on channel activation or inactivation. Immunohistochemistry demonstrated adequate cell membrane translocation of the Kv4.3 V374A variant, thus suggesting an impairment of channel function, rather than of expression. Computational modeling predicted an increased Purkinje neuron firing frequency upon reduced Kv4.3 conductance. Conclusions Our findings suggest that Kv4.3 V374A is likely pathogenic and associated with paroxysmal ataxia exacerbations, a new trait for SCA19/22. The present FDG PET findings contrast with a previous study demonstrating widespread brain hypometabolism in SCA19/22.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Richard Ågren
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Tianyi Li
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Simon Lissmats
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Åsa Bergendal
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Jan Weinberg
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Irina Savichetva
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Kristoffer Sahlholm
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Johanna Nilsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience (M.P., R.Å., T.L., Å.B., J.N., P.S.), Department of Molecular Medicine and Surgery (D.N.), Center for Molecular Medicine (D.N.), and Science for Life Laboratory (D.N.), Karolinska Institutet (S.L., I.S.), Stockholm; Department of Neurology (M.P., J.W., P.S.), Department of Clinical Genetics (D.N.), Department of Nuclear Medicine (I.S.), and Department of Neurophysiology (J.N.), Karolinska University Hospital (R.Å.), Stockholm; Department of Integrative Medical Biology (K.S.), Umeå University; and Department of Medical Sciences (J.N.), Örebro University, Sweden
| |
Collapse
|