1
|
Ristić D, Bärnthaler T, Gruden E, Kienzl M, Danner L, Herceg K, Sarsembayeva A, Kargl J, Schicho R. GPR55 in the tumor microenvironment of pancreatic cancer controls tumorigenesis. Front Immunol 2025; 15:1513547. [PMID: 39885986 PMCID: PMC11779727 DOI: 10.3389/fimmu.2024.1513547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Background The G protein-coupled receptor 55 (GPR55) is part of an expanded endocannabinoid system (ECS), and plays a pro-tumorigenic role in different cancer models, including pancreatic cancer. Next to cancer cells, various cells of the immune tumor microenvironment (TME) express receptors of the ECS that critically determine tumor growth. The role of GPR55 in cancer cells has been widely described, but its role in the immune TME is not well understood. Methods We intended to uncover the role of GPR55 in tumor immunity in a model of pancreatic ductal adenocarcinoma (PDAC). To this end, a KPCY tumor cell line or a GPR55-overexpressing KPCY cell line (KPCY55) from murine PDAC were subcutaneously injected into wildtype (WT) and GPR55 knockout (KO) mice, and immune cell populations were evaluated by flow cytometry. Results Deficiency of GPR55 in the TME led to reduced tumor weight and volume, and altered the immune cell composition of tumors, favoring an anti-tumorigenic environment by increasing the number of CD3+ T cells, particularly CD8+ T cells, and the expression of PDL1 on macrophages. RNA-seq pathway analysis revealed higher T cell activity in KPCY55 tumors of GPR55 KO vs. WT mice. In addition, tumors from GPR55 KO mice displayed increased levels of T cell chemokines Cxcl9 and Cxcl10. Migration of T cells from GPR55 KO mice towards CXCL9 was increased in comparison to T cells from WT mice, suggesting that a CXCR3/CXCL9 axis was involved in T cell influx into tumors of GPR55 KO mice. Notably, anti-PD-1 immunotherapy increased tumor burden in WT mice, while this effect was absent in the GPR55 KO mice. Conclusion Our study indicates that GPR55 in TME cells may drive tumor growth by suppressing T cell functions, such as migration, in a model of PDAC, making it an interesting target for immunotherapies.
Collapse
MESH Headings
- Animals
- Tumor Microenvironment/immunology
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Mice
- Receptors, Cannabinoid/metabolism
- Receptors, Cannabinoid/genetics
- Mice, Knockout
- Cell Line, Tumor
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinogenesis/immunology
- Mice, Inbred C57BL
- Humans
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
Collapse
|
2
|
Zachut M, Butenko Y, Dos Santos Silva P. International Symposium on Ruminant Physiology: The involvement of the endocannabinoid system in metabolic and inflammatory responses in dairy cows during negative energy balance. J Dairy Sci 2025:S0022-0302(25)00017-7. [PMID: 39824501 DOI: 10.3168/jds.2024-25772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes. The cannabinoid-2 receptor (CB2/CNR2) is most highly expressed in immune cells, and its activation exerts mainly anti-inflammatory effects. Until recently, little was known about the involvement of the ECS in physiological responses in dairy cows. As peripartum dairy cows undergo vast changes in energy metabolism and immune function, processes that are regulated by the ECS, several studies characterized ECS components in transition cows. Concentrations of eCB in the adipose tissue were higher postpartum (PP), and levels of the eCB N-arachidonoylethanolamide (AEA) were increased PP compared with prepartum. Exogenous injections of AEA to transition cows may increase adipose deposition, but did not affect feed intake. In vitro models showed that bovine adipocyte metabolism was differentially affected by CB1 agonists and antagonists in nonlactating non-gestating compared with PP cows. Thus, the responses of the PP dairy cows to ECS modulations may be related to the physiological and reproductive stage of the cow. Currently, whole-body ECS activation via agonists is mostly not feasible in vivo in livestock. Alternatively, downregulation of ECS activation can be achieved by supplementation of omega-3 (n-3) fatty acids. Indeed, in vivo studies with transition cows supplemented with n-3 showed a moderate downregulation of ECS components in the blood, adipose and liver, improved systemic insulin sensitivity, but evidently reduced insulin sensitivity in the adipose tissue PP. The abundance of CB1 was lower in immune cells, and anti-inflammatory effects were found in PP cows supplemented with n-3; possibly associating ECS downregulation with immune function. The physiological impact of ECS activation is an exciting and complex area of research, that could influence the physiology of dairy cows during metabolic and inflammatory challenges. Dairy cows may be an experimental model for ECS modulations, with broader relevance to female mammals. More research is required on how selective ECS activation/downregulation in tissues could affect immune-metabolic function in dairy cows.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel.
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel
| | - Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Vasudevan G, Ramachandran K, Tangavel C, Nayagam SM, Gopalakrishnan C, Muthurajan R, Sri Vijay Anand KS, Rajasekaran S. "Elucidating the immunomodulatory role of endocannabinoids in intervertebral disc degeneration". EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025; 34:308-315. [PMID: 39542877 DOI: 10.1007/s00586-024-08550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/23/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE The endocannabinoid system (ECS) has been well-established to play a crucial role in the regulation of several physiological processes as well as many inflammatory disease conditions. However, its role in intervertebral disc degeneration has been least explored. We aim to investigate the immunomodulatory role of endocannabinoids in regulating IVD health. METHODS The study population included 20 healthy volunteers (controls) and 40 patients with disc degeneration (disease group) (20 Modic and 20 Non Modic). 16S metagenome sequencing of the V3-V4 region was performed for the DNA extracted from NP tissue samples of both control and disease groups. Sequencing was carried out using the Novaseq 6000 platform using 250 bp paired-end chemistry. A global metabolic profile was obtained using the uHPLC system coupled with Q Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer. RESULTS Our study revealed a higher prevalence of gram-negative bacteria, particularly opportunistic pathogens like Pseudomonas, in diseased discs (71-81%) compared to healthy controls (54%). Further investigation using metabolomics identified significant changes in the lipid profiles of diseased discs. We found that the signalling molecules of the ECS, 2-arachidonylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), were significantly lower in diseased discs compared to controls (Log2FC -2.62 for 2-AG and -3.15 for AEA). Conversely, pro-inflammatory metabolites like LTA4, HPETE, HETE, and Prostaglandin G2 were elevated in diseased discs, with a Log2 fold increase greater than 2.5. CONCLUSION The study reveals that the endocannabinoid metabolites (2-AG and AEA) of the ECS could be a significant molecule influencing susceptibility to infection and inflammation within the intervertebral discs, which could be a potential target for improving disc health. LEVEL OF EVIDENCE Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding.
Collapse
Affiliation(s)
- Gowdaman Vasudevan
- Ganga Research Centre, SF No.442, NGGO Colony Post, Vattamalaipalayam, Coimbatore, TamilNadu, 641022, India
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Chitraa Tangavel
- Ganga Research Centre, SF No.442, NGGO Colony Post, Vattamalaipalayam, Coimbatore, TamilNadu, 641022, India
| | - Sharon Miracle Nayagam
- Ganga Research Centre, SF No.442, NGGO Colony Post, Vattamalaipalayam, Coimbatore, TamilNadu, 641022, India
| | - Chellappa Gopalakrishnan
- Ganga Research Centre, SF No.442, NGGO Colony Post, Vattamalaipalayam, Coimbatore, TamilNadu, 641022, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, India
| | - K S Sri Vijay Anand
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | | |
Collapse
|
4
|
Muhuitijiang B, Zhou J, Zhou R, Zhang Z, Yan G, Zheng Z, Zeng X, Zhu Y, Wu H, Gao R, Zhu T, Shi X, Tan W. Development and experimental validation of an M2 macrophage and platelet-associated gene signature to predict prognosis and immunotherapy sensitivity in bladder cancer. Cancer Sci 2024; 115:1417-1432. [PMID: 38422408 PMCID: PMC11093213 DOI: 10.1111/cas.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Platelets and M2 macrophages both play crucial roles in tumorigenesis, but their relationship and the prognosis value of the relative genes in bladder cancer (BLCA) remain obscure. In the present study, we found that platelets stimulated by BLCA cell lines could promote M2 macrophage polarization, and platelets were significantly associated with the infiltration of M2 macrophages in BLCA samples. Through the bioinformatic analyses, A2M, TGFB3, and MYLK, which were associated with platelets and M2 macrophages, were identified and verified in vitro and then included in the predictive model. A platelet and M2 macrophage-related gene signature was constructed to evaluate the prognosis and immunotherapeutic sensitivity, helping to guide personalized treatment and to disclose the underlying mechanisms.
Collapse
Affiliation(s)
| | - Jiawei Zhou
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ranran Zhou
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiyong Zhang
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guang Yan
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zaosong Zheng
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiangbo Zeng
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuanchao Zhu
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Haowei Wu
- The First Clinical Medical College of Southern Medical UniversityGuangzhouGuangdongChina
| | - Ruxi Gao
- The First Clinical Medical College of Southern Medical UniversityGuangzhouGuangdongChina
| | - Tianhang Zhu
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaojun Shi
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wanlong Tan
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Rosado‐Franco JJ, Ellison AL, White CJ, Price AS, Moore CF, Williams RE, Fridman LB, Weerts EM, Williams DW. Roadmap for the expression of canonical and extended endocannabinoid system receptors and metabolic enzymes in peripheral organs of preclinical animal models. Physiol Rep 2024; 12:e15947. [PMID: 38408761 PMCID: PMC10896677 DOI: 10.14814/phy2.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/28/2024] Open
Abstract
The endocannabinoid system is widely expressed throughout the body and is comprised of receptors, ligands, and enzymes that maintain metabolic, immune, and reproductive homeostasis. Increasing interest in the endocannabinoid system has arisen due to these physiologic roles, policy changes leading to more widespread recreational use, and the therapeutic potential of Cannabis and phytocannabinoids. Rodents have been the primary preclinical model of focus due to their relative low cost, short gestational period, genetic manipulation strategies, and gold-standard behavioral tests. However, the potential for lack of clinical translation to non-human primates and humans is high as cross-species comparisons of the endocannabinoid system have not been evaluated. To bridge this gap in knowledge, we evaluate the relative gene expression of 14 canonical and extended endocannabinoid receptors in seven peripheral organs of C57/BL6 mice, Sprague-Dawley rats, and non-human primate rhesus macaques. Notably, we identify species- and organ-specific heterogeneity in endocannabinoid receptor distribution where there is surprisingly limited overlap among the preclinical models. Importantly, we determined there were no receptors with identical expression patterns among mice (three males and two females), rats (six females), and rhesus macaques (four males). Our findings demonstrate a critical, yet previously unappreciated, contributor to challenges of rigor and reproducibility in the cannabinoid field, which has implications in hampering progress in understanding the complexity of the endocannabinoid system and development of cannabinoid-based therapies.
Collapse
Affiliation(s)
- J. J. Rosado‐Franco
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - A. L. Ellison
- Department of Molecular Microbiology and ImmunologyJohns Hopkins University‐Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - C. J. White
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - A. S. Price
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - C. F. Moore
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University Bayview CampusBaltimoreMarylandUSA
| | - R. E. Williams
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - L. B. Fridman
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - E. M. Weerts
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| | - D. W. Williams
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
- Department of Molecular Microbiology and ImmunologyJohns Hopkins University‐Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
- Division of Clinical PharmacologyJohns Hopkins University‐School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Shi Y, Wu S, Zhang X, Cao Y, Zhang L. Lipid metabolism-derived FAAH is a sensitive marker for the prognosis and immunotherapy of osteosarcoma patients. Heliyon 2024; 10:e23499. [PMID: 38169921 PMCID: PMC10758879 DOI: 10.1016/j.heliyon.2023.e23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Lipid metabolism in cancer refers to the alterations in how cancer cells process and utilize lipids, a type of fat molecule. It was investigated how lipid metabolism relates to osteosarcoma. Genes relevant to lipid metabolism were gathered to create lipid metabolism-associated clusters and locate the dangerous marker. We investigated FAAH's prognostic significance, route annotation, immunotherapy response, and medication prediction. Besides, FAAH is proven to be a potent, dangerous marker that may promote growth and migration and inhibit the apoptosis of osteosarcoma. FAAH exhibits higher expression levels in tumor tissues as compared to normal tissues. In conclusion, FAAH is identified in this work as a potentially dangerous gene and immunotherapy determinant. This study requires more investigation to determine how FAAH influences the immune response in osteosarcoma.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Yangbo Cao
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lina Zhang
- Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
8
|
Farooqi T, Bhuyan DJ, Low M, Sinclair J, Leonardi M, Armour M. Cannabis and Endometriosis: The Roles of the Gut Microbiota and the Endocannabinoid System. J Clin Med 2023; 12:7071. [PMID: 38002684 PMCID: PMC10671947 DOI: 10.3390/jcm12227071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Endometriosis, a chronic condition affecting around 10-14% of women, is challenging to manage, due to its complex pathogenesis and limited treatment options. Research has suggested a potential role of the gut microbiota and the endocannabinoid system in the development and progression of endometriosis. This narrative review aims to explore the role of, and any potential interactions between, the endocannabinoid system (ECS) and the gut microbiota in endometriosis. This review found that both the ECS and microbiota influence endometriosis, with the former regulating inflammation and pain perception and the latter influencing immune responses and hormonal balance. There is evidence that a dysregulation of the endocannabinoid system and the gut microbiota influence endometriosis symptoms and progression via changes in CB1 receptor expression and increased circulating levels of endocannabinoids. Microbial imbalances in the gut, such as increases in Prevotella, have been directly correlated to increased bloating, a common endometriosis symptom, while increases in E. coli have supported the bacterial contamination hypothesis as a potential pathway for endometriosis pathogenesis. These microbial imbalances have been correlated with increases in inflammatory markers such as TNF-α and IL-6, both often raised in those with endometriosis. Protective effects of the ECS on the gut were observed by increases in endocannabinoids, including 2-AG, resulting in decreased inflammation and improved gut permeability. Given these findings, both the ECS and the gut microbiota may be targets for therapeutic interventions for endometriosis; however, clinical studies are required to determine effectiveness.
Collapse
Affiliation(s)
- Toobah Farooqi
- NICM Health Research Institute, Western Sydney University, Sydney 2751, Australia; (T.F.); (D.J.B.); (M.L.); (J.S.)
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Sydney 2751, Australia; (T.F.); (D.J.B.); (M.L.); (J.S.)
- School of Science, Western Sydney University, Sydney 2751, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Sydney 2751, Australia; (T.F.); (D.J.B.); (M.L.); (J.S.)
| | - Justin Sinclair
- NICM Health Research Institute, Western Sydney University, Sydney 2751, Australia; (T.F.); (D.J.B.); (M.L.); (J.S.)
| | - Mathew Leonardi
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8V 5C2, Canada;
- Robinson Research Institute, University of Adelaide, Adelaide 5006, Australia
| | - Mike Armour
- NICM Health Research Institute, Western Sydney University, Sydney 2751, Australia; (T.F.); (D.J.B.); (M.L.); (J.S.)
- Translational Health Research Institute, Western Sydney University, Sydney 2751, Australia
- Medical Research Institute of New Zealand, P.O. Box 7902, Wellington 6242, New Zealand
| |
Collapse
|
9
|
Gruden E, Kienzl M, Hasenoehrl C, Sarsembayeva A, Ristic D, Schmid ST, Maitz K, Taschler U, Hahnefeld L, Gurke R, Thomas D, Kargl J, Schicho R. Tumor microenvironment-derived monoacylglycerol lipase provokes tumor-specific immune responses and lipid profiles. Prostaglandins Leukot Essent Fatty Acids 2023; 196:102585. [PMID: 37573716 DOI: 10.1016/j.plefa.2023.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
We recently described that monoacylglycerol lipase (MGL) is present in the tumor microenvironment (TME), increasing tumor growth. In this study we compare the implications of MGL deficiency in the TME in different tumor types. We show that subcutaneous injection of KP (KrasLSL-G12D/p53fl/fl, mouse lung adenocarcinoma) or B16-F10 cells (mouse melanoma) induced tumor growth in MGL wild type (WT) and knockout (KO) mice. MGL deficiency in the TME attenuated the growth of KP cell tumors whereas tumors from B16-F10 cells increased in size. Opposite immune cell profiles were detected between the two tumor types in MGL KO mice. In line with their anti-tumorigenic function, the number of CD8+ effector T cells and eosinophils increased in KP cell tumors of MGL KO vs. WT mice whereas their presence was reduced in B16-F10 cell tumors of MGL KO mice. Differences were seen in lipid profiles between the investigated tumor types. 2-arachidonoylglycerol (2-AG) content significantly increased in KP, but not B16-F10 cell tumors of MGL KO vs. WT mice while other endocannabinoid-related lipids remained unchanged. However, profiles of phospho- and lysophospholipids, sphingomyelins and fatty acids in KP cell tumors were clearly distinct to those measured in B16-F10 cell tumors. Our data indicate that TME-localized MGL impacts tumor growth, as well as levels of 2-AG and other lipids in a tumor specific manner.
Collapse
Affiliation(s)
- Eva Gruden
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Melanie Kienzl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria.
| | - Carina Hasenoehrl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Arailym Sarsembayeva
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Dusica Ristic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Sophie Theresa Schmid
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Kathrin Maitz
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University, 60590 Frankfurt/Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Rudolf Schicho
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
10
|
Rosado-Franco JJ, Ellison AL, White CJ, Price AS, Moore CF, Williams RE, Fridman LB, Weerts EM, Williams DW. Roadmap For The Expression Of Canonical and Extended Endocannabinoid System Receptors and Proteins in Peripheral Organs of Preclinical Animal Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544455. [PMID: 37333264 PMCID: PMC10274867 DOI: 10.1101/2023.06.10.544455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The endocannabinoid system is widely expressed throughout the body and is comprised of receptors, ligands, and enzymes that maintain metabolic, immune, and reproductive homeostasis. Increasing interest in the endocannabinoid system has arisen due to these physiologic roles, policy changes leading to more widespread recreational use, and the therapeutic potential of Cannabis and phytocannabinoids. Rodents have been the primary preclinical model of focus due to their relative low cost, short gestational period, genetic manipulation strategies, and gold-standard behavioral tests. However, the potential for lack of clinical translation to non-human primates and humans is high as cross-species comparisons of the endocannabinoid system has not been evaluated. To bridge this gap in knowledge, we evaluate the relative gene expression of 14 canonical and extended endocannabinoid receptors in seven peripheral organs of C57/BL6 mice, Sprague-Dawley rats, and non-human primate rhesus macaques. Notably, we identify species- and organ-specific heterogeneity in endocannabinoid receptor distribution where there is surprisingly limited overlap among the preclinical models. Importantly, we determined there were only five receptors (CB2, GPR18, GPR55, TRPV2, and FAAH) that had identical expression patterns in mice, rats, and rhesus macaques. Our findings demonstrate a critical, yet previously unappreciated, contributor to challenges of rigor and reproducibility in the cannabinoid field, which has profound implications in hampering progress in understanding the complexity of the endocannabinoid system and development of cannabinoid-based therapies.
Collapse
Affiliation(s)
- J J Rosado-Franco
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - A L Ellison
- Department of Microbiology and Molecular Immunology, Johns Hopkins University-Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - C J White
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - A S Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - C F Moore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University Bayview Campus, Baltimore, Maryland, USA
| | - R E Williams
- Department of Neuroscience, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - L B Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - E M Weerts
- Department of Neuroscience, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| | - D W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Molecular Immunology, Johns Hopkins University-Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Clinical Pharmacology, Johns Hopkins University-School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Wyrobnik I, Steinberg M, Gelfand A, Rosenblum R, Eid Mutlak Y, Sulimani L, Procaccia S, Ofran Y, Novak-Kotzer H, Meiri D. Decreased melanoma CSF-1 secretion by Cannabigerol treatment reprograms regulatory myeloid cells and reduces tumor progression. Oncoimmunology 2023; 12:2219164. [PMID: 37325437 PMCID: PMC10262794 DOI: 10.1080/2162402x.2023.2219164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
During solid tumor progression, the tumor microenvironment (TME) evolves into a highly immunosuppressive milieu. Key players in the immunosuppressive environment are regulatory myeloid cells, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), which are recruited and activated via tumor-secreted cytokines such as colony-stimulating factor 1 (CSF-1). Therefore, the depletion of tumor-secreted cytokines is a leading anticancer strategy. Here, we found that CSF-1 secretion by melanoma cells is decreased following treatment with Cannabis extracts. Cannabigerol (CBG) was identified as the bioactive cannabinoid responsible for the effects. Conditioned media from cells treated with pure CBG or the high-CBG extract reduced the expansion and macrophage transition of the monocytic-MDSC subpopulation. Treated MO-MDSCs also expressed lower levels of iNOS, leading to restored CD8+ T-cell activation. Tumor-bearing mice treated with CBG presented reduced tumor progression, lower TAM frequencies and reduced TAM/M1 ratio. A combination of CBG and αPD-L1 was more effective in reducing tumor progression, enhancing survival and increasing the infiltration of activated cytotoxic T-cells than each treatment separately. We show a novel mechanism for CBG in modulating the TME and enhancing immune checkpoint blockade therapy, underlining its promising therapeutic potential for the treatment of a variety of tumors with elevated CSF-1 expression.
Collapse
Affiliation(s)
- Iris Wyrobnik
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Miryam Steinberg
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anat Gelfand
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Rosenblum
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yara Eid Mutlak
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Sulimani
- The Kleifeld Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Cannasoul Analytics, Caesarea, Israel
| | - Shiri Procaccia
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology, Shaare Zedek Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Novak-Kotzer
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Aliya S, Farani MR, Kim E, Kim S, Gupta VK, Kumar K, Huh YS. Therapeutic targeting of the tumor microenvironments with cannabinoids and their analogs: Update on clinical trials. ENVIRONMENTAL RESEARCH 2023; 231:115862. [PMID: 37146933 DOI: 10.1016/j.envres.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Cancer is a major global public health concern that affects both industrialized and developing nations. Current cancer chemotherapeutic options are limited by side effects, but plant-derived alternatives and their derivatives offer the possibilities of enhanced treatment response and reduced side effects. A plethora of recently published articles have focused on treatments based on cannabinoids and cannabinoid analogs and reported that they positively affect healthy cell growth and reverse cancer-related abnormalities by targeting aberrant tumor microenvironments (TMEs), lowering tumorigenesis, preventing metastasis, and/or boosting the effectiveness of chemotherapy and radiotherapy. Furthermore, TME modulating systems are receiving much interest in the cancer immunotherapy field because it has been shown that TMEs have significant impacts on tumor progression, angiogenesis, invasion, migration, epithelial to mesenchymal transition, metastasis and development of drug resistance. Here, we have reviewed the effective role of cannabinoids, their analogs and cannabinoid nano formulations on the cellular components of TME (endothelial cells, pericytes, fibroblast and immune cells) and how efficiently it retards the progression of carcinogenesis is discussed. The article summarizes the existing research on the molecular mechanisms of cannabinoids regulation of the TME and finally highlights the human studies on cannabinoids' active interventional clinical trials. The conclusion outlines the need for future research involving clinical trials of cannabinoids to demonstrate their efficacy and activity as a treatment/prevention for various types of human malignancies.
Collapse
Affiliation(s)
- Sheik Aliya
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Eunsu Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Suheon Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Krishan Kumar
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
13
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
14
|
Cannabinoid Receptor 1 Agonist ACEA and Cannabinoid Receptor 2 Agonist GW833972A Attenuates Cell-Mediated Immunity by Different Biological Mechanisms. Cells 2023; 12:cells12060848. [PMID: 36980189 PMCID: PMC10047765 DOI: 10.3390/cells12060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) are components in the endocannabinoid system that play significant roles in regulating immune responses. There are many agonists for the cannabinoid receptors; however, their effects on T cell regulation have not been elucidated. In the present study, we determined the effects of the CB1 selective agonist ACEA and the CB2 selective agonist GW833972A on T cell responses. It was found that both agonists impaired anti-CD3 monoclonal antibody induced T cell proliferation. However, ACEA and GW833972A agonists down-regulated the expression of activation markers on CD4+ and CD8+ T cells and co-stimulatory molecules on B cells and monocytes in different manners. Moreover, only GW833972A suppressed the cytotoxic activities of CD8+ T cells without interfering in the cytotoxic activities of CD4+ T cells and NK cells. In addition, the CB2 agonist, but not CB1 agonist, caused the reduction of Th1 cytokine production. Our results demonstrated that the CB1 agonist ACEA and CB2 agonist GW833972A attenuated cell-mediated immunity in different mechanisms. These agonists may be able to be used as therapeutic agents for inducing T cell hypofunction in inflammatory and autoimmune diseases.
Collapse
|
15
|
Sarsembayeva A, Kienzl M, Gruden E, Ristic D, Maitz K, Valadez-Cosmes P, Santiso A, Hasenoehrl C, Brcic L, Lindenmann J, Kargl J, Schicho R. Cannabinoid receptor 2 plays a pro-tumorigenic role in non-small cell lung cancer by limiting anti-tumor activity of CD8 + T and NK cells. Front Immunol 2023; 13:997115. [PMID: 36700219 PMCID: PMC9868666 DOI: 10.3389/fimmu.2022.997115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Cannabinoid (CB) receptors (CB1 and CB2) are expressed on cancer cells and their expression influences carcinogenesis in various tumor entities. Cells of the tumor microenvironment (TME) also express CB receptors, however, their role in tumor development is still unclear. We, therefore, investigated the role of TME-derived CB1 and CB2 receptors in a model of non-small cell lung cancer (NSCLC). Leukocytes in the TME of mouse and human NSCLC express CB receptors, with CB2 showing higher expression than CB1. In the tumor model, using CB1- (CB1 -/-) and CB2-knockout (CB2 -/-) mice, only deficiency of CB2, but not of CB1, resulted in reduction of tumor burden vs. wild type (WT) littermates. This was accompanied by increased accumulation and tumoricidal activity of CD8+ T and natural killer cells, as well as increased expression of programmed death-1 (PD-1) and its ligand on lymphoid and myeloid cells, respectively. CB2 -/- mice responded significantly better to anti-PD-1 therapy than WT mice. The treatment further increased infiltration of cytotoxic lymphocytes into the TME of CB2 -/- mice. Our findings demonstrate that TME-derived CB2 dictates the immune cell recruitment into tumors and the responsiveness to anti-PD-1 therapy in a model of NSCLC. CB2 could serve as an adjuvant target for immunotherapy.
Collapse
Affiliation(s)
- Arailym Sarsembayeva
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Eva Gruden
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Dusica Ristic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Kathrin Maitz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Carina Hasenoehrl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
16
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
17
|
KDELR3 Is a Prognostic Biomarker Related to the Immune Infiltration and Chemoresistance of Anticancer Drugs in Uveal Melanoma. DISEASE MARKERS 2022; 2022:1930185. [PMID: 36046379 PMCID: PMC9420630 DOI: 10.1155/2022/1930185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
Uveal melanoma (UM) is an intraocular malignancy in adults in which approximately 50% of patients develop metastatic diseases and have a poor clinical outcome. Immunotherapies are quickly becoming a need, and recent research has produced some amazing achievements in this area. In the current investigation, an attempt was made to evaluate the prognostic usefulness of KDELR3 in UM, particularly its connection with tumor-infiltrating lymphocytes (TILs). The expression patterns of mRNAs and related clinical data of 80 UM patients were obtained from The Cancer Genome Atlas (TCGA). By using RT-PCR, we were able to investigate whether or not UM cells and D78 cells expressed KDELR3. The Kaplan-Meier approach, as well as univariate and multivariate tests, was utilized in order to investigate the potential predictive significance of KDELR3 expression. The associations between KDELR3 and TILs and immunological checkpoints were analyzed in order to evaluate the effect that KDELR3 may have on UM immunotherapy. On the basis of the differential expression of KDELR3, a distribution of the half-maximal inhibitory concentration (IC50) of various targeted medicines was observed. In this study, we found that the expression of KDELR3 was distinctly increased in most types of tumors. In addition, KDELR3 was highly expressed in UM cells. Moreover, patients with high KDELR3 expression exhibited a shorter overall survival and disease-free survival than those with low KDELR3 expression. Multivariate analyses confirmed that KDELR3 expression was an independent prognostic factor for overall survival and disease-free survival in patients with UM. Furthermore, KDELR3 expression was demonstrated to be positively correlated with macrophage M1, T cell CD8, T cell follicular helper, dendritic cell resting, and T cell CD4 memory activated. Meanwhile, the expression of KDELR3 was related to several immune checkpoints. The IC50 of AP-24534, BHG712, bleomycin, camptothecin, cisplatin, cytarabine, GSK1070916, and tipifarnib was higher in the KDELR3 high-expression group. In conclusion, KDELR3 may be applied as a potential diagnostic and prognostic biomarker for UM patients.
Collapse
|
18
|
Calvillo-Robledo A, Cervantes-Villagrana RD, Morales P, Marichal-Cancino BA. The oncogenic lysophosphatidylinositol (LPI)/GPR55 signaling. Life Sci 2022; 301:120596. [PMID: 35500681 DOI: 10.1016/j.lfs.2022.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
GPR55 is a class A orphan G protein-coupled receptor that has drawn important therapeutic attention in the last decade because of its role in pathophysiological processes including vascular functions, metabolic dysfunction, neurodegenerative disorders, or bone turnover among others. Several cannabinoids of phytogenic, endogenous, and synthetic nature have shown to modulate this receptor leading to propose it as a member of the endocannabinoid system. The putative endogenous GPR55 ligand is L-α-lysophosphatidylinositol (LPI) and it has been associated with several processes that control cell survival and tumor progression. The relevance of GPR55 in cancer is currently being extensively studied in vitro and in vivo using diverse cancer models. The LPI/GPR55 axis has been reported to participate in pro-oncogenic processes including cellular proliferation, differentiation, migration, invasion, and metastasis being altered in several cancer cells via G12/13 and Gq signaling. Moreover, GRP55 and its bioactive lipid have been proposed as potential biomarkers for cancer diagnosis. Indeed, GPR55 overexpression or high expression has been shown to correlate with cancer aggressiveness in specific tumors including acute myeloid leukemia, uveal melanoma, low grade glioma and renal cancer. This review aims to analyze and summarize current evidence on the cancerogenic role of the LPI/GPR55 axis providing a critical view of the therapeutic prospects of this promising target.
Collapse
Affiliation(s)
- Argelia Calvillo-Robledo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | | | - Paula Morales
- Instituto de Química Médica, CSIC, 28006 Madrid, Spain
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico.
| |
Collapse
|
19
|
Falasca V, Falasca M. Targeting the Endocannabinoidome in Pancreatic Cancer. Biomolecules 2022; 12:320. [PMID: 35204820 PMCID: PMC8869154 DOI: 10.3390/biom12020320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is an aggressive and lethal form of cancer with a very high mortality rate. High heterogeneity, asymptomatic initial stages and a lack of specific diagnostic markers result in an end-stage diagnosis when the tumour has locally advanced or metastasised. PDAC is resistant to most of the available chemotherapy and radiation therapy treatments, making surgery the most potent curative treatment. The desmoplastic tumour microenvironment contributes to determining PDAC pathophysiology, immune response and therapeutic efficacy. The existing therapeutic approaches such as FDA-approved chemotherapeutics, gemcitabine, abraxane and folfirinox, prolong survival marginally and are accompanied by adverse effects. Several studies suggest the role of cannabinoids as anti-cancer agents. Cannabinoid receptors are known to be expressed in pancreatic cells, with a higher expression reported in pancreatic cancer patients. Therefore, pharmacological targeting of the endocannabinoid system might offer therapeutic benefits in pancreatic cancer. In addition, emerging data suggest that cannabinoids in combination with chemotherapy can increase survival in transgenic pancreatic cancer murine models. This review provides an overview of the regulation of the expanded endocannabinoid system, or endocannabinoidome, in PDAC and will explore the potential of targeting this system for novel anticancer approaches.
Collapse
Affiliation(s)
- Valerio Falasca
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
20
|
Hryhorowicz S, Kaczmarek-Ryś M, Zielińska A, Scott RJ, Słomski R, Pławski A. Endocannabinoid System as a Promising Therapeutic Target in Inflammatory Bowel Disease - A Systematic Review. Front Immunol 2021; 12:790803. [PMID: 35003109 PMCID: PMC8727741 DOI: 10.3389/fimmu.2021.790803] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a general term used to describe a group of chronic inflammatory conditions of the gastrointestinal tract of unknown etiology, including two primary forms: Crohn's disease (CD) and ulcerative colitis (UC). The endocannabinoid system (ECS) plays an important role in modulating many physiological processes including intestinal homeostasis, modulation of gastrointestinal motility, visceral sensation, or immunomodulation of inflammation in IBD. It consists of cannabinoid receptors (CB1 and CB2), transporters for cellular uptake of endocannabinoid ligands, endogenous bioactive lipids (Anandamide and 2-arachidonoylglycerol), and the enzymes responsible for their synthesis and degradation (fatty acid amide hydrolase and monoacylglycerol lipase), the manipulation of which through agonists and antagonists of the system, shows a potential therapeutic role for ECS in inflammatory bowel disease. This review summarizes the role of ECS components on intestinal inflammation, suggesting the advantages of cannabinoid-based therapies in inflammatory bowel disease.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Crohn Disease/drug therapy
- Crohn Disease/immunology
- Crohn Disease/pathology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Endocannabinoids/agonists
- Endocannabinoids/antagonists & inhibitors
- Endocannabinoids/metabolism
- Gastrointestinal Motility/drug effects
- Humans
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Randomized Controlled Trials as Topic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Treatment Outcome
Collapse
Affiliation(s)
| | | | | | - Rodney J. Scott
- Discipline of Medical Genetics and Centre for Information-Based Medicine, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, NSW, Australia
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
21
|
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res 2021; 175:106025. [PMID: 34883211 DOI: 10.1016/j.phrs.2021.106025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.
Collapse
Affiliation(s)
- Jerome Lian
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
22
|
Iozzo M, Sgrignani G, Comito G, Chiarugi P, Giannoni E. Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells 2021; 10:cells10123396. [PMID: 34943903 PMCID: PMC8699381 DOI: 10.3390/cells10123396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment, including the composition in metabolites and signalling mediators. A growing number of evidence reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic potential. Although it is still an evolving research, recent experimental evidence also suggests that ECS can modulate the functional behaviour of several components of the TME, above all the immune cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma interplay remains unclear and research in this area is particularly intriguing. This review aims to shed light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches, targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby hindering tumour development.
Collapse
|
23
|
Hosami F, Ghadimkhah MH, Salimi V, Ghorbanhosseini SS, Tavakoli-Yaraki M. The strengths and limits of cannabinoids and their receptors in cancer: Insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects. Biomed Pharmacother 2021; 144:112279. [PMID: 34624678 DOI: 10.1016/j.biopha.2021.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
Cancer, as a mysterious and complex disease, has a multi-stage molecular process that uses the cellular molecular machine and multiple signaling pathways to its advantage. Cannabinoids, as terpenophenolic compounds and their derivatives, showed influences on immune system responses, inflammation, and cell growth that have sparked a growing interest in exploring their effects on cancer cell fate, as well. A large body of evidence in experimental models indicating the involvement of cannabinoids and their related receptors in cancer cell growth, development, and fate. In accordance, the present study provided insights regarding the strengths and limits of cannabinoids and their receptors in critical steps of tumorigenesis and its underlying molecular pathways such as; cancer cell proliferation, type of cell death pathway, angiogenesis, invasion, metastasis and, immune system response. Based on the results of the present study and due to the contribution of cannabinoids in various cancer cell growth control processes, these compounds cancer can be considered worthwhile in finding new alternatives for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Hosami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Kienzl M, Hasenoehrl C, Maitz K, Sarsembayeva A, Taschler U, Valadez-Cosmes P, Kindler O, Ristic D, Raftopoulou S, Santiso A, Bärnthaler T, Brcic L, Hahnefeld L, Gurke R, Thomas D, Geisslinger G, Kargl J, Schicho R. Monoacylglycerol lipase deficiency in the tumor microenvironment slows tumor growth in non-small cell lung cancer. Oncoimmunology 2021; 10:1965319. [PMID: 34527428 PMCID: PMC8437460 DOI: 10.1080/2162402x.2021.1965319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Monoacylglycerol lipase (MGL) expressed in cancer cells influences cancer pathogenesis but the role of MGL in the tumor microenvironment (TME) is less known. Using a syngeneic tumor model with KP cells (KrasLSL-G12D/p53fl/fl; from mouse lung adenocarcinoma), we investigated whether TME-expressed MGL plays a role in tumor growth of non-small cell lung cancer (NSCLC). In sections of human and experimental NSCLC, MGL was found in tumor cells and various cells of the TME including macrophages and stromal cells. Mice treated with the MGL inhibitor JZL184 as well as MGL knock-out (KO) mice exhibited a lower tumor burden than the controls. The reduction in tumor growth was accompanied by an increased number of CD8+ T cells and eosinophils. Naïve CD8+ T cells showed a shift toward more effector cells in MGL KOs and an increased expression of granzyme-B and interferon-γ, indicative of enhanced tumoricidal activity. 2-arachidonoyl glycerol (2-AG) was increased in tumors of MGL KO mice, and dose-dependently induced differentiation and migration of CD8+ T cells as well as migration and activation of eosinophils in vitro. Our results suggest that next to cancer cell-derived MGL, TME cells expressing MGL are responsible for maintaining a pro-tumorigenic environment in tumors of NSCLC.
Collapse
Affiliation(s)
- Melanie Kienzl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Carina Hasenoehrl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Kathrin Maitz
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Arailym Sarsembayeva
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute Of Molecular Biosciences, University Of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Oliver Kindler
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Dusica Ristic
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Ana Santiso
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic And Research Institute Of Pathology, Medical University Of Graz, Graz, Austria
| | - Lisa Hahnefeld
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Robert Gurke
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute For Translational Medicine And Pharmacology ITMP, Frankfurt, Germany
| | - Dominique Thomas
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute For Translational Medicine And Pharmacology ITMP, Frankfurt, Germany
| | - Julia Kargl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Rudolf Schicho
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
25
|
Teodoro R, Gündel D, Deuther-Conrad W, Ueberham L, Toussaint M, Bormans G, Brust P, Moldovan RP. Development of [ 18F]LU14 for PET Imaging of Cannabinoid Receptor Type 2 in the Brain. Int J Mol Sci 2021; 22:ijms22158051. [PMID: 34360817 PMCID: PMC8347709 DOI: 10.3390/ijms22158051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Daniel Gündel
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Lea Ueberham
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium;
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
- Correspondence: ; Tel.: +49-3412-3417-94634
| |
Collapse
|
26
|
Cannabinoid-based therapy as a future for joint degeneration. Focus on the role of CB 2 receptor in the arthritis progression and pain: an updated review. Pharmacol Rep 2021; 73:681-699. [PMID: 34050525 PMCID: PMC8180479 DOI: 10.1007/s43440-021-00270-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Over the last several decades, the percentage of patients suffering from different forms of arthritis has increased due to the ageing population and the increasing risk of civilization diseases, e.g. obesity, which contributes to arthritis development. Osteoarthritis and rheumatoid arthritis are estimated to affect 50-60% of people over 65 years old and cause serious health and economic problems. Currently, therapeutic strategies are limited and focus mainly on pain attenuation and maintaining joint functionality. First-line therapies are nonsteroidal anti-inflammatory drugs; in more advanced stages, stronger analgesics, such as opioids, are required, and in the most severe cases, joint arthroplasty is the only option to ensure joint mobility. Cannabinoids, both endocannabinoids and synthetic cannabinoid receptor (CB) agonists, are novel therapeutic options for the treatment of arthritis-associated pain. CB1 receptors are mainly located in the nervous system; thus, CB1 agonists induce many side effects, which limit their therapeutic efficacy. On the other hand, CB2 receptors are mainly located in the periphery on immune cells, and CB2 modulators exert analgesic and anti-inflammatory effects in vitro and in vivo. In the current review, novel research on the cannabinoid-mediated analgesic effect on arthritis is presented, with particular emphasis on the role of the CB2 receptor in arthritis-related pain and the suppression of inflammation.
Collapse
|
27
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
28
|
Gruber T, Robatel S, Kremenovic M, Bäriswyl L, Gertsch J, Schenk M. Cannabinoid Receptor Type-2 in B Cells Is Associated with Tumor Immunity in Melanoma. Cancers (Basel) 2021; 13:cancers13081934. [PMID: 33923757 PMCID: PMC8073134 DOI: 10.3390/cancers13081934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In this study we investigated the role of cannabinoid receptor 2 (CB2R) on immune cells in melanoma and found significantly improved overall survival in patients with high intra-tumoral CB2R gene expression. In human melanoma, CB2R is predominantly expressed in B cells, as shown using a previously published single-cell RNA sequencing (scRNA-seq) dataset and by performing RNAscope. In a murine melanoma model, tumor growth was enhanced in CB2R-deficient mice. In-depth analysis of tumor-infiltrating lymphocytes using scRNA-seq showed less differentiated B cells in CB2R-deficient tumors, favoring the induction of regulatory T cells (Treg) and an immunosuppressive tumor microenvironment. Taken together, these data indicate a central role of CB2R on B cells in regulating tumor immunity. These results contribute to the understanding of the role of CB2R in tumor immunity and facilitate the development of new CB2R-targeted anti-cancer drugs. Abstract Agents targeting the endocannabinoid system (ECS) have gained attention as potential cancer treatments. Given recent evidence that cannabinoid receptor 2 (CB2R) regulates lymphocyte development and inflammation, we performed studies on CB2R in the immune response against melanoma. Analysis of The Cancer Genome Atlas (TCGA) data revealed a strong positive correlation between CB2R expression and survival, as well as B cell infiltration in human melanoma. In a murine melanoma model, CB2R expression reduced the growth of melanoma as well as the B cell frequencies in the tumor microenvironment (TME), compared to CB2R-deficient mice. In depth analysis of tumor-infiltrating B cells using single-cell RNA sequencing suggested a less differentiated phenotype in tumors from Cb2r−/− mice. Thus, in this study, we demonstrate for the first time a protective, B cell-mediated role of CB2R in melanoma. This gained insight might assist in the development of novel, CB2R-targeted cancer therapies.
Collapse
Affiliation(s)
- Thomas Gruber
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Steve Robatel
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Mirela Kremenovic
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Lukas Bäriswyl
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland;
| | - Mirjam Schenk
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Correspondence: ; Tel.: +41-31-632-88-02
| |
Collapse
|
29
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
30
|
Lee XC, Werner E, Falasca M. Molecular Mechanism of Autophagy and Its Regulation by Cannabinoids in Cancer. Cancers (Basel) 2021; 13:cancers13061211. [PMID: 33802014 PMCID: PMC7999886 DOI: 10.3390/cancers13061211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This review examines the complex function of autophagy in malignancy and explores its regulation by cannabinoids in different cancers. Autophagy is an important process in the maintenance of cellular homeostasis, through the degradation and recycling of cytoplasmic constituents. The action of autophagy is highly dependent on tumour stage and type and the receptors with which ligands interact. Cannabinoids are growingly being acknowledged for their anticancer activities and are known to stimulate several mechanisms such as apoptosis and autophagy. Better understanding the mechanism of action behind autophagy and its regulation by cannabinoids will allow the development of novel cancer therapeutics. Abstract Autophagy is a “self-degradation” process whereby malfunctioned cytoplasmic constituents and protein aggregates are engulfed by a vesicle called the autophagosome, and subsequently degraded by the lysosome. Autophagy plays a crucial role in sustaining protein homeostasis and can be an alternative source of energy under detrimental circumstances. Studies have demonstrated a paradoxical function for autophagy in cancer, displaying both tumour suppressive and tumour promotive roles. In early phases of tumour development autophagy promotes cancer cell death. In later phases, autophagy enables cancer cells to survive and withstand therapy. Cannabinoids, which are derivatives of the Cannabis sativa L. plant, have shown to be associated with autophagy induction in cells. There is an emerging interest in studying the signalling pathways involved in cannabinoid-induced autophagy and their potential application in anticancer therapies. In this review, the molecular mechanisms involved in the autophagy degradation process will be discussed. This review also highlights a role for autophagy in cancer progression, with cannabinoid-induced autophagy presenting a novel strategy for anticancer therapy.
Collapse
|