1
|
Herrmann L, Hahn F, Grau BW, Wild M, Niesar A, Wangen C, Kataev E, Marschall M, Tsogoeva SB. Autofluorescent Artemisinin-Benzimidazole Hybrids via Organo-Click Reaction: Study of Antiviral Properties and Mode of Action in Living Cells. Chemistry 2023; 29:e202301194. [PMID: 37267160 DOI: 10.1002/chem.202301194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
Drug modification by a fluorescent label is a common tool for studying its mechanism of action with fluorescence microscopy techniques. However, the attachment of a fluorescent label can significantly alter the polarity, solubility, and biological activity of the investigated drug, and, as a result, the studied mechanism of action can be misrepresented. Therefore, developing efficient drugs, which are inherently fluorescent and can be tracked directly in the cell is highly favorable. Here an easy formation of fluorescent hybrid drugs is presented, generated by a combination of two readily available non-fluorescent pharmacophores via a non-cleavable linker using a Ramachary-Bressy-Wang organocatalyzed azide-carbonyl [3+2] cycloaddition (organo-click) reaction. All newly prepared fluorescent compounds showed strong anti-HCMV activity (EC50 down to 0.07±0.00 μM), thus presenting a very promising drug developmental basis compared to the approved drug ganciclovir (EC50 2.60±0.50 μM). Remarkably, in vitro fluorescent imaging investigation of new compounds revealed induced changes in mitochondrial structures, which is a phenotypical hallmark of antiviral activity. This approach opens up new vistas for the easy formation of potent fluorescent drugs from readily available non-fluorescent parent compounds and might facilitate insight into their mode of action in living cells, avoiding the requirement of linkage to external fluorescent markers.
Collapse
Affiliation(s)
- Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg Department, Schlossgarten 4, 91054, Erlangen, Germany
| | - Benedikt W Grau
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg Department, Schlossgarten 4, 91054, Erlangen, Germany
| | - Aischa Niesar
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg Department, Schlossgarten 4, 91054, Erlangen, Germany
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg Department, Schlossgarten 4, 91054, Erlangen, Germany
| | - Evgeny Kataev
- Organic Chemistry Chair II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg Department, Schlossgarten 4, 91054, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Bachman LO, Zwezdaryk KJ. Targeting the Host Mitochondria as a Novel Human Cytomegalovirus Antiviral Strategy. Viruses 2023; 15:v15051083. [PMID: 37243170 DOI: 10.3390/v15051083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Human cytomegalovirus (HCMV) exploits host mitochondrial function to promote viral replication. HCMV gene products have been described to directly interact and alter functional or structural aspects of host mitochondria. Current antivirals against HCMV, such as ganciclovir and letermovir, are designed against viral targets. Concerns with the current antivirals include toxicity and viral resistance. Targeting host mitochondrial function is a promising alternative or complimentary antiviral approach as (1) drugs targeting host mitochondrial function interact with host targets, minimizing viral resistance, and (2) host mitochondrial metabolism plays key roles in HCMV replication. This review describes how HCMV alters mitochondrial function and highlights pharmacological targets that can be exploited for novel antiviral development.
Collapse
Affiliation(s)
- Lauryn O Bachman
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA 70112, USA
| | - Kevin J Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
The Trimeric Artesunate Analog TF27, a Broadly Acting Anti-Infective Model Drug, Exerts Pronounced Anti-SARS-CoV-2 Activity Spanning Variants and Host Cell Types. Pharmaceutics 2022; 15:pharmaceutics15010115. [PMID: 36678744 PMCID: PMC9866877 DOI: 10.3390/pharmaceutics15010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Starting in 2019, the spread of respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated pandemic of the corona virus disease (COVID-19) has led to enormous efforts in the development of medical countermeasures. Although innovative vaccines have scaled back the number of severe COVID cases, the emergence of the omicron variant (B.1.1.529) illustrates how vaccine development struggles to keep pace with viral evolution. On the other hand, while the recently approved antiviral drugs remdesivir, molnupiravir, and Paxlovid are considered as broadly acting anti-coronavirus therapeutics, only molnupiravir and Paxlovid are orally available and none of these drugs are recommended for prophylactic use. Thus, so far unexploited small molecules, targeting strategies, and antiviral mechanisms are urgently needed to address issues in the current pandemic and in putative future outbreaks of newly emerging variants of concern. Recently, we and others have described the anti-infective potential and particularly the pronounced antiviral activity of artesunate and related compounds of the trioxane/sesquiterpene class. In particular, the trimeric derivative TF27 demonstrated strong anti-cytomegalovirus activity at nanomolar concentrations in vitro as well as in vivo efficacy after oral administration in therapeutic and even prophylactic treatment settings. Here, we extended this analysis by evaluating TF27 for its anti-SARS-CoV-2 potential. Our main findings are as follows: (i) compound TF27 exerted strong anti-SARS-CoV-2 activity in vitro (EC50 = 0.46 ± 0.20 µM), (ii) antiviral activity was clearly distinct from the induction of cytotoxicity, (iii) pretreatment with TF27 prevented virus replication in cultured cells, (iv) antiviral activity has likewise been demonstrated in Calu-3 human lung and Caco-2 human colon cells infected with wild-type, delta, or omicron SARS-CoV-2, respectively, and (v) analysis of TF27 combination treatments has revealed synergistic interaction with GC376, but antagonistic interaction with EIDD-1931. Combined, the data demonstrated the pronounced anti-SARS-CoV-2 activity of TF27 and thus highlight the potential of trioxane compounds for further pharmacologic development towards improved options for COVID-specific medication.
Collapse
|
4
|
Zhang J, Li Y, Wan J, Zhang M, Li C, Lin J. Artesunate: A review of its therapeutic insights in respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154259. [PMID: 35849970 DOI: 10.1016/j.phymed.2022.154259] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Artesunate, as a semi-synthetic artemisinin derivative of sesquiterpene lactone, is widely used in clinical antimalarial treatment due to its endoperoxide group. Recent studies have found that artesunate may have multiple pharmacological effects, indicating its significant therapeutic potential in multiple respiratory diseases. PURPOSE This review aims to summarize proven and potential therapeutic effects of artesunate in common respiratory disorders. STUDY DESIGN This review summarizes the pharmacological properties of artesunate and then interprets the function of artesunate in various respiratory diseases in detail, such as bronchial asthma, chronic obstructive pulmonary disease, lung injury, lung cancer, pulmonary fibrosis, coronavirus disease 2019, etc., on different target cells and receptors according to completed and ongoing in silico, in vitro, and in vivo studies (including clinical trials). METHODS Literature was searched in electronic databases, including Pubmed, Web of Science and CNKI with the primary keywords of 'artesunate', 'pharmacology', 'pharmacokinetics', 'respiratory disorders', 'lung', 'pulmonary', and secondary search terms of 'Artemisia annua L.', 'artemisinin', 'asthma', 'chronic obstructive lung disease', 'lung injury', 'lung cancer', 'pulmonary fibrosis', 'COVID-19' and 'virus' in English and Chinese. All experiments were included. Reviews and irrelevant studies to the therapeutic effects of artesunate on respiratory diseases were excluded. Information was sort out according to study design, subject, intervention, and outcome. RESULTS Artesunate is promising to treat multiple common respiratory disorders via various mechanisms, such as anti-inflammation, anti-oxidative stress, anti-hyperresponsiveness, anti-proliferation, airway remodeling reverse, induction of cell death, cell cycle arrest, etc. CONCLUSION: Artesunate has great potential to treat various respiratory diseases.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Yun Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China; Beijing University of Chinese Medicine, Beijing 100-029, China
| | - Jingxuan Wan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Mengyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China
| | - Chunxiao Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China; Peking University China‑Japan Friendship School of Clinical Medicine, Beijing 100-029, China
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100-029, China.
| |
Collapse
|
5
|
Skoreński M, Sieńczyk M. The Fellowship of Privileged Scaffolds-One Structure to Inhibit Them All. Pharmaceuticals (Basel) 2021; 14:ph14111164. [PMID: 34832946 PMCID: PMC8622370 DOI: 10.3390/ph14111164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past few years, the application of privileged structure has emerged as a powerful approach to the discovery of new biologically active molecules. Privileged structures are molecular scaffolds with binding properties to the range of different biological targets. Moreover, privileged structures typically exhibit good drug-like properties, thus assuring more drug-like properties of modified compound. Our main objective is to discuss the privileged structures used for the development of antiviral agents.
Collapse
|
6
|
Wild M, Kicuntod J, Seyler L, Wangen C, Bertzbach LD, Conradie AM, Kaufer BB, Wagner S, Michel D, Eickhoff J, Tsogoeva SB, Bäuerle T, Hahn F, Marschall M. Combinatorial Drug Treatments Reveal Promising Anticytomegaloviral Profiles for Clinically Relevant Pharmaceutical Kinase Inhibitors (PKIs). Int J Mol Sci 2021; 22:ijms22020575. [PMID: 33430060 PMCID: PMC7826512 DOI: 10.3390/ijms22020575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a human pathogenic herpesvirus associated with a variety of clinical symptoms. Current antiviral therapy is not always effective, so that improved drug classes and drug-targeting strategies are needed. Particularly host-directed antivirals, including pharmaceutical kinase inhibitors (PKIs), may help to overcome problems of drug resistance. Here, we focused on utilizing a selection of clinically relevant PKIs and determined their anticytomegaloviral efficacies. Particularly, PKIs directed to host or viral cyclin-dependent kinases, i.e., abemaciclib, LDC4297 and maribavir, exerted promising profiles against human and murine cytomegaloviruses. The anti-HCMV in vitro activity of the approved anti-cancer drug abemaciclib was confirmed in vivo using our luciferase-based murine cytomegalovirus (MCMV) animal model in immunocompetent mice. To assess drug combinations, we applied the Bliss independence checkerboard and Loewe additivity fixed-dose assays in parallel. Results revealed that (i) both affirmative approaches provided valuable information on anti-CMV drug efficacies and interactions, (ii) the analyzed combinations comprised additive, synergistic or antagonistic drug interactions consistent with the drugs’ antiviral mode-of-action, (iii) the selected PKIs, especially LDC4297, showed promising inhibitory profiles, not only against HCMV but also other α-, β- and γ-herpesviruses, and specifically, (iv) the combination treatment with LDC4297 and maribavir revealed a strong synergism against HCMV, which might open doors towards novel clinical options in the near future. Taken together, this study highlights the potential of therapeutic drug combinations of current developmental/preclinical PKIs.
Collapse
Affiliation(s)
- Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Lisa Seyler
- Institute of Radiology, University Medical Center Erlangen, FAU, Palmsanlage 5, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Andelé M. Conradie
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7-13, 14163 Berlin, Germany; (L.D.B.); (A.M.C.); (B.B.K.)
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Detlef Michel
- Institute for Virology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany;
| | - Svetlana B. Tsogoeva
- Institute of Organic Chemistry I, FAU, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany;
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, FAU, Palmsanlage 5, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (J.K.); (C.W.); (S.W.); (F.H.)
- Correspondence: ; Tel.: +49-9131-8526-089
| |
Collapse
|