1
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
2
|
Dai Q, Li M, Tian X, Song Y, Zhao J. Identification of Lupus-Associated Genes in the Pathogenesis of Pre-eclampsia Via Bioinformatic Analysis. Bioinform Biol Insights 2024; 18:11779322241271558. [PMID: 39170671 PMCID: PMC11337183 DOI: 10.1177/11779322241271558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Pre-eclampsia (PE) is a severe pregnancy complication that is more common in patients with systemic lupus erythematosus (SLE). Although the exact causes of these conditions are not fully understood, the immune system plays a key role. To investigate the connection between SLE and PE, we analyzed genes associated with SLE that may contribute to the development of PE. We collected 9 microarray data sets from the NCBI GEO database and used Limma to identify the differentially expressed genes (DEGs). In addition, we employed weighted gene co-expression network analysis (WGCNA) to pinpoint the hub genes of SLE and examined immune infiltration using Cibersort. By constructing a protein-protein interaction (PPI) network and using CytoHubba, we identified the top 20 PE hub genes. Subsequently, we created a nomogram and conducted a receiver operating characteristic (ROC) analysis to predict the risk of PE. Our analysis, including gene set enrichment analysis (GSEA) and PE DEGs enrichment analysis, revealed significant involvement in placenta development and immune response. Two pivotal genes, BCL6 and MME, were identified, and their validity was confirmed using 5 data sets. The nomogram demonstrated good diagnostic performance (AUC: 0.82-0.96). Furthermore, we found elevated expression levels of both genes in SLE peripheral blood mononuclear cells (PBMCs) and PE placental specimens within the case group. Analysis of immune infiltration in the SLE data set showed a strong positive correlation between the expression of both genes and neutrophil infiltration. BCL6 and MME emerged as crucial genes in lupus-related pregnancies associated with the development of PE, for which we devised a nomogram. These findings provide potential candidate genes for further research in the diagnosis and understanding of the pathophysiology of PE.
Collapse
Affiliation(s)
- Qianwen Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yijun Song
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Torelli FR, Rodrigues-Peres RM, Monteiro I, Lopes-Cendes I, Bahamondes L, Juliato CRT. Gene expression associated with unfavorable vaginal bleeding in women using the etonogestrel subdermal contraceptive implant: a prospective study. Sci Rep 2024; 14:11062. [PMID: 38745005 PMCID: PMC11093992 DOI: 10.1038/s41598-024-61751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
To evaluate gene expression associated with unfavorable vaginal bleeding in users of the Etonogestrel (ENG) contraceptive implant. Prospective study involving 100 women who intended to use the ENG implant. Exclusion criteria included abnormal uterine bleeding, inability to attend a 1-year follow-up, and implant removal for reasons unrelated to vaginal bleeding or loss of follow-up. We obtained endometrial biopsies before implant placement and assessed the expression of 20 selected genes. Users maintained a uterine bleeding diary for 12 months post-implant placement. For statistical analysis, we categorized women into those with or without favorable vaginal bleeding at 3 and 12 months. Women with lower CXCL1 expression had a 6.8-fold increased risk of unfavorable vaginal bleeding at 3 months (OR 6.8, 95% CI 2.21-20.79, p < 0.001), while those with higher BCL6 and BMP6 expression had 6- and 5.1-fold increased risks, respectively. By the 12-month follow-up, women with lower CXCL1 expression had a 5.37-fold increased risk of unfavorable vaginal bleeding (OR 5.37, 95% CI 1.63-17.73, p = 0.006). Women with CXCL1 expression < 0.0675, BCL6 > 0.65, and BMP6 > 3.4 had a higher likelihood of experiencing unfavorable vaginal bleeding at 3 months, and CXCL1 < 0.158 at 12 months. Users of ENG contraceptive implants with elevated BCL6 and BMP6 expression exhibited a higher risk of breakthrough bleeding at the 3-month follow-up. Conversely, reduced CXCL1 expression was associated with an elevated risk of bleeding at both the 3 and 12-month follow-ups.
Collapse
Affiliation(s)
- Flávia R Torelli
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Raquel M Rodrigues-Peres
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ilza Monteiro
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luis Bahamondes
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cássia R T Juliato
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Departamento de Tocoginecologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas - UNICAMP, Rua Alexander Fleming 101, Campinas, SP, 13083-881, Brazil.
| |
Collapse
|
4
|
Cossard A, Stam K, Smets A, Jossin Y. MKL/SRF and Bcl6 mutual transcriptional repression safeguards the fate and positioning of neocortical progenitor cells mediated by RhoA. SCIENCE ADVANCES 2023; 9:eadd0676. [PMID: 37967194 PMCID: PMC10651131 DOI: 10.1126/sciadv.add0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.
Collapse
Affiliation(s)
- Alexia Cossard
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | | | | |
Collapse
|
5
|
Ritter A, Kreis NN, Roth S, Friemel A, Safdar BK, Hoock SC, Wildner JM, Allert R, Louwen F, Solbach C, Yuan J. Cancer-educated mammary adipose tissue-derived stromal/stem cells in obesity and breast cancer: spatial regulation and function. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:35. [PMID: 36710348 PMCID: PMC9885659 DOI: 10.1186/s13046-022-02592-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Breast adipose tissue-derived mesenchymal stromal/stem cells (bASCs) are crucial components of the tumor microenvironment. A key step initially involved in this process might be the de-differentiation of bASCs into tumor supporting phenotypes. METHODS In the present work, we isolated bASCs from adipose tissues adjacent to the tumor (aT bASCs) from lean- (ln-aT bASCs, BMI ≤ 25) and breast cancer patients with obesity (ob-aT bASCs, BMI ≥ 35), and analyzed their phenotypes with functional assays and RNA sequencing, compared to their counterparts isolated from adipose tissues distant from the tumor (dT bASCs). RESULTS We show that ln-aT bASCs are susceptible to be transformed into an inflammatory cancer-associated phenotype, whereas ob-aT bASCs are prone to be cancer-educated into a myofibroblastic phenotype. Both ln-aT- and ob-aT bASCs compromise their physiological differentiation capacity, and upregulate metastasis-promoting factors. While ln-aT bASCs stimulate proliferation, motility and chemoresistance by inducing epithelial-mesenchymal transition of low malignant breast cancer cells, ob-aT bASCs trigger more efficiently a cancer stem cell phenotype in highly malignant breast cancer cells. CONCLUSION Breast cancer-associated bASCs are able to foster malignancy of breast cancer cells by multiple mechanisms, especially, induction of epithelial-mesenchymal transition and activation of stemness-associated genes in breast cancer cells. Blocking the de-differentiation of bASCs in the tumor microenvironment could be a novel strategy to develop an effective intervention for breast cancer patients. SIGNIFICANCE This study provides mechanistic insights into how obesity affects the phenotype of bASCs in the TME. Moreover, it highlights the molecular changes inside breast cancer cells upon cell-cell interaction with cancer-educated bASCs.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Babek Kahn Safdar
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Samira Catharina Hoock
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Julia Maria Wildner
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Roman Allert
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
6
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C, Yuan J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update 2022; 28:890-909. [PMID: 35640966 PMCID: PMC9629482 DOI: 10.1093/humupd/dmac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The key oncogene B-cell lymphoma 6 (BCL6) drives malignant progression by promoting proliferation, overriding DNA damage checkpoints and blocking cell terminal differentiation. However, its functions in the placenta and the endometrium remain to be defined. OBJECTIVE AND RATIONALE Recent studies provide evidence that BCL6 may play various roles in the human placenta and the endometrium. Deregulated BCL6 might be related to the pathogenesis of pre-eclampsia (PE) as well as endometriosis. In this narrative review, we aimed to summarize the current knowledge regarding the pathophysiological role of BCL6 in these two reproductive organs, discuss related molecular mechanisms, and underline associated research perspectives. SEARCH METHODS We conducted a comprehensive literature search using PubMed for human, animal and cellular studies published until October 2021 in the following areas: BCL6 in the placenta, in PE and in endometriosis, in combination with its functions in proliferation, fusion, migration, invasion, differentiation, stem/progenitor cell maintenance and lineage commitment. OUTCOMES The data demonstrate that BCL6 is important in cell proliferation, survival, differentiation, migration and invasion of trophoblastic cells. BCL6 may have critical roles in stem/progenitor cell survival and differentiation in the placenta and the endometrium. BCL6 is aberrantly upregulated in pre-eclamptic placentas and endometriotic lesions through various mechanisms, including changes in gene transcription and mRNA translation as well as post-transcriptional/translational modifications. Importantly, increased endometrial BCL6 is considered to be a non-invasive diagnostic marker for endometriosis and a predictor for poor outcomes of IVF. These data highlight that BCL6 is crucial for placental development and endometrium homeostasis, and its upregulation is associated with the pathogenesis of PE, endometriosis and infertility. WIDER IMPLICATIONS The lesson learned from studies of the key oncogene BCL6 reinforces the notion that numerous signaling pathways and regulators are shared by tumors and reproductive organs. Their alteration may promote the progression of malignancies as well as the development of gestational and reproductive disorders.
Collapse
Affiliation(s)
- Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
7
|
Miranda AL, Kourdova LT, Racca AC, Cruz Del Puerto M, Rojas ML, Marques ALX, Silva ECO, Fonseca EJS, Gazzoni Y, Gruppi A, Borbely AU, Genti‐Raimondi S, Panzetta‐Dutari GM. Krüppel‐like factor 6 participates in extravillous trophoblast cell differentiation and its expression is reduced in abnormally invasive placenta. FEBS Lett 2022; 596:1700-1719. [DOI: 10.1002/1873-3468.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea L. Miranda
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Lucille T. Kourdova
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Ana C. Racca
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Maria L. Rojas
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Aldilane L. X. Marques
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Elaine C. O. Silva
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Eduardo J. S. Fonseca
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Yamila Gazzoni
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Adriana Gruppi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Alexandre U. Borbely
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Susana Genti‐Raimondi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Graciela M. Panzetta‐Dutari
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
8
|
Moon HH, Kreis NN, Friemel A, Roth S, Schulte D, Solbach C, Louwen F, Yuan J, Ritter A. Mitotic Centromere-Associated Kinesin (MCAK/KIF2C) Regulates Cell Migration and Invasion by Modulating Microtubule Dynamics and Focal Adhesion Turnover. Cancers (Basel) 2021; 13:5673. [PMID: 34830827 PMCID: PMC8616312 DOI: 10.3390/cancers13225673] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/16/2023] Open
Abstract
The microtubule (MT) cytoskeleton is crucial for cell motility and migration by regulating multiple cellular activities such as transport and endocytosis of key components of focal adhesions (FA). The kinesin-13 family is important in the regulation of MT dynamics and the best characterized member of this family is the mitotic centromere-associated kinesin (MCAK/KIF2C). Interestingly, its overexpression has been reported to be related to increased metastasis in various tumor entities. Moreover, MCAK is involved in the migration and invasion behavior of various cell types. However, the precise molecular mechanisms were not completely clarified. To address these issues, we generated CRISPR/dCas9 HeLa and retinal pigment epithelium (RPE) cell lines overexpressing or downregulating MCAK. Both up- or downregulation of MCAK led to reduced cell motility and poor migration in malignant as well as benign cells. Specifically, it's up- or downregulation impaired FA protein composition and phosphorylation status, interfered with a proper spindle and chromosome segregation, disturbed the assembly and disassembly rate of FA, delayed cell adhesion, and compromised the plus-tip dynamics of MTs. In conclusion, our data suggest MCAK act as an important regulator for cell motility and migration by affecting the actin-MT cytoskeleton dynamics and the FA turnover, providing molecular mechanisms by which deregulated MCAK could promote malignant progression and metastasis of tumor cells.
Collapse
Affiliation(s)
- Ha Hyung Moon
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, J. W. Goethe University, D-60528 Frankfurt, Germany;
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (H.H.M.); (N.-N.K.); (A.F.); (S.R.); (C.S.); (F.L.); (J.Y.)
| |
Collapse
|