1
|
Li WJ, Najdawi W, Badla O, Galor A, Karp CL. Immune Checkpoint Inhibitors in the Treatment of Ocular Surface Cancers: A Review. Semin Ophthalmol 2025:1-11. [PMID: 39923258 DOI: 10.1080/08820538.2025.2458658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have transformed cancer therapy by targeting key immune pathways such as PD-1, PD-L1, CTLA-4, and LAG-3 to enhance the immune system's ability to combat malignancies. Their use in treating ocular surface tumors is an emerging area of interest, particularly in conjunctival melanoma (CM) and ocular surface squamous neoplasia (OSSN). Some studies have indicated the potential of ICI's in sebaceous gland carcinoma (SeC), conjunctival lymphoma, and Kaposi sarcoma. PURPOSE This review aims to evaluate the role of ICIs in treating ocular surface tumors, focusing on their mechanisms of action, clinical outcomes, and therapeutic potential. METHODS A literature review was conducted by searching Pubmed for studies published between January 2014 and October 2024. Studies included were original research, clinical trials, case reports and series, and reviews. RESULTS ICIs, including pembrolizumab and nivolumab, have shown promising results in CM, achieving tumor regression and disease stabilization in advanced and metastatic cases. ICIs have also demonstrated efficacy in OSSN, particularly in lesions with high tumor mutational burden, with responses ranging from partial to complete resolution. Although clinical data for SeC and conjunctival lymphoma remain limited to isolated reports, these studies suggest a role for ICIs in managing refractory or advanced disease. CONCLUSION ICIs hold transformative potential in improving outcomes for ocular surface malignancies, particularly in cases where conventional treatments fail or pose significant morbidity. Despite their promise, challenges persist, including variable response rates, immune-related adverse events, and the need for reliable predictive biomarkers. Comprehensive prospective studies are necessary to refine the application of ICIs, optimize treatment strategies, and expand therapeutic options for these challenging cancers.
Collapse
Affiliation(s)
- Wendy J Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| | - Wisam Najdawi
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| | - Omar Badla
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| | - Anat Galor
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
- Department of Ophthalmology, Miami Veterans Hospital, Miami, FL, USA
| | - Carol L Karp
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, FL, USA
| |
Collapse
|
2
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Duell J, Westin J. The future of immunotherapy for diffuse large B-cell lymphoma. Int J Cancer 2025; 156:251-261. [PMID: 39319495 PMCID: PMC11578085 DOI: 10.1002/ijc.35156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 09/26/2024]
Abstract
With the introduction of anti-CD19 chimeric antigen receptor (CAR) T-cell (CAR T) therapies, bispecific CD3/CD20 antibodies and anti-CD19 antibodies, immunotherapy continues to transform the treatment of diffuse large B-cell lymphoma (DLBCL). A number of novel immunotherapeutic strategies are under investigation to build upon current clinical benefit and offer further options to those patients who cannot tolerate conventional intensive therapies due to their age and/or state of health. Alongside immunotherapies that leverage the adaptive immune response, natural killer (NK) cell and myeloid cell-engaging therapies can utilize the innate immune system. Monoclonal antibodies engineered for greater recognition by the patient's immune system can enhance antitumor cytotoxic mechanisms mediated by NK cells and macrophages. In addition, CAR technology is extending into NK cells and macrophages and investigational immune checkpoint inhibitors targeting macrophage/myeloid cell checkpoints via the CD47/SIRPα axis are in development. Regimens that engage both innate and adaptive immune responses may help to overcome resistance to current immunotherapies. Furthermore, combinations of immunotherapy and oncogenic pathway inhibitors to reprogram the immunosuppressive tumor microenvironment of DLBCL may also potentiate antitumor responses. As immunotherapy treatment options continue to expand, both in the first-line setting and further lines of therapy, understanding how to harness these immunotherapies and the potential for combination approaches will be important for the development of future DLBCL treatment approaches.
Collapse
Affiliation(s)
- Johannes Duell
- Department of Internal Medicine 2University Hospital of WürzburgWürzburgGermany
| | - Jason Westin
- Department of Lymphoma and MyelomaMD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
4
|
Li X, Li N, Liu Y, An L. Unraveling the complexity of follicular lymphoma: insights and innovations. Am J Cancer Res 2024; 14:5573-5597. [PMID: 39803651 PMCID: PMC11711519 DOI: 10.62347/mfug2190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL. Second, we discuss the challenges faced when treating FL, particularly treatment resistance. Therapeutic resistance is a common problem in treatment, but by delving into the mechanisms of resistance, scientists have looked for strategies to combat it, including developing new drugs, improving treatments, and exploring combination therapy strategies. We also emphasize the breakthroughs in molecular biology, especially the study of targeting the BCL2 gene, which provides a new direction for targeted therapy in FL. Immunotherapy, small molecule targeted drugs, and individualized treatment strategies are also promising for the future treatment of FL. Finally, we look to the future, including research on therapeutic resistance, in-depth studies of genetics and gene expression, applications of gene editing and precision medicine, and clinical trials of new treatments. These lines of research offer additional opportunities for treating FL, and despite the challenges, the future is promising. This literature review provides comprehensive and integrated information for the in-depth understanding of FL and relevant treatment approaches.
Collapse
Affiliation(s)
- Xijing Li
- Department of Pathology, Yantaishan HospitalYantai 264003, Shandong, China
| | - Nannan Li
- Department of Hematology, Yantai Yuhuangding HospitalYantai 264001, Shandong, China
| | - Yinghui Liu
- Department of Hematology, Yantai Yuhuangding HospitalYantai 264001, Shandong, China
| | - Licai An
- Department of Hematology, Yantai Yuhuangding HospitalYantai 264001, Shandong, China
| |
Collapse
|
5
|
He Y, Li H, Li J, Huang J, Liu R, Yao Y, Hu Y, Yang X, Wei J. BANF1 is a novel prognostic biomarker linked to immune infiltration in head and neck squamous cell carcinoma. Front Immunol 2024; 15:1465348. [PMID: 39439799 PMCID: PMC11493654 DOI: 10.3389/fimmu.2024.1465348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Background Barrier-to-autointegration factor 1 (BANF1) is an abundant and ubiquitously expressed postnatal mammalian protein that is overexpressed in numerous human cancers and can promote cancer cell proliferation. However, the role of BANF1 in prognosis remains unclear in head and neck squamous cell carcinoma (HNSCC). Methods BANF1 expression data were obtained from the GEO and TCGA databases. We used Cox regression and Kaplan-Meier curves to assess the prognostic potential of BANF1. The role of BANF1-related genes was investigated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. In addition, we explored the link between BANF1, drug sensitivity, and the tumor immune microenvironment. Finally, functional in vitro and in vivo assays were used to explore the effects of BANF1 on tumor growth and metastasis of HNSCC. Results BANF1 was markedly overexpressed in HNSCC and was correlated with clinicopathological characteristics. According to survival analysis, BANF1 can be inversely correlated with patient survival and can act as a prognostic risk indicator. IC50 values for chemotherapeutic treatments indicated that the group with high BANF1 expression was more responsive to most antitumor treatments. Furthermore, higher TIDE scores were observed in the low BANF1 expression group, indicating a decline in the efficacy of immune checkpoint inhibitor therapy. Functionally, the malignant biological behavior of HNSCC cell lines was inhibited when BANF1 expression was knocked down. Conclusion BANF1 can promote tumor progression in patients with HNSCC. BANF1 shows great promise as a potential biomarker to assess the prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinjie Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Jianhua Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
6
|
Yang G, Hong Y, Zhang X, Zeng C, Tan L, Zhang X. Impact of the interval between neoadjuvant immunotherapy and surgery on prognosis in esophageal squamous cell carcinoma (ESCC): a real-world study. Cancer Immunol Immunother 2024; 73:202. [PMID: 39105817 PMCID: PMC11303633 DOI: 10.1007/s00262-024-03787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The time interval between neoadjuvant immunotherapy and surgery is 6 weeks for esophageal squamous cell carcinoma (ESCC), but whether delayed surgery affects prognosis remains unclear. METHODS Clinical data of locally advanced ESCC who underwent neoadjuvant immunotherapy followed by esophagectomy from November 2019 to December 2022 were collected. The surgery outcomes and prognosis were compared between short-interval (time to surgery ≤ 6 weeks) and long-interval groups (time to surgery > 6 weeks). RESULTS 152 patients were enrolled totally, with a ratio of 91:61 between short-interval and long-interval groups. The rate of pathological complete response in the short-interval and long-interval groups were 34.1% and 24.6% (P = 0.257). Delayed surgery did not have a significantly impact on the number of lymph node dissections (P = 0.133), operative duration (P = 0.689), blood loss (P = 0.837), hospitalization duration (P = 0.293), chest drainage duration (P = 0.886) and postoperative complications (P > 0.050). The 3-year Overall survival (OS) rates were 85.10% in the short-interval group, and 82.07% in the long-interval group (P = 0.435). The 3-year disease-free survival (DFS) rates were 83.41% and 70.86% in the two groups (P = 0.037). Subgroup analysis revealed that patients with a favorable response to immunotherapy (tumor regression grade 0) exhibited inferior 3-year OS (long-interval vs. short-interval: 51.85% vs. 91.08%, P = 0.035) and DFS (long-interval vs. short-interval: 47.40% vs. 91.08%, P = 0.014) in the long-interval group. CONCLUSIONS Delayed surgery after neoadjuvant immunotherapy does not further improve pathological response; instead, it resulted in a poorer DFS. Especially for patients with a favorable response to immunotherapy, delayed surgery increases the risk of mortality and recurrence.
Collapse
Affiliation(s)
- Guozhen Yang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yutong Hong
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaomin Zhang
- School of Nursing, Sun Yat-Sen University, Guangzhou, China
| | - Chufeng Zeng
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Linyu Tan
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xu Zhang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Guangdong Esophageal Cancer Institute, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
7
|
Gong H, Ong SC, Li F, Shen Y, Weng Z, Zhao K, Jiang Z, Wang M. Cost-effectiveness of immune checkpoint inhibitors as a first-line therapy for advanced hepatocellular carcinoma: a systematic review. HEALTH ECONOMICS REVIEW 2024; 14:48. [PMID: 38967718 PMCID: PMC11225220 DOI: 10.1186/s13561-024-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Since 2017, immune checkpoint inhibitors (ICIs) have been available for the treatment of advanced hepatocellular carcinoma (HCC) or unresectable HCC, but their adoption into national medical insurance programs is still limited. Cost-effectiveness evidence can help to inform treatment decisions. This systematic review aimed to provide a critical summary of economic evaluations of ICIs as a treatment for advanced HCC and identify key drivers (PROSPERO 2023: CRD42023417391). The databases used included Scopus, Web of Science, PubMed, Embase, and Cochrane Central. Economic evaluations of ICIs for the treatment of advanced HCC were included. Studies were screened by two people. Of the 898 records identified, 17 articles were included. The current evidence showed that ICIs, including atezolizumab plus bevacizumab, sintilimab plus bevacizumab/bevacizumab biosimilar, nivolumab, camrelizumab plus rivoceranib, pembrolizumab plus lenvatinib, tislelizumab, durvalumab, and cabozantinib plus atezolizumab, are probably not cost-effective in comparison with tyrosine kinase inhibitors or other ICIs. The most influential parameters were price of anticancer drugs, hazard ratios for progression-free survival and overall survival, and utility for health statest. Our review demonstrated that ICIs were not a cost-effective intervention in advanced HCC. Although ICIs can significantly enhance the survival of patients with advanced HCC, decision-makers should consider the findings of economic evaluations and affordability before adoption of new therapies.
Collapse
Affiliation(s)
- Hongyu Gong
- Incubation Center for Scientific and Technological Achievements, Kunming Medical University, Chunrong west road 1168, Kunming City, China
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Penang City, Malaysia
| | - Siew Chin Ong
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Penang City, Malaysia.
| | - Fan Li
- Incubation Center for Scientific and Technological Achievements, Kunming Medical University, Chunrong west road 1168, Kunming City, China
- Yunnan Drug Policy Research Center, Kunming Medical University, Kunming, China
| | - Yan Shen
- Gastroenterology Oncology, Yunnan Cancer Hospital, Kunzhou Road 519, Kunming City, China
| | - Zhiying Weng
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Chunrong west road 1168, Kunming City, China
| | - Keying Zhao
- School of Public Health, Kunming Medical University, Chunrong West Road 1168, Kunming City, China
| | - Zhengyou Jiang
- School of Management, Universiti Sains Malaysia, 11800 USM Penang, Penang City, Malaysia
| | - Meng Wang
- Physical Examination Center, Kunming Center for Disease Prevention and Control, Xichang Road 126, Kunming City, China
| |
Collapse
|
8
|
Sun L, Zhao F, Xiang Y, Chen S, Shu Q. Association of immune checkpoint inhibitors with SARS-CoV-2 infection rate and prognosis in patients with solid tumors: a systematic review and meta-analysis. Front Immunol 2024; 15:1259112. [PMID: 38887296 PMCID: PMC11180804 DOI: 10.3389/fimmu.2024.1259112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
The rate and prognosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with solid cancer tumors actively treated with immune checkpoint inhibitors (ICIs) have not been fully determined. The goal of this meta-analysis was to explore this issue, which can be helpful to clinicians in their decision-making concerning patient treatment. We conducted a thorough search for relevant cohort studies in the databases PubMed, Embase, Cochrane Library, and Web of Science. Mortality and infection rate were the primary endpoints, and the incidence of severe or critical disease was the secondary result. A total of 6,267 cases (individual patients) were represented in 15 studies. Prior exposure to ICIs was not correlated with an elevated risk of SARS-CoV-2 infection (relative risk (RR) 1.04, 95% CI 0.57-1.88, z = 0.12, P = 0.905) or mortality (RR 1.22, 95% CI 0.99-1.50, z = 1.90, P = 0.057). However, the results of the meta-analysis revealed that taking ICIs before SARS-CoV-2 diagnosis increased the chance of developing severe or critical disease (RR 1.51, 95% CI 1.09-2.10, z = 2.46, P = 0.014). No significant inter-study heterogeneity was observed. The infection and mortality rates of SARS-CoV-2 in patients with solid tumors who previously received ICIs or other antitumor therapies did not differ significantly. However, secondary outcomes showed that ICIs treatment before the diagnosis of SARS-CoV-2 infection was significantly associated with the probability of severe or critical illness. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails PROSPERO, identifier CRD42023393511.
Collapse
Affiliation(s)
- Lin Sun
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangmin Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuying Xiang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuyi Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Guo Z, Ye J, Cheng X, Wang T, Zhang Y, Yang K, Du S, Li P. Nanodrug Delivery Systems in Antitumor Immunotherapy. Biomater Res 2024; 28:0015. [PMID: 38840653 PMCID: PMC11045275 DOI: 10.34133/bmr.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Cancer has become one of the most important factors threatening human health, and the global cancer burden has been increasing rapidly. Immunotherapy has become another clinical research hotspot after surgery, chemotherapy, and radiotherapy because of its high efficiency and tumor metastasis prevention. However, problems such as lower immune response rate and immune-related adverse reaction in the clinical application of immunotherapy need to be urgently solved. With the development of nanodrug delivery systems, various nanocarrier materials have been used in the research of antitumor immunotherapy with encouraging therapeutic results. In this review, we mainly summarized the combination of nanodrug delivery systems and immunotherapy from the following 4 aspects: (a) nanodrug delivery systems combined with cytokine therapy to improve cytokines delivery in vivo; (b) nanodrug delivery systems provided a suitable platform for the combination of immune checkpoint blockade therapy with other tumor treatments; (c) nanodrug delivery systems helped deliver antigens and adjuvants for tumor vaccines to enhance immune effects; and (d) nanodrug delivery systems improved tumor treatment efficiency and reduced toxicity for adoptive cell therapy. Nanomaterials chosen by researchers to construct nanodrug delivery systems and their function were also introduced in detail. Finally, we discussed the current challenges and future prospects in combining nanodrug delivery systems with immunotherapy.
Collapse
Affiliation(s)
- Zishuo Guo
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuehao Cheng
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- YiDu Central Hospital of Weifang, Weifang, Shandong 262500, China
| | - Kaili Yang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | - Pengyue Li
- Address correspondence to: (P.L.); (S.D.)
| |
Collapse
|
10
|
Ebrahimi S, Habibzadeh A, Khojasteh-Kaffash S, Valizadeh P, Samieefar N, Rezaei N. Immune checkpoint inhibitors therapy as the game-changing approach for pediatric lymphoma: A brief landscape. Crit Rev Oncol Hematol 2024; 193:104225. [PMID: 38049077 DOI: 10.1016/j.critrevonc.2023.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
Lymphoma is known as the third most common malignancy in children, and its prevalence and mortality are increasing. Common treatments, including chemotherapy, radiotherapy, and also surgery, despite their efficacy, have many side effects and, have a high chance of disease relapse. Immune Checkpoint Inhibitors (ICIs) offer a promising alternative with potentially fewer risks of relapse and toxicity. This review article aims to investigate the efficacy and safety of ICIs, either as monotherapy or in combination, for pediatric lymphoma patients. ICIs have revolutionized cancer treatment in recent years and have shown remarkable results in several adult cancers. However, their efficacy in treating pediatrics requires further investigation. Nevertheless, some ICIs, including nivolumab, pembrolizumab, and ipilimumab, have demonstrated encouraging outcomes. ICIs therapy is not without risks and can cause side effects, including rash, itching, vitiligo, abdominal pain, diarrhea, dysphagia, epigastric pain, nausea, vomiting, thyroid, and pituitary dysfunction. Overall, this review article highlights the potential benefits and risks of ICIs in treating pediatric lymphoma.
Collapse
Affiliation(s)
- Sara Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Adrina Habibzadeh
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Soroush Khojasteh-Kaffash
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Parya Valizadeh
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noosha Samieefar
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
11
|
Yang L, Zhao Q, Chen T, Liu W, Qiu X, Chen J, Huang S, Huang R, Dong L. An HPK1 inhibitor enhanced the tumour response to anti-PD-1 immunotherapy in non-Hodgkin's lymphoma. Clin Exp Med 2023; 23:3767-3780. [PMID: 37106265 DOI: 10.1007/s10238-023-01068-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Anti-PD-1 immunotherapy has been widely applied in patients with some types of lymphoma. Classical Hodgkin's lymphoma (cHL) is highly sensitive to immunotherapy, but non-Hodgkin's lymphoma (NHL) does not show a good response. Studies have indicated that haematopoietic progenitor kinase 1 (HPK1) suppresses T cells and reduces antitumour immunity. Therefore, HPK1 inhibitors may restore and elicit antitumour immune responses and are promising candidate drug targets for cancer immunotherapy. We first explored the Gene Expression Profile Interactive Analysis (GEPIA) database and predicted that HPK1 expression was increased in diffuse large B-cell lymphoma (DLBCL) and associated with Nod-like receptor protein 3 (NLRP3) expression. We investigated whether an HPK1 inhibitor could enhance the tumour response to anti-PD-1 immunotherapy in NHL and the association between HPK1 and NLRP3 expression. Employing shHPK1 and an inhibitor, we demonstrated that the HPK1 inhibitor increased anti-PD-1-mediated T-cell cytotoxicity in BJAB and WSU-DLCL2 cells cocultured with peripheral blood mononuclear cells (PBMCs). HPK1 inhibitor treatment increased PD-1, PD-L1, Bax, p53 and NK-kB expression but decreased NLRP3 expression, indicating that the HPK1 inhibitor promoted apoptosis and blocked the NLRP3 inflammasome pathway to affect anti-PD-1-mediated T-cell cytotoxicity. Moreover, the HPK1 inhibitor enhanced the efficiency of anti-PD-1 immunotherapy in vivo in a zebrafish xenograft model of NHL. In summary, this study provides evidence that an HPK1 inhibitor enhanced the tumour response to anti-PD-1 immunotherapy in NHL by promoting apoptosis and blocking the NLRP3 pathway. These findings provide a potential therapeutic option for NHL combining HPK1 inhibitor treatment and anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China.
| | - Qiuling Zhao
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Ting Chen
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Wenbin Liu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Xiuliang Qiu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Shengqiang Huang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Ruyi Huang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| | - Liangliang Dong
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road 420#, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Guarnera L, Bravo-Perez C, Visconte V. Immunotherapy in Acute Myeloid Leukemia: A Literature Review of Emerging Strategies. Bioengineering (Basel) 2023; 10:1228. [PMID: 37892958 PMCID: PMC10604866 DOI: 10.3390/bioengineering10101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
In the last twenty years, we have witnessed a paradigm shift in the treatment and prognosis of acute myeloid leukemia (AML), thanks to the introduction of new efficient drugs or approaches to refine old therapies, such as Gemtuzumab Ozogamicin, CPX 3-5-1, hypomethylating agents, and Venetoclax, the optimization of conditioning regimens in allogeneic hematopoietic stem cell transplantation and the improvement of supportive care. However, the long-term survival of non-M3 and non-core binding factor-AML is still dismal. For this reason, the expectations for the recently developed immunotherapies, such as antibody-based therapy, checkpoint inhibitors, and chimeric antigen receptor strategies, successfully tested in other hematologic malignancies, were very high. The inherent characteristics of AML blasts hampered the development of these treatments, and the path of immunotherapy in AML has been bumpy. Herein, we provide a detailed review of potential antigenic targets, available data from pre-clinical and clinical trials, and future directions of immunotherapies in AML.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, University of Murcia, IMIB-Pascual Parrilla, CIBERER—Instituto de Salud Carlos III, 30005 Murcia, Spain
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.B.-P.); (V.V.)
| |
Collapse
|
13
|
ZHAO W, ZHU Y, LU Z. [Radix Tetrastigme Polysaccharide Promotes Antitumor Immune Response
in Lewis Lung Cancer Mice]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:559-571. [PMID: 37752536 PMCID: PMC10558761 DOI: 10.3779/j.issn.1009-3419.2023.106.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Lung cancer has a high incidence and mortality rate, but the treatment of lung cancer still lacks low toxicity and efficient anti-tumor drugs. Polysaccharide from radix tetrastigme has development value in anti-tumor treatment methods. This study was to observe the effect of polysaccharide from radix tetrastigme on immune response of Lewis lung cancer mice and explore its molecular mechanism. METHODS Lewis lung cancer mouse models were established and randomly grouped. The spleen polypeptide group was intragastric with 50 mg/kg spleen polypeptide, and the radix tetrastigme polysaccharide low, medium and high dose groups were intragastric with 62.5, 125 and 250 mg/kg radix tetrastigme polysaccharide, respectively, and the model group and the control group were intragastric with equivolume normal saline. Tumor formation and metastasis were compared. Haematoxylin-eosin (HE) staining was used to observe the pathological changes of tumor cells. Macrophage phagocytosis, apoptosis, M1/M2 polarization, T cell subsets and cytokine levels in peripheral blood were detected by flow cytometry. The proliferation activity of macrophages was detected by methyl thiazolyldiphenyl tetrazolium (MTT) assay. Dendritic cell (DC) antigen presenting function was detected by chlorophenol red-β-D-galactopyranoside (CPRG) method. Tumor tissue differentiation antigen cluster 47 (CD47) mRNA and protein expression and macrophage signal regulatory protein α (SIRRP α) expression were detected by real time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB). RESULTS The tumor inhibition rates and anti-metastasis rates in the 3-dose radix tetrastigme polysaccharide group and the spleen polypeptide group were higher than those in the model group, and the pathological injury of tumor tissue were severer, and the positive rate of phagocytosis of ink by macrophages and the efficiency of phagocytosis of tumor cells were increased; the apoptosis rate of macrophages was decreased; the proliferation activity of macrophages, polarization ratio of macrophages to M1 type, DC antigen presenting ability, CD4+, CD4+/CD8+ levels were increased; the level of serum tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and the expression of tumor tissue CD47, macrophage SH2-containing protein tyrosine phosphatase 1 (SHP-1), SH2-containing protein tyrosine phosphatase 2 (SHP-2), and phosphorylation signal regulatory protein α (p-SIRPα) were decreased, and the differences were statistically significant (P<0.05). There were no significant differences in the above indexes between low-dose radix tetrastigme polysaccharide group and spleen polypeptide group (P>0.05), and the effects of radix tetrastigme polysaccharide were dose-dependent. CONCLUSIONS Radix tetrastigme polysaccharide can inhibit tumor growth, metastasis and immune response in Lewis lung cancer mice, and its mechanism may be related to inhibiting SIRP/CD47 signaling pathway.
Collapse
|
14
|
Sa R, Xu Y, Pan X, Wang Y, Lin Z, Zhang X, Zhang B. A bibliometric analysis of research progress on pharmacovigilance and cancer from 2002 to 2021. Front Oncol 2023; 13:1078254. [PMID: 36761953 PMCID: PMC9905820 DOI: 10.3389/fonc.2023.1078254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
The complexity of cancer itself and treatment makes pharmacovigilance critical in oncology. Despite rapid progress on pharmacovigilance and cancer research in the past two decades, there has been no bibliometric analysis in this field. Therefore, based on the Web of Science database, we used CiteSpace, VOS-viewer and R-bibliometrix to analyze and visualize publications, and described the development trend and research hot spots in this field. 502 publications were included. The development of pharmacovigilance and cancer research has continued to grow. The USA has the largest number of publications and citations, followed by France and UK. Vanderbilt University and Sorbonne University are the institutions that contribute the most papers, and 5 of the top 10 high-yield institutions are from France. Salem JE and Lebrun-Vignes B of Sorbonne University have published the most papers, and they have a strong cooperative relationship. Salem JE has the highest H index. Drug Safety has the largest number of publications in the field of pharmacovigilance and cancer, with a high impact factor (IF). In recent years, immune checkpoint inhibitors (ICIs) have been identified as a hot topic and will continue to be maintained. This paper can help researchers get familiar with the current situation and trend of pharmacovigilance and cancer research, and provide valuable reference for the selection of future research directions.
Collapse
Affiliation(s)
- Rina Sa
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, Gansu, China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbo Pan
- Institute of liver diseases, The Second People’s Hospital of Lanzhou, Lanzhou, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China,Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Bing Zhang,
| |
Collapse
|
15
|
AmeliMojarad M, AmeliMojarad M, Cui X. Prospective role of PD-1/PD-L1 immune checkpoint inhibitors in GI cancer. Pathol Res Pract 2023; 244:154338. [PMID: 36905697 DOI: 10.1016/j.prp.2023.154338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
One of the mechanisms by which tumor cells can evade the immune system is over activation of the programmed cell death protein-1 (PD-1) / programmed death-ligand 1 (PD-L1) pathway. The binding of PD-1 to its ligand PD-L1 can trigger an inhibitory signal for reducing T-cell proliferation, inhibiting the anticancer effect of T cells, and limiting the anti-tumor immunity of effectors T cell responses to protect tissues from immune-mediated tissue damage in the tumor microenvironment (TME). PD-1/PD-L1 immune checkpoint inhibitors have created a new pattern in cancer immunotherapy and can increase T cell- surveillance; therefore, the development of better clinical application of PD-1/PD-L1 inhibitors can significantly enhance antitumor immunity and prolong survival in GI cancer patients.
Collapse
Affiliation(s)
- Mandana AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
16
|
Li Q, Han J, Yang Y, Chen Y. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Front Immunol 2022; 13:1070961. [PMID: 36601120 PMCID: PMC9806143 DOI: 10.3389/fimmu.2022.1070961] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high prevalence and mortality rate worldwide. Sorafenib monotherapy has been the standard of first-line treatment for advanced HCC for a long time, but there are still many shortcomings. In recent years, with the deepening of research on tumor immune microenvironment, researchers have begun to explore new approaches in immunotherapy, and the introduction of immune checkpoint inhibitors has brought fundamental changes to the treatment of HCC. Programmed cell death protein 1 (PD-1) is an immune checkpoint molecule that plays an important role in down-regulating immune system function and promoting tolerance. Programmed cell death ligand 1 (PDL-1) is involved in tumor immune evasion by binding to PD-1, resulting in failure of treatment. Currently, immunotherapy targeting the PD-1/PD-L1 axis has achieved unprecedented success in HCC, but it also faces great challenges, with its low remission rate still to be solved. For most patients with HCC, the PD-1/PD-L1 pathway is not the only rate limiting factor of antitumor immunity, and blocking only the PD-1/PD-L1 axis is not enough to stimulate an effective antitumor immune response; thus, combination therapy may be a better option. In this study, changes in the immune microenvironment of HCC patients were reviewed to clarify the feasibility of anti-PD-1/PD-L1 therapy, and a series of monotherapy and combination therapy clinical trials were summarized to verify the safety and efficacy of this newly developed treatment in patients with advanced HCC. Furthermore, we focused on hyperprogressive disease and drug resistance to gain a better understanding of PD-1/PD-L1 blockade as a promising treatment.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Han
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zhang Y, Yang S, Jiang D, Li Y, Ma S, Wang L, Li G, Wang H, Zhang A, Xu G. Screening and identification of an anti-PD-1 nanobody with antitumor activity. Biosci Rep 2022; 43:BSR20221546. [PMID: 36475449 PMCID: PMC9867944 DOI: 10.1042/bsr20221546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Blocking of PD-1 or PD-L1 with corresponding antibody to enhance T cell response and mediate antitumor activity has been successfully applied in clinical practice. Several immune checkpoint inhibitors including monoclonal antibodies targeting PD-1 have been approved by the Food and Drug Administration (FDA) in cancer immunotherapy. However, the application of traditional antibodies has limited due to their drawbacks of large molecular weight and low tissue penetration. As the high specificity and strong tissue penetration of nanobodies (Nbs), efforts have been taken to develop Nbs for cancer therapy. Herein, we aim to screen a specific Nb against human PD-1 derived from a naïve camel Nb phage display library and further study its biological characteristic and anti-tumor activity. Finally, an anti-PD-1 Nb with high specificity and affinity was screened and generated, its cytotoxicity and antitumor effect was also confirmed in vitro and vivo. All of these indicate that the anti-PD-1 Nb may provide an alternative and appealing therapeutic agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanting Zhang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shaoqi Yang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yanning Li
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Shuo Ma
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Liyan Wang
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Guangqi Li
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hongxia Wang
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Aijun Zhang
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Guangxian Xu
- Department of Laboratory Medicine, School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
18
|
Clinical Outcomes in COVID-19 Patients Treated with Immunotherapy. Cancers (Basel) 2022; 14:cancers14235954. [PMID: 36497435 PMCID: PMC9735726 DOI: 10.3390/cancers14235954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction: The full impact of COVID-19 infections on patients with cancer who are actively being treated with chemotherapy or immune checkpoint inhibitors (ICIs) has not been fully defined. Our goal was to track clinical outcomes in this specific patient population. Methods: We performed a retrospective chart review of 121 patients (age > 18 years) at the University of Alabama at Birmingham from January 2020 to December 2021 with an advanced solid malignancy that were eligible to be treated with ICIs or on current therapy within 12 months of their COVID-19 diagnosis. Results: A total of 121 patients were examined in this study, and 61 (50.4%) received immunotherapy treatment within 12 months. One quarter of the patients on ICIs passed away, compared to 13% of the post-chemotherapy cohort. Patients who were vaccinated for COVID-19 had lower mortality compared to unvaccinated patients (X2 = 15.19, p < 0.001), and patients with lower ECOG (0.98) were associated with lower mortality compared to patients with worse functional status (0.98 vs. 1.52; t = 3.20; p < 0.01). Conclusions: COVID-19-related ICI mortality was higher compared to patients receiving chemotherapy. However, ICI cessation or delay is unwarranted as long there has been a risk−benefit assessment undertaken with the patient.
Collapse
|
19
|
Xu H, Zhang A, Fang C, Zhu Q, Wang W, Liu Y, Zhang Z, Wang X, Yuan L, Xu Y, Shao A, Lou M. SLC11A1 as a stratification indicator for immunotherapy or chemotherapy in patients with glioma. Front Immunol 2022; 13:980378. [PMID: 36531992 PMCID: PMC9748290 DOI: 10.3389/fimmu.2022.980378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Glioma is a fatal tumor originating from the brain, which accounts for most intracranial malignancies. Currently, Immunotherapy has turned into a novel and promising treatment in glioma patients. however, there are still few effective biomarkers to mirror the reaction to immunotherapy in patients with glioma. Therefore, we intended to elucidate the evaluable efficacy of SLC11A1 in glioma patients. Methods In this study, samples from Shanghai General Hospital and data from TCGA, GEO, CGGA datasets were used to investigate and validate the relationship between SLC11A1 and the progression of glioma. We evaluated the predictive value of SLC11A1 on the prognosis of glioma with cox regression analysis. Then the relationship between immune infiltration and SLC11A1 was also analyzed. Ultimately, we performed the prediction on the immunotherapeutic response and therapeutic drugs according to the expression of SLC11A1. Results Expression of SLC11A1 increased with progression and predicted unfavorable prognosis for glioma patients. The hazard ratio for SLC11A1 expression was 2.33 with 95% CI (1.92-2.58) (P < 0.001) in cox analysis. And based on expression, we found SLC11A1 stratified glioma patients into subgroups with different immune activation statuses. Moreover, we observed that patients with higher SLC11A1 levels companied with better immunotherapeutic response, while those with lower SLC11A1 levels may respond better to temozolomide. Conclusion This study provided evidence that SLC11A1 was a novel prognostic marker and immunotherapy response indicator for gliomas. In some cases, SLC11A1 could be an effective marker for identifying patients who might benefit from immunotherapy or chemotherapy.
Collapse
Affiliation(s)
- Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwei Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Meiqing Lou, ; Anwen Shao, ; Yuanzhi Xu,
| |
Collapse
|
20
|
Li L, Wang J, Zhang Z, Yang Q, Deng Z, Zou W, Ge X, Pan K, Li C, Liu R. Identification of CKS1B as a prognostic indicator and a predictive marker for immunotherapy in pancreatic cancer. Front Immunol 2022; 13:1052768. [PMID: 36405738 PMCID: PMC9668883 DOI: 10.3389/fimmu.2022.1052768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/19/2022] [Indexed: 01/10/2024] Open
Abstract
As a regulatory subunit of cyclin kinase, CKS1B promotes cancer development and is associated with poor prognosis in multiple cancer patients. However, the intrinsic role of CKS1B in pancreatic cancer remains elusive. In our research, CKS1B expression in pancreatic tumor tissue was higher than that in normal tissue by TCGA, Oncomine and CPTAC databases analysis. Similar result was verified in our center tissues by qRT-PCR. CKS1B expression was closely relevant to histologic grading, prognosis, and TMB. GSEA showed that CKS1B mainly participated in the regulation of autophagy and T cell receptor signaling pathway. Furthermore, CIBERSORT analysis showed that there was a strong correlation between CKS1B expression and tumor immune cells infiltration. Drug sensitivity analysis showed that patients with high CKS1B expression appeared to be more sensitive to gemcitabine, 5-fluorouracil, and paclitaxel. We then investigated cell viability and migratory ability by CCK8 and transwell assay, respectively. Results indicated that CKS1B knockdown by short hairpin RNA significantly reduced pancreatic cancer cell viability and invasion via regulating PD-L1 expression. In conclusion, our research further demonstrates the role of CKS1B in pancreatic cancer and the signaling pathways involved. The association of CKS1B with immune infiltration and immune checkpoint may provide a new direction for immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Lincheng Li
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Zhuochao Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiyue Yang
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Zhaoda Deng
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenbo Zou
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Xinlan Ge
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Ke Pan
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Chonghui Li
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Pi Y, Wang J, Wang Z. Successful Treatment of Relapsed Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis After Allo-HSCT with PD-1 Blockade: A Case Report. Infect Drug Resist 2022; 15:3751-3756. [PMID: 35859915 PMCID: PMC9289273 DOI: 10.2147/idr.s372998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a rare and aggressive disease with high mortality and poor prognosis. To date, allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only way to cure EBV-HLH. However, relapse of EBV-HLH after allo-HSCT is common and remains a major challenge. Case Presentation A 22-year-old woman with persistent fever for a month presented to our center with EBV-HLH. After induction of remission using two cycles of the L-DEP (PEG-aspargase, liposomal doxorubicin, etoposide, and high-dose methylprednisolone) regimen, the patient underwent an human leukocyte antigen (HLA)-identical sibling allo-HSCT. However, she experienced disease relapse soon after the procedure, and none of the possible treatment options achieved a sustained response. Finally, she received a sintilimab injection and achieved complete resolution of EBV-HLH. Conclusion We summarize a case of relapsed EBV-HLH after allo-HSCT that was successfully treated with a programmed cell death protein-1 (PD-1) antibody. Further studies are needed to determine whether PD-1 blockade has therapeutic potential for relapsed EBV-HLH after allo-HSCT.
Collapse
Affiliation(s)
- Yubo Pi
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jingshi Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| |
Collapse
|
22
|
Zhou L, Zou M, Xu Y, Lin P, Lei C, Xia X. Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Front Oncol 2022; 12:864301. [PMID: 35664731 PMCID: PMC9160744 DOI: 10.3389/fonc.2022.864301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy is an artificial stimulation of the immune system to enhance anti-cancer response. It has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing in recent years, and many treatments are in clinical and preclinical stages. Despite this progress, the special tumor heterogeneity and immunosuppressive microenvironment of solid tumors made immunotherapy in the majority of cancer cases difficult. Therefore, understanding how to improve the intratumoral enrichment degree and the response rate of various immunotherapy drugs is key to improve efficacy and control adverse reactions. With the development of materials science and nanotechnology, advanced biomaterials such as nanoparticle and drug delivery systems like T-cell delivery therapy can improve effectiveness of immunotherapy while reducing the toxic side effects on non-target cells, which offers innovative ideas for improving immunity therapeutic effectiveness. In this review, we discuss the mechanism of tumor cell immune escape and focus on current immunotherapy (such as cytokine immunotherapy, therapeutic monoclonal antibody immunotherapy, PD-1/PD-L1 therapy, CAR-T therapy, tumor vaccine, oncolytic virus, and other new types of immunity) and its challenges as well as the latest nanotechnology (such as bionic nanoparticles, self-assembled nanoparticles, deformable nanoparticles, photothermal effect nanoparticles, stimuli-responsive nanoparticles, and other types) applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Manshu Zou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yilin Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Peng Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chang Lei
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Wang M, Bai Y, Pei J, Li D, Pu X, Zhu W, Xia L, Qi C, Jiang H, Ning Y. β-Glucan Combined With PD-1/PD-L1 Checkpoint Blockade for Immunotherapy in Patients With Advanced Cancer. Front Pharmacol 2022; 13:887457. [PMID: 35548349 PMCID: PMC9084312 DOI: 10.3389/fphar.2022.887457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022] Open
Abstract
Programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) checkpoint blocking antibodies have been shown to be a powerful immune checkpoint blockade (ICB) therapy for patients with cancer. However, patients quickly develop resistance to immunotherapy. β-glucan, an immune adjuvant, has been found to stimulate innate and adaptive immune responses. In this study, we assessed the use of whole glucan particle (WGP) β-glucan in combination with PD-1/PD-L1–blocking antibodies to slow down the resistance to immunotherapy. Results from a tumor mouse model demonstrated that administration of WGP β-glucan plus PD-1/PD-L1–blocking antibodies led to increased recruitment of immune-associated cells, improved regulation of the balance between T-cell activation and immune tolerance, and delayed tumor progression. This combination therapy was also found to improve progression-free survival in patients with advanced cancer who had previously discontinued anti-PD-1/PD-L1 because of disease progression. These findings suggest that β-glucan could be used as an immune adjuvant to reverse anti-PD-1/PD-L1 resistance by regulating the immune system.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
| | - Yu Bai
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
| | - Jiaxin Pei
- Department of Oncology, Graduate School of Dalian Medical University, Dalian, China
| | - Dongqing Li
- Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
| | - Xiaolin Pu
- Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
| | - Wenyu Zhu
- Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
| | - Lei Xia
- Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
| | - Chunjian Qi
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
| | - Hua Jiang
- Department of Oncology, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
- *Correspondence: Hua Jiang, ; Yongling Ning,
| | - Yongling Ning
- Medical Research Center, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People’s Hospital, Changzhou, China
- *Correspondence: Hua Jiang, ; Yongling Ning,
| |
Collapse
|
24
|
Lv H, Fei Y, Li W, Wang Y, Wang J, He J, Liu X, Li L, Qiu L, Qian Z, Zhou S, Meng B, Zhai Q, Ren X, Zou D, Cai Q, Wang X, Zhang H. A Novel Clinical Immune‐Related Prognostic Model Predicts the Overall Survival of Mantle Cell Lymphoma. Hematol Oncol 2022; 40:343-355. [PMID: 35368100 DOI: 10.1002/hon.2994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Huijuan Lv
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
- Department of Medical Oncology The Fourth People’s Hospital of Jinan Jinan Shandong250031 China
| | - Yue Fei
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Wei Li
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Yi Wang
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases Haihe Laboratory of Cell Ecosystem Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Jinni Wang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou PR China
| | - Jin He
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Xianming Liu
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Lanfang Li
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Lihua Qiu
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Zhengzi Qian
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Shiyong Zhou
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Bin Meng
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Qiongli Zhai
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Xiubao Ren
- Department of Immunology/Biotherapy Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases Haihe Laboratory of Cell Ecosystem Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou PR China
| | - Xianhuo Wang
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Huilai Zhang
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| |
Collapse
|
25
|
Sun G, Rong D, Li Z, Sun G, Wu F, Li X, Cao H, Cheng Y, Tang W, Sun Y. Role of Small Molecule Targeted Compounds in Cancer: Progress, Opportunities, and Challenges. Front Cell Dev Biol 2021; 9:694363. [PMID: 34568317 PMCID: PMC8455877 DOI: 10.3389/fcell.2021.694363] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Research on molecular targeted therapy of tumors is booming, and novel targeted therapy drugs are constantly emerging. Small molecule targeted compounds, novel targeted therapy drugs, can be administered orally as tablets among other methods, and do not draw upon genes, causing no immune response. It is easily structurally modified to make it more applicable to clinical needs, and convenient to promote due to low cost. It refers to a hotspot in the research of tumor molecular targeted therapy. In the present study, we review the current Food and Drug Administration (FDA)-approved use of small molecule targeted compounds in tumors, summarize the clinical drug resistance problems and mechanisms facing the use of small molecule targeted compounds, and predict the future directions of the evolving field.
Collapse
Affiliation(s)
- Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
26
|
Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Front Pharmacol 2021; 12:731798. [PMID: 34539412 PMCID: PMC8440961 DOI: 10.3389/fphar.2021.731798] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed death protein 1 (PD1) is a common immunosuppressive member on the surface of T cells and plays an imperative part in downregulating the immune system and advancing self-tolerance. Its ligand programmed cell death ligand 1 (PDL1) is overexpressed on the surface of malignant tumor cells, where it binds to PD1, inhibits the proliferation of PD1-positive cells, and participates in the immune evasion of tumors leading to treatment failure. The PD1/PDL1-based pathway is of great value in immunotherapy of cancer and has become an important immune checkpoint in recent years, so understanding the mechanism of PD1/PDL1 action is of great significance for combined immunotherapy and patient prognosis. The inhibitors of PD1/PDL1 have shown clinical efficacy in many tumors, for example, blockade of PD1 or PDL1 with specific antibodies enhances T cell responses and mediates antitumor activity. However, some patients are prone to develop drug resistance, resulting in poor treatment outcomes, which is rooted in the insensitivity of patients to targeted inhibitors. In this paper, we reviewed the mechanism and application of PD1/PDL1 checkpoint inhibitors in tumor immunotherapy. We hope that in the future, promising combination therapy regimens can be developed to allow immunotherapeutic tools to play an important role in tumor treatment. We also discuss the safety issues of immunotherapy and further reflect on the effectiveness of the treatment and the side effects it brings.
Collapse
Affiliation(s)
- Jinhua Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zichao Chen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjie Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - JiBiao Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
27
|
Woller N, Engelskircher SA, Wirth T, Wedemeyer H. Prospects and Challenges for T Cell-Based Therapies of HCC. Cells 2021; 10:cells10071651. [PMID: 34209393 PMCID: PMC8304292 DOI: 10.3390/cells10071651] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
The scope of therapeutic options for the treatment of hepatocellular carcinoma (HCC) has recently been expanded by immunotherapeutic regimens. T cell-based therapies, especially in combination with other treatments have achieved far better outcomes compared to conventional treatments alone. However, there is an emerging body of evidence that eliciting T cell responses in immunotherapeutic approaches is insufficient for favorable outcomes. Immune responses in HCC are frequently attenuated in the tumor microenvironment (TME) or may even support tumor progress. Hence, therapies with immune checkpoint inhibitors or adoptive cell therapies appear to necessitate additional modification of the TME to unlock their full potential. In this review, we focus on immunotherapeutic strategies, underlying molecular mechanisms of CD8 T cell immunity, and causes of treatment failure in HCC of viral and non-viral origin. Furthermore, we provide an overview of TME features in underlying etiologies of HCC patients that mediate therapy resistance to checkpoint inhibition and discuss strategies from the literature concerning current approaches to these challenges.
Collapse
Affiliation(s)
- Norman Woller
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Sophie Anna Engelskircher
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Wirth
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Heiner Wedemeyer
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
28
|
Hatic H, Sampat D, Goyal G. Immune checkpoint inhibitors in lymphoma: challenges and opportunities. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1037. [PMID: 34277837 PMCID: PMC8267255 DOI: 10.21037/atm-20-6833] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are immunomodulatory antibodies that intensify the host immune response, thereby leading to cytotoxicity. The primary targets for checkpoint inhibition have included cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death receptor-1 (PD-1) or programmed cell death ligand-1 (PD-L1). ICIs have resulted in a change in treatment landscape of various neoplasms. Among hematologic malignancies, ICIs have been most successful in certain subtypes of lymphomas such as classic Hodgkin lymphoma (cHL) and primary mediastinal B-cell lymphoma (PMBCL). However, there have been several challenges in harnessing the host immune system through ICI use in other lymphomas. The underlying reasons for the low efficacy of ICI monotherapy in most lymphomas may include defects in antigen presentation, non-inflamed tumor microenvironment (TME), immunosuppressive metabolites, genetic factors, and an overall lack of predictive biomarkers of response. In this review, we outline the existing and ongoing studies utilizing ICI therapy in various lymphomas. We also describe the challenges leading to the lack of efficacy with ICI use and discuss potential strategies to overcome those challenges including: chimeric antigen receptor T-cell therapy (CAR-T therapy), bispecific T-cell therapy (BiTE), lymphocyte activation gene-3 (LAG-3) inhibitors, T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) inhibitors, vaccines, promotion of inflammatory macrophages, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors, DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi). Tumor mutational burden and interferon-gamma release assays are potential biomarkers of ICI treatment response beyond PD-L1 expression. Further collaborations between clinicians and scientists are vital to understand the immunopathology in ICI therapy in order to improve clinical outcomes.
Collapse
|
29
|
Shang S, Li X, Gao Y, Guo S, Sun D, Zhou H, Sun Y, Wang P, Zhi H, Bai J, Ning S, Li X. MeImmS: Predict Clinical Benefit of Anti-PD-1/PD-L1 Treatments Based on DNA Methylation in Non-small Cell Lung Cancer. Front Genet 2021; 12:676449. [PMID: 34093667 PMCID: PMC8173132 DOI: 10.3389/fgene.2021.676449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023] Open
Abstract
Immunotherapy has become an effective therapy for cancer treatment. However, the development of biomarkers to predict immunotherapy response still remains a challenge. We have developed the DNA Methylation Immune Score, named “MeImmS,” which can predict clinical benefits of non-small cell lung cancer (NSCLC) patients based on DNA methylation of 8 CpG sites. The 8 CpG sites regulate the expression of immune-related genes and MeImmS was related to immune-associated pathways, exhausted T cell markers and immune cells. Copy-number loss in 1p36.33 may affect the response of cancer patients to immunotherapy. In addition, SAA1, CXCL10, CCR5, CCL19, CXCL11, CXCL13, and CCL5 were found to be key immune regulatory genes in immunotherapy. Together, MeImmS discovered the heterogeneous of NSCLC patients and guided the immunotherapy of cancer patients in the future.
Collapse
Affiliation(s)
- Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dailin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
A Phase 1b Study to Evaluate the Safety and Efficacy of Durvalumab in Combination With Tremelimumab or Danvatirsen in Patients With Relapsed or Refractory Diffuse Large B-Cell Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:309-317.e3. [PMID: 33632668 DOI: 10.1016/j.clml.2020.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite recent advances, outcomes in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) remain poor. Immune checkpoint inhibitors have shown limited efficacy in this setting, but combinations with novel agents may enhance benefit. Combination therapy with durvalumab, an anti-programmed death ligand 1 (PD-L1) antibody, and danvatirsen (AZD9150; an antisense oligonucleotide inhibiting signal transducer and activator of transcription 3 [STAT3]) or tremelimumab (an anti-cytotoxic T-lymphocyte-associated antigen 4 [CTLA-4] antibody) may augment endogenous antitumor activity. PATIENTS AND METHODS In this phase 1b dose escalation and dose expansion study, we evaluated durvalumab 20 mg/kg every 4 weeks plus either tremelimumab 1 mg/kg every 4 weeks or danvatirsen 2 or 3 mg/kg (administered on days 1, 3, 5, 8, 15, and 22, then every week). Treatment continued until disease progression. The primary endpoint was safety; secondary endpoints included efficacy, pharmacokinetics, and immunogenicity. RESULTS As of April 4, 2019, 32 patients were enrolled and treated, receiving a median of 2 prior lines of systemic therapy. Treatment-related adverse events occurred in 21 patients (65.6%), most commonly alanine aminotransferase/aspartate aminotransferase increased (grade 1-3), anemia (grade 1-3), and fatigue (grade 1). The overall objective response rate was 6.3%, with 2 partial responses. Median time to response was 11.0 weeks (range, 7.7-14.3 weeks). Median progression-free survival was 7.4 weeks (range, 0.1-31.4 weeks), and median overall survival was 28.0 weeks (range, 1.9-115.4 weeks). CONCLUSION The primary endpoint was met, with durvalumab plus tremelimumab/danvatirsen generally well tolerated in patients with relapsed/refractory DLBCL; however, antitumor activity was limited.
Collapse
|
31
|
Current Immunotherapy Approaches in Non-Hodgkin Lymphomas. Vaccines (Basel) 2020; 8:vaccines8040708. [PMID: 33260966 PMCID: PMC7768428 DOI: 10.3390/vaccines8040708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are lymphoid malignancies of B- or T-cell origin. Despite great advances in treatment options and significant improvement of survival parameters, a large part of NHL patients either present with a chemotherapy-refractory disease or experience lymphoma relapse. Chemotherapy-based salvage therapy of relapsed/refractory NHL is, however, capable of re-inducing long-term remissions only in a minority of patients. Immunotherapy-based approaches, including bispecific antibodies, immune checkpoint inhibitors and genetically engineered T-cells carrying chimeric antigen receptors, single-agent or in combination with therapeutic monoclonal antibodies, immunomodulatory agents, chemotherapy or targeted agents demonstrated unprecedented clinical activity in heavily-pretreated patients with NHL, including chemotherapy-refractory cases with complex karyotype changes and other adverse prognostic factors. In this review, we recapitulate currently used immunotherapy modalities in NHL and discuss future perspectives of combinatorial immunotherapy strategies, including patient-tailored approaches.
Collapse
|