1
|
Xiong Y, Guo J, Yu W, Zeng D, Song C, Zhou L, Anatolyevna NL, Baranenko D, Xiao D, Zhou Y, Lu W. Molecular Mechanism of Microgravity-Induced Intestinal Flora Dysbiosis on the Abnormalities of Liver and Brain Metabolism. Int J Mol Sci 2025; 26:3094. [PMID: 40243802 PMCID: PMC11988970 DOI: 10.3390/ijms26073094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Space flight has many adverse effects on the physiological functions of astronauts. Certain similarities have been observed in some physiological processes of rodents and astronauts in space, although there are also differences. These similarities make rodents helpful models for initial investigations into space-induced physiological changes. This study uses a 3D-Clinostat to simulate microgravity and explores the role of microgravity in space flight-induced liver and brain abnormalities by comparing changes in the gut microbiota, serum metabolites, and the function and physiological biochemistry of liver and brain tissues between the simulated microgravity (SMG) group mice and the wild type (WT) group mice. The study, based on hematoxylin-eosin (HE) staining, 16S sequencing technology, and non-targeted metabolomics analysis, shows that the gut tissue morphology of the SMG group mice is abnormal, and the structure of the gut microbiota and the serum metabolite profile are imbalanced. Furthermore, using PICRUST 2 technology, we have predicted the functions of the gut microbiota and serum metabolites, and the results indicate that the liver metabolism and functions (including lipid metabolism, amino acid metabolism, and sugar metabolism, etc.) of the SMG group mice are disrupted, and the brain tissue metabolism and functions (including neurotransmitters and hormone secretion, etc.) are abnormal, suggesting a close relationship between microgravity and liver metabolic dysfunction and brain dysfunction. Additionally, the high similarity in the structure of the gut microbiota and serum metabolite profile between the fecal microbiota transplant (FMT) group mice and the SMG group mice, and the physiological and biochemical differences in liver and brain tissues compared to the WT group mice, suggest that microgravity induces imbalances in the gut microbiota, which in turn triggers abnormalities in liver and brain metabolism and function. Finally, through MetaMapp analysis and Pearson correlation analysis, we found that valeric acid, a metabolite of gut microbiota, is more likely to be the key metabolite that relates to microgravity-induced gut microbiota abnormalities, disorders of amino acid and lipid metabolism, and further induced metabolic or functional disorders in the liver and brain. This study has significant practical application value for deepening the understanding of the adaptability of living organisms in the space environment.
Collapse
Affiliation(s)
- Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.X.)
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Jianguo Guo
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.X.)
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Deyong Zeng
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Chenchen Song
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Li Zhou
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Nadtochii Liudmila Anatolyevna
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Life Sciences, International Research Centre Biotechnologies of the Third Millennium, ITMO University, St. Petersburg 197101, Russia
| | - Denis Baranenko
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Life Sciences, International Research Centre Biotechnologies of the Third Millennium, ITMO University, St. Petersburg 197101, Russia
| | - Dan Xiao
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Yingyu Zhou
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
Liu Y, Cao X, Zhou Q, Deng C, Yang Y, Huang D, Luo H, Zhang S, Li Y, Xu J, Chen H. Mechanisms and Countermeasures for Muscle Atrophy in Microgravity. Cells 2024; 13:2120. [PMID: 39768210 PMCID: PMC11727360 DOI: 10.3390/cells13242120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Previous studies have revealed that muscle atrophy emerges as a significant challenge faced by astronauts during prolonged missions in space. A loss in muscle mass results in a weakening of skeletal muscle strength and function, which will not only contribute to a decline in overall physical performance but also elevate the risk of various age-related diseases. Skeletal muscle atrophy in the microgravity environment is thought to be associated with changes in energy metabolism, protein metabolism, calcium ion homeostasis, myostatin levels, and apoptosis. Modulating some pathways could be a promising approach to mitigating muscle atrophy in the microgravity environment. This review serves as a comprehensive summary of research on the impact of microgravity on skeletal muscle, with the aim of providing insights into its pathogenesis and the development of effective treatments.
Collapse
Affiliation(s)
- Yizhou Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Yujie Yang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Danxia Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Hongmei Luo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.L.); (X.C.); (Q.Z.); (C.D.); (Y.Y.); (D.H.); (H.L.); (S.Z.); (Y.L.); (J.X.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Manna OM, Burgio S, Picone D, Carista A, Pitruzzella A, Fucarino A, Bucchieri F. Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. BIOLOGY 2024; 13:921. [PMID: 39596876 PMCID: PMC11591694 DOI: 10.3390/biology13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
In recent years, the increasing number of long-duration space missions has prompted the scientific community to undertake a more comprehensive examination of the impact of microgravity on the human body during spaceflight. This review aims to assess the current knowledge regarding the consequences of exposure to an extreme environment, like microgravity, on the human body, focusing on the role of heat-shock proteins (HSPs). Previous studies have demonstrated that long-term exposure to microgravity during spaceflight can cause various changes in the human body, such as muscle atrophy, changes in muscle fiber composition, cardiovascular function, bone density, and even immune system functions. It has been postulated that heat-shock proteins (HSPs) may play a role in mitigating the harmful effects of microgravity-induced stress. According to past studies, heat-shock proteins (HSPs) are upregulated under simulated microgravity conditions. This upregulation assists in the maintenance of the proper folding and function of other proteins during stressful conditions, thereby safeguarding the physiological systems of organisms from the detrimental effects of microgravity. HSPs could also be used as biomarkers to assess the level of cellular stress in tissues and cells exposed to microgravity. Therefore, modulation of HSPs by drugs and genetic or environmental techniques could prove to be a potential therapeutic strategy to reduce the negative physiological consequences of long-duration spaceflight in astronauts.
Collapse
Affiliation(s)
- Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Stefano Burgio
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
| | - Domiziana Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Adelaide Carista
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Pitruzzella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Kim SC, Kim MJ, Park JW, Shin YK, Jeong SY, Kim S, Ku JL. Effects of simulated microgravity on colorectal cancer organoids growth and drug response. Sci Rep 2024; 14:25526. [PMID: 39462078 PMCID: PMC11514040 DOI: 10.1038/s41598-024-76737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cellular and molecular dynamics of human cells are constantly affected by gravity. Alteration of the gravitational force disturbs the cellular equilibrium, which might modify physiological and molecular characteristics. Nevertheless, biological responses of cancer cells to reduced gravitational force remains obscure. Here, we aimed to comprehend not only transcriptomic patterns but drug responses of colorectal cancer (CRC) under simulated microgravity. We established four organoids directly from CRC patients, and organoids cultured in 3D clinostat were subjected to genome wide expression profiling and drug library screening. Our observations revealed changes in cell morphology and an increase in cell viability under simulated microgravity compared to their static controls. Transcriptomic analysis highlighted a significant dysregulation in the TBC1D3 family of genes. The upregulation of cell proliferation observed under simulated microgravity conditions was further supported by enriched cell cycle processes, as evidenced by the functional clustering of mRNA expressions using cancer hallmark and gene ontology terms. Our drug screening results indicated an enhanced response rate to 5-FU under conditions of simulated microgravity, suggesting potential implications for cancer treatment strategies in simulated microgravity.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Min Jung Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Young-Kyoung Shin
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
6
|
Abdelfattah F, Schulz H, Wehland M, Corydon TJ, Sahana J, Kraus A, Krüger M, González-Torres LF, Cortés-Sánchez JL, Wise PM, Mushunuri A, Hemmersbach R, Liemersdorf C, Infanger M, Grimm D. Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:10014. [PMID: 39337501 PMCID: PMC11431953 DOI: 10.3390/ijms251810014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
The primary objective of omics in space with focus on the human organism is to characterize and quantify biological factors that alter structure, morphology, function, and dynamics of human cells exposed to microgravity. This review discusses exciting data regarding genomics, transcriptomics, epigenomics, metabolomics, and proteomics of human cells and individuals in space, as well as cells cultured under simulated microgravity. The NASA Twins Study significantly heightened interest in applying omics technologies and bioinformatics in space and terrestrial environments. Here, we present the available publications in this field with a focus on specialized cells and stem cells exposed to real and simulated microgravity conditions. We summarize current knowledge of the following topics: (i) omics studies on stem cells, (ii) omics studies on benign specialized different cell types of the human organism, (iii) discussing the advantages of this knowledge for space commercialization and exploration, and (iv) summarizing the emerging opportunities for translational regenerative medicine for space travelers and human patients on Earth.
Collapse
Affiliation(s)
- Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Luis Fernando González-Torres
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Ashwini Mushunuri
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Ruth Hemmersbach
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
7
|
Mizoguchi Y, Kamimura M, Kitabatake K, Uchiumi F, Aoki S, Tsukimoto M. Changing the gravity vector direction by inverted culture enhances radiation-induced cell damage. Biochem Biophys Rep 2024; 39:101792. [PMID: 39149414 PMCID: PMC11325285 DOI: 10.1016/j.bbrep.2024.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
In recent years, it has become clear that the cytotoxicity of γ-irradiation of cells is increased under microgravity conditions. However, there has been no study of the effect of the gravity vector direction, rather than the magnitude, on γ-ray-induced cytotoxicity. Therefore, in this study, we inverted cultures of human bronchial epithelium BEAS-2B cells and human lung cancer A549 cells in order to change the gravity vector direction by 180° with respect to the cells and observed the cellular response to radiation in this state. We found that cells in inverted culture showed increased irradiation-induced production of reactive oxygen species and decreased expression of the antioxidant protein thioredoxin-1 compared to cells in normal culture. Furthermore, the DNA damage response was delayed in γ-irradiated cells in inverted culture, and the number of unrepaired DNA sites was increased, compared to irradiated cells in normal culture. γ-Ray-induced cell death and the number of G2-M arrested cells were increased in inverted culture, in accordance with the decreased capacity for DNA repair. Our findings suggest that the gravity vector direction, as well as its magnitude, alters the cellular response to radiation.
Collapse
Affiliation(s)
- Yuma Mizoguchi
- Department of Radiation Biosciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Masao Kamimura
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Shin Aoki
- Department of Bioorganic and Bioinorganic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| |
Collapse
|
8
|
Mišković V, Greco I, Minetti C, Cialdai F, Monici M, Gazzi A, Marcellino J, Samad YA, Delogu LG, Ferrari AC, Iorio CS. Hydrogel mechanical properties in altered gravity. NPJ Microgravity 2024; 10:83. [PMID: 39117674 PMCID: PMC11310329 DOI: 10.1038/s41526-024-00388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/21/2024] [Indexed: 08/10/2024] Open
Abstract
Exposure to altered gravity influences cellular behaviour in cell cultures. Hydrogels are amongst the most common materials used to produce tissue-engineering scaffolds, and their mechanical properties play a crucial role in cell-matrix interaction. However, little is known about the influence of altered gravity on hydrogel properties. Here we study the mechanical properties of Poly (ethylene glycol) diacrylate (PEGDA) and PEGDA incorporated with graphene oxide (GO) by performing tensile tests in micro and hypergravity during a Parabolic flight campaign, and by comparing them to the same tests performed in Earth gravity. We show that gravity levels do not result in a statistically significant difference in Young's modulus.
Collapse
Affiliation(s)
- Vanja Mišković
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Immacolata Greco
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Christophe Minetti
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences « Mario Serio », University of Florence, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences « Mario Serio », University of Florence, Florence, Italy
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Yarjan Abdul Samad
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Aerospace Engineering, Khalifa university of Science and Technology, Abu Dhabi, 127788, UAE
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Biological Science, Khalifa university of Science and Technology, Abu Dhabi, UAE
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Carlo Saverio Iorio
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
9
|
Hussain I, Ullah R, Simran BFNU, Kaur P, Kumar M, Raj R, Faraz M, Mehmoodi A, Malik J. Cardiovascular effects of long-duration space flight. Health Sci Rep 2024; 7:e2305. [PMID: 39135704 PMCID: PMC11318032 DOI: 10.1002/hsr2.2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/10/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Early studies exploring the physiological effects of space travel have indicated the body's capacity for reversible adaptation. However, the impact of long-duration spaceflight, exceeding 6 months, presents more intricate challenges. Effects on the Cardiovascular CV System Extended exposure to microgravity and radiation profoundly affects the CV system. Notable phenomena include fluid shifts toward the head and modified arterial pressure. These changes disrupt blood pressure regulation and elevate cardiac output. Additionally, the loss of venous compression leads to a reduction in central venous pressure. Fluid and Plasma Volume Changes The displacement of fluid from the vascular system to the interstitium, driven by baroreceptor stimulation, results in a 10%-15% decline in plasma volume. Cardiac Muscle and Hematocrit Variations Intriguingly, despite potential increases in cardiac workload, cardiac muscle atrophy and perplexing variations in hematocrit levels have been observed. The mechanism underlying atrophy appears to involve a shift in protein synthesis from the endoplasmic reticulum to the mitochondria via mortalin-mediated mechanisms. Arrhythmias and QT Interval Prolongation Instances of arrhythmias have been recurrently documented, although generally nonlethal, in both Russian and American space missions. Long-duration spaceflight has been associated with the prolongation of the QT interval, particularly in extended missions. Radiation Effects Exposure of the heart to the proton and heavy ion radiation pervasive in deep space contributes to coronary artery degeneration, augmented aortic stiffness, and carotid intima thickening through collagen-mediated processes. Moreover, it accelerates the onset of atherosclerosis and triggers proinflammatory responses. Reentry and Postflight Challenges Upon reentry, astronauts frequently experience orthostatic intolerance and altered sympathetic responses, which bear potential hazards in scenarios requiring rapid mobilization or evacuation. Conclusion Consequently, careful monitoring of these cardiac risks is imperative for forthcoming missions. While early studies illuminate the adaptability of the body to space travel's challenges, the intricacies of long-duration missions and their effects on the CV system necessitate continued investigation and vigilance to ensure astronaut health and mission success.
Collapse
Affiliation(s)
- Iqbal Hussain
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Rehmat Ullah
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | | | - Parvinder Kaur
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Mahendra Kumar
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Rohan Raj
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Maria Faraz
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| | - Amin Mehmoodi
- Department of MedicineIbn e Seena HospitalKabulAfghanistan
| | - Jahanzeb Malik
- Department of Cardiovascular MedicineCardiovascular Analytics GroupIslamabadPakistan
| |
Collapse
|
10
|
Jeyaraman M, Ramasubramanian S, Yadav S, Jeyaraman N. Exploring New Horizons: Advancements in Cartilage Tissue Engineering Under Space Microgravity. Cureus 2024; 16:e66224. [PMID: 39238750 PMCID: PMC11374578 DOI: 10.7759/cureus.66224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Novel investigations of how microgravity affects cellular and tissue development have recently been made possible by the multidisciplinary fusion of tissue engineering and space science. This review examines the intersection of cartilage tissue engineering (CTE) and space science, focusing on how microgravity affects cartilage development. Space microgravity induces distinct physiological changes in chondrocytes, including a 20-30% increase in cell diameter, a 1.5- to 2-fold increase in proliferation rates, and up to 3-fold increases in chondrogenic markers such as SOX9 and collagen type II. These cellular alterations impact extracellular matrix composition and tissue structure. Space-optimized bioreactors using dynamic culture methods replicate physiological conditions and enhance tissue growth, but the absence of gravity raises concerns about the mechanical properties of engineered cartilage. Key research areas include the role of growth factors in cartilage development under microgravity, biocompatibility and degradation of scaffold materials in space, and in situ experiments on space stations. This review highlights the opportunities and challenges in leveraging microgravity for CTE advancements, emphasizing the need for continued research to harness space environments for therapeutic applications in cartilage regeneration. The multidisciplinary fusion of tissue engineering and space science opens novel avenues for understanding and improving cartilage tissue engineering, with significant implications for the future of biomedical applications in space and on Earth.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Clinical Research, Virginia Tech India, Dr MGR Educational and Research Institute, Chennai, IND
- Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| | | | - Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| |
Collapse
|
11
|
Sokolovskaya AA, Sergeeva EA, Metelkin AA, Popov MA, Zakharova IA, Morozov SG. The Expression of Cell Cycle Cyclins in a Human Megakaryoblast Cell Line Exposed to Simulated Microgravity. Int J Mol Sci 2024; 25:6484. [PMID: 38928190 PMCID: PMC11203866 DOI: 10.3390/ijms25126484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The study of the physiological and pathophysiological processes under extreme conditions facilitates a better understanding of the state of a healthy organism and can also shed light on the pathogenesis of diseases. In recent years, it has become evident that gravitational stress affects both the whole organism and individual cells. We have previously demonstrated that simulated microgravity inhibits proliferation, induces apoptosis, changes morphology, and alters the surface marker expression of megakaryoblast cell line MEG-01. In the present work, we investigate the expression of cell cycle cyclins in MEG-01 cells. We performed several experiments for 24 h, 72 h, 96 h and 168 h. Flow cytometry and Western blot analysis demonstrated that the main change in the levels of cyclins expression occurs under conditions of simulated microgravity after 96 h. Thus, the level of cyclin A expression showed an increase in the RPM group during the first 4 days, followed by a decrease, which, together with the peak of cyclin D, may indicate inhibition of the cell cycle in the G2 phase, before mitosis. In addition, based on the data obtained by PCR analysis, we were also able to see that both cyclin A and cyclin B expression showed a peak at 72 h, followed by a gradual decrease at 96 h. STED microscopy data also confirmed that the main change in cyclin expression of MEG-01 cells occurs at 96 h, under simulated microgravity conditions, compared to static control. These results suggested that the cell cycle disruption induced by RPM-simulated microgravity in MEG-01 cells may be associated with the altered expression of the main regulators of the cell cycle. Thus, these data implicate the development of cellular stress in MEG-01 cells, which may be important for proliferating human cells exposed to microgravity in real space.
Collapse
Affiliation(s)
- Alisa A. Sokolovskaya
- Department of Molecular and Cellular Pathophysiology, Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (E.A.S.); (A.A.M.); (M.A.P.); (I.A.Z.); (S.G.M.)
| | | | | | | | | | | |
Collapse
|
12
|
Seylani A, Galsinh AS, Tasoula A, I AR, Camera A, Calleja-Agius J, Borg J, Goel C, Kim J, Clark KB, Das S, Arif S, Boerrigter M, Coffey C, Szewczyk N, Mason CE, Manoli M, Karouia F, Schwertz H, Beheshti A, Tulodziecki D. Ethical considerations for the age of non-governmental space exploration. Nat Commun 2024; 15:4774. [PMID: 38862473 PMCID: PMC11166968 DOI: 10.1038/s41467-023-44357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/05/2023] [Indexed: 06/13/2024] Open
Abstract
Mounting ambitions and capabilities for public and private, non-government sector crewed space exploration bring with them an increasingly diverse set of space travelers, raising new and nontrivial ethical, legal, and medical policy and practice concerns which are still relatively underexplored. In this piece, we lay out several pressing issues related to ethical considerations for selecting space travelers and conducting human subject research on them, especially in the context of non-governmental and commercial/private space operations.
Collapse
Affiliation(s)
- Allen Seylani
- School of Medicine, University of California, Riverside. 92521 Botanical Garden Dr, Riverside, CA, 92507, USA
| | - Aman Singh Galsinh
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Alexia Tasoula
- Department of Life Science Engineering, FH Technikum, Vienna, Austria
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Anu R I
- Department of Cancer Biology and Therapeutics, MVR Cancer Centre and Research Institute, Calicut, India
- Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, India
| | - Andrea Camera
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD2080, Msida, Malta
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, MSD2080, Msida, Malta
| | - Chirag Goel
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - JangKeun Kim
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Kevin B Clark
- Cures Within Reach, Chicago, IL, 60602, USA
- Peace Innovation Institute, The Hague 2511, Netherlands & Stanford University, Palo Alto, CA, 94305, USA
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers, New York, NY, 10016-5997, USA
| | - Saswati Das
- Department of Biochemistry, Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Caroline Coffey
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Nathaniel Szewczyk
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Christopher E Mason
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Maria Manoli
- School of Law, University of Aberdeen, Aberdeen, AB24 3UB, UK
| | - Fathi Karouia
- Blue Marble Space Institute for Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hansjörg Schwertz
- Molecular Medicine Program at the University of Utah, Salt Lake City, UT, 84112, USA.
- Division of Occupational Medicine at the University of Utah, Salt Lake City, UT, 84112, USA.
- Occupational Medicine at Billings Clinic Bozeman, Bozeman, MT, 59715, USA.
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, US.
| | - Dana Tulodziecki
- Department of Philosophy, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
13
|
Lang A, Binneboessel S, Nienhaus F, Bruno RR, Wolff G, Piayda K, Pfeiler S, Ezzahoini H, Oehler D, Kelm M, Winkels H, Gerdes N, Jung C. Acute and short-term fluctuations in gravity are associated with changes in circulatory plasma protein levels. NPJ Microgravity 2024; 10:25. [PMID: 38438462 PMCID: PMC10912449 DOI: 10.1038/s41526-024-00370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Gravitational changes between micro- and hypergravity cause several adaptations and alterations in the human body. Besides muscular atrophy and immune system impairment, effects on the circulatory system have been described, which can be associated with a wide range of blood biomarker changes. This study examined nine individuals (seven males, two females) during a parabolic flight campaign (PFC). Thirty-one parabolas were performed in one flight day, resulting in ~22 s of microgravity during each parabola. Each participant was subjected to a single flight day with a total of 31 parabolas, totaling 11 min of microgravity during one parabolic flight. Before and after (1 hour (h) and 24 h), the flights blood was sampled to examine potential gravity-induced changes of circulating plasma proteins. Proximity Extension Assay (PEA) offers a proteomic solution, enabling the simultaneous analysis of a wide variety of plasma proteins. From 2925 unique proteins analyzed, 251 (8.58%) proteins demonstrated a differential regulation between baseline, 1 h and 24 h post flight. Pathway analysis indicated that parabolic flights led to altered levels of proteins associated with vesicle organization and apoptosis up to 24 h post microgravity exposure. Varying gravity conditions are associated with poorly understood physiological changes, including stress responses and fluid shifts. We provide a publicly available library of gravity-modulated circulating protein levels illustrating numerous changes in cellular pathways relevant for inter-organ function and communication.
Collapse
Affiliation(s)
- Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Stephan Binneboessel
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Fabian Nienhaus
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Raphael Romano Bruno
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Georg Wolff
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Kerstin Piayda
- Department of Cardiology and Vascular Medicine, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hakima Ezzahoini
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Daniel Oehler
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Holger Winkels
- Clinic III for Internal Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
14
|
Singh R, Jaiswal A, Singh RP. Simulated microgravity induces DNA damage concurrent with impairment of DNA repair and activation of cell-type specific DNA damage response in microglial and glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119679. [PMID: 38272357 DOI: 10.1016/j.bbamcr.2024.119679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Long-term spaceflights affect the structural changes in brain, alter motor or cognitive function and associated development of neuro-optic syndrome in astronauts. Studies addressing the impact of microgravity on brain cells are very limited. Herein, we employed microglial (CHME3) and glioblastoma (U87MG and A172) cells to study their molecular and functional adaptations under simulated microgravity (SMG) exposure. A reduction in cell viability and proliferation with decreased levels of PCNA were observed in these cells. SMG caused extensive DNA damage with an increase in γH2A.X (ser139) phosphorylation and differential activation/expression of DNA damage response (DDR) proteins including ATM, ATR, Chk1, Chk2 and p53 in all the three cell lines. Unlike CHME3, the ATM/Chk2-dependent DDR pathway was activated in glioblastoma cells suggesting a marked difference in the adaptation between normal and cancer cells to SMG. Five different classes of DNA repair pathways including BER, NER, MMR, NHEJ and HR were suppressed in both cell lines with the notable exception of NHEJ (Ku70/80 and DNA-PK) activation in U87MG cells. SMG induced mitochondrial apoptosis with increased expression of Bax, cleaved caspase-3 and cleaved poly-(ADP-ribose) polymerase, and reduced Bcl-2 level. SMG triggered apoptosis simultaneously via ERK1/2 and AKT activation, and inhibition of GSK3β activity which was reversed by MEK1 and PI3K inhibitors. Taken together, our study revealed that microgravity is a strong stressor to trigger DNA damage and apoptosis through activation of ERK1/2 and AKT, and impairment of DNA repair capacity, albeit with a cell-type difference in DDR and NHEJ regulation, in microglial and glioblastoma cells.
Collapse
Affiliation(s)
- Ragini Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aishwarya Jaiswal
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
15
|
Yin Y, Yang J, Gao G, Zhou H, Chi B, Yang HY, Li J, Wang Y. Enhancing cell-scale performance via sustained release of the varicella-zoster virus antigen from a microneedle patch under simulated microgravity. Biomater Sci 2024; 12:763-775. [PMID: 38164004 DOI: 10.1039/d3bm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The immune system of astronauts might become weakened in the microgravity environment in space, and the dormant varicella-zoster virus (VZV) in the body might be reactivated, seriously affecting their work and safety. For working in orbit for the long term, there is currently no efficient and durable delivery system of general vaccines in a microgravity environment. Accordingly, based on the previous foundation, we designed, modified, and synthesized a biodegradable and biocompatible copolymer, polyethylene glycol-polysulfamethazine carbonate urethane (PEG-PSCU) that could be mainly adopted to fabricate a novel sustained-release microneedle (S-R MN) patch. Compared with conventional biodegradable microneedles, this S-R MN patch could not only efficiently encapsulate protein vaccines (varicella-zoster virus glycoprotein E, VZV gE) but also further prolong the release time of VZV gE in a simulated microgravity (SMG) environment. Eventually, we verified the activation of dendritic cells by VZV gE released from the S-R MN patch in an SMG environment and the positive bioeffect of activated dendritic cells on lymphocytes using an in vitro lymph node model. This study is of great significance for the exploration of long-term specific immune responses to the VZV in an SMG environment.
Collapse
Affiliation(s)
- Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Junyuan Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
16
|
Samoilenko T, Shishkina V, Antakova L, Goryushkina Y, Kostin A, Buchwalow I, Tiemann M, Atiakshin D. Smooth Muscle Actin as a Criterion for Gravisensitivity of Stomach and Jejunum in Laboratory Rodents. Int J Mol Sci 2023; 24:16539. [PMID: 38003728 PMCID: PMC10671600 DOI: 10.3390/ijms242216539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Smooth muscle tissue (SMT) is one of the main structural components of visceral organs, acting as a key factor in the development of adaptive and pathological conditions. Despite the crucial part of SMT in the gastrointestinal tract activity, the mechanisms of its gravisensitivity are still insufficiently studied. The study evaluated the content of smooth muscle actin (α-SMA) in the membranes of the gastric fundus and jejunum in C57BL/6N mice (30-day space flight), in Mongolian gerbils Meriones unguiculatus (12-day orbital flight) and after anti-orthostatic suspension according to E.R. Morey-Holton. A morphometric analysis of α-SMA in the muscularis externa of the stomach and jejunum of mice and Mongolian gerbils from space flight groups revealed a decreased area of the immunopositive regions, a fact indicating a weakening of the SMT functional activity. Gravisensitivity of the contractile structures of the digestive system may be due to changes in the myofilament structural components of the smooth myocytes or myofibroblast actin. A simulated antiorthostatic suspension revealed no significant changes in the content of the α-SMA expression level, a fact supporting an alteration in the functional properties of the muscularis externa of the digestive hollow organs under weightless environment. The data obtained contribute to the novel mechanisms of the SMT contractile apparatus remodeling during orbital flights and can be used to improve preventive measures in space biomedicine.
Collapse
Affiliation(s)
- Tatyana Samoilenko
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
| | - Lyubov Antakova
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
| | - Yelena Goryushkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia
- Institute for Hematopathology, 22547 Hamburg, Germany
| | | | - Dmitrii Atiakshin
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospekt 189a, 394036 Voronezh, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia
| |
Collapse
|
17
|
Ratushnyy AY, Buravkova LB. Microgravity Effects and Aging Physiology: Similar Changes or Common Mechanisms? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1763-1777. [PMID: 38105197 DOI: 10.1134/s0006297923110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Despite the use of countermeasures (including intense physical activity), cosmonauts and astronauts develop muscle atony and atrophy, cardiovascular system failure, osteopenia, etc. All these changes, reminiscent of age-related physiological changes, occur in a healthy person in microgravity quite quickly - within a few months. Adaptation to the lost of gravity leads to the symptoms of aging, which are compensated after returning to Earth. The prospect of interplanetary flights raises the question of gravity thresholds, below which the main physiological systems will decrease their functional potential, similar to aging, and affect life expectancy. An important role in the aging process belongs to the body's cellular reserve - progenitor cells, which are involved in physiological remodeling and regenerative/reparative processes of all physiological systems. With age, progenitor cell count and their regenerative potential decreases. Moreover, their paracrine profile becomes pro-inflammatory during replicative senescence, disrupting tissue homeostasis. Mesenchymal stem/stromal cells (MSCs) are mechanosensitive, and therefore deprivation of gravitational stimulus causes serious changes in their functional status. The review compares the cellular effects of microgravity and changes developing in senescent cells, including stromal precursors.
Collapse
Affiliation(s)
- Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| | - Ludmila B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| |
Collapse
|
18
|
Song C, Kang T, Gao K, Shi X, Zhang M, Zhao L, Zhou L, Guo J. Preparation for mice spaceflight: Indications for training C57BL/6J mice to adapt to microgravity effect with three-dimensional clinostat on the ground. Heliyon 2023; 9:e19355. [PMID: 37662714 PMCID: PMC10472007 DOI: 10.1016/j.heliyon.2023.e19355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Like astronauts, animals need to undergo training and screening before entering space. At present, pre-launch training for mice mainly focuses on adaptation to habitat system. Training for the weightless environment of space in mice has not received much attention. Three-dimensional (3D) clinostat is a method to simulate the effects of microgravity on Earth. However, few studies have used a 3D clinostat apparatus to simulate the effects of microgravity on animal models. Therefore, we conducted a study to evaluate the feasibility and effects of long-term treatment with three-dimensional clinostat in C57BL/6 J mice. Thirty 8-week-old male C57BL/6 J mice were randomly assigned to three groups: mice in individually ventilated cages (MC group, n = 6), mice in survival boxes (SB group, n = 12), and mice in survival boxes receiving 3D clinostat treatment (CS group, n = 12). The mice showed good tolerance after 12 weeks of alternate day training. To evaluate the biological effects of simulated microgravity, the changes in serum metabolites were monitored using untargeted metabolomics, whereas bone loss was assessed using microcomputed tomography of the left femur. Compared with the metabolome of the SB group, the metabolome of the CS group showed significant differences during the first three weeks and the last three weeks. The KEGG pathways in the late stages were mainly related to the nervous system, indicating the influence of long-term microgravity on the central nervous system. Besides, a marked reduction in the trabecular number (P < 0.05) and an increasing trend of trabecular spacing (P < 0.1) were observed to occur in a time-dependent manner in the CS group compared with the SB group. These results showed that mice tolerated well in a 3D clinostat and may provide a new strategy in pre-launch training for mice and conducting relevant ground-based modeling experiments.
Collapse
Affiliation(s)
- Chenchen Song
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Taisheng Kang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kai Gao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xudong Shi
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Meng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lianlian Zhao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Li Zhou
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Guo
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Berardini M, Gesualdi L, Morabito C, Ferranti F, Reale A, Zampieri M, Karpach K, Tinari A, Bertuccini L, Guarnieri S, Catizone A, Mariggiò MA, Ricci G. Simulated Microgravity Exposure Induces Antioxidant Barrier Deregulation and Mitochondria Enlargement in TCam-2 Cell Spheroids. Cells 2023; 12:2106. [PMID: 37626916 PMCID: PMC10453291 DOI: 10.3390/cells12162106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
One of the hallmarks of microgravity-induced effects in several cellular models is represented by the alteration of oxidative balance with the consequent accumulation of reactive oxygen species (ROS). It is well known that male germ cells are sensitive to oxidative stress and to changes in gravitational force, even though published data on germ cell models are scarce. We previously studied the effects of simulated microgravity (s-microgravity) on a 2D cultured TCam-2 seminoma-derived cell line, considered the only human cell line available to study in vitro mitotically active human male germ cells. In this study, we used a corresponding TCam-2 3D cell culture model that mimics cell-cell contacts in organ tissue to test the possible effects induced by s-microgravity exposure. TCam-2 cell spheroids were cultured for 24 h under unitary gravity (Ctr) or s-microgravity conditions, the latter obtained using a random positioning machine (RPM). A significant increase in intracellular ROS and mitochondria superoxide anion levels was observed after RPM exposure. In line with these results, a trend of protein and lipid oxidation increase and increased pCAMKII expression levels were observed after RPM exposure. The ultrastructural analysis via transmission electron microscopy revealed that RPM-exposed mitochondria appeared enlarged and, even if seldom, disrupted. Notably, even the expression of the main enzymes involved in the redox homeostasis appears modulated by RPM exposure in a compensatory way, with GPX1, NCF1, and CYBB being downregulated, whereas NOX4 and HMOX1 are upregulated. Interestingly, HMOX1 is involved in the heme catabolism of mitochondria cytochromes, and therefore the positive modulation of this marker can be associated with the observed mitochondria alteration. Altogether, these data demonstrate TCam-2 spheroid sensitivity to acute s-microgravity exposure and indicate the capability of these cells to trigger compensatory mechanisms that allow them to overcome the exposure to altered gravitational force.
Collapse
Affiliation(s)
- Marika Berardini
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Section of Histology and Embryology, “Sapienza” University of Rome, 00161 Rome, Italy; (M.B.); (L.G.); (A.C.)
| | - Luisa Gesualdi
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Section of Histology and Embryology, “Sapienza” University of Rome, 00161 Rome, Italy; (M.B.); (L.G.); (A.C.)
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences-CAST, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (C.M.); (S.G.); (M.A.M.)
| | - Francesca Ferranti
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, 00133 Rome, Italy;
| | - Anna Reale
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.R.); (M.Z.); (K.K.)
| | - Michele Zampieri
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.R.); (M.Z.); (K.K.)
| | - Katsiaryna Karpach
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (A.R.); (M.Z.); (K.K.)
| | - Antonella Tinari
- Center for Gender-Specific Medicine, Gender Prevention and Health Section, ISS Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Lucia Bertuccini
- Core Facilities, ISS Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences-CAST, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (C.M.); (S.G.); (M.A.M.)
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Section of Histology and Embryology, “Sapienza” University of Rome, 00161 Rome, Italy; (M.B.); (L.G.); (A.C.)
| | - Maria A. Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences-CAST, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy; (C.M.); (S.G.); (M.A.M.)
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
20
|
Yau A, Jogdand A, Chen Y. Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth. FRONTIERS IN SPACE TECHNOLOGIES 2023; 4:1176943. [PMID: 38915909 PMCID: PMC11195916 DOI: 10.3389/frspt.2023.1176943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed.
Collapse
Affiliation(s)
| | | | - Yupeng Chen
- Nanomedicine Lab, Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
21
|
Mu Y, Wei D, Yao L, Xu X, Li S, Cao R, Chen T, Zhang Z. Choroidal circulation disturbance is an initial factor in outer retinal degeneration in rats under simulated weightlessness. Front Physiol 2023; 14:1198862. [PMID: 37546536 PMCID: PMC10397408 DOI: 10.3389/fphys.2023.1198862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Objective: Microgravity contributes to ocular injury yet the underlying mechanism remains unclear. This study aims to elucidate the mechanism behind choroidal circulation disorder and outer retinal degeneration in rats with simulated weightlessness. Methods: Optical coherence tomography angiography (OCTA) was used to evaluate choroidal circulation and retinal morphological alterations in rats with weightlessness simulation. Electroretinogram and transmission electron microscopy were used to examine the ultrastructure and function of the choroid and outer retina. Furthermore, histological and terminal deoxynucleotidyl transferase deoxyuridine dUTP nick-end labeling (TUNEL) staining was used to monitor retinal morphology. Western blotting was performed to analyze the expressions of blood-retinal outer barrier function-related proteins (Cx43, ZO-1, and occludin). Results: The choroidal thickening was observed from the fourth week of simulated weightlessness (p < 0.05), and choroidal capillary density started to decline by the fifth week (p < 0.05). Transmission electron microscopy revealed that the choroidal vessels were open and operating well by the fourth week. However, most of the mitochondria within the vascular endothelium underwent mild swelling, and by the fifth week, the choroidal vessels had various degrees of erythrocyte aggregation, mitochondrial swelling, and apoptosis. Additionally, ERG demonstrated a decline in retinal function beginning in the fifth week (p < 0.05). TUNEL staining revealed a significantly higher apoptotic index in the outer nuclear layer of the retina (p < 0.05). At the sixth week weeks of simulated weightlessness, OCTA and hematoxylin and eosin (HE) staining of retinal sections revealed that the outer nuclear layer of the retina started to become thin (p < 0.05). Results from western blotting revealed that Cx43, ZO-1, and occludin exhibited decreased expression (p < 0.05). Conclusion: Based on our findings in a rat model of simulated weightlessness, choroidal circulation disturbance induced by choroidal congestion is the initial cause of outer retinal degeneration. Blood-retinal barrier disruption is significant in this process.
Collapse
Affiliation(s)
- Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Dongyu Wei
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Lilingxuan Yao
- The Third Regiment, School of Basic Medicine, Air Force Medical University, Xi’an, China
| | - Xinyue Xu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Shaoheng Li
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Ruidan Cao
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Tao Chen
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
- Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zuoming Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| |
Collapse
|
22
|
Stratis D, Trudel G, Rocheleau L, Pelchat M, Laneuville O. The transcriptome response of astronaut leukocytes to long missions aboard the International Space Station reveals immune modulation. Front Immunol 2023; 14:1171103. [PMID: 37426644 PMCID: PMC10324659 DOI: 10.3389/fimmu.2023.1171103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Spaceflight leads to the deconditioning of multiple body systems including the immune system. We sought to characterize the molecular response involved by capturing changes in leukocyte transcriptomes from astronauts transitioning to and from long-duration spaceflight. Methods Fourteen male and female astronauts with ~6-month- long missions aboard the International Space Station (ISS) had 10 blood samples collected throughout the three phases of the study: one pre-flight (PF), four in-flight (IF) while onboard the ISS, and five upon return to Earth (R). We measured gene expression through RNA sequencing of leukocytes and applied generalized linear modeling to assess differential expression across all 10 time points followed by the analysis of selected time points and functional enrichment of changing genes to identify shifts in biological processes. Results Our temporal analysis identified 276 differentially expressed transcripts grouped into two clusters (C) showing opposite profiles of expression with transitions to and from spaceflight: (C1) decrease-then-increase and (C2) increase-then-decrease. Both clusters converged toward average expression between ~2 and ~6 months in space. Further analysis of spaceflight transitions identified the decrease-then-increase pattern with most changes: 112 downregulated genes between PF and early spaceflight and 135 upregulated genes between late IF and R. Interestingly, 100 genes were both downregulated when reaching space and upregulated when landing on Earth. Functional enrichment at the transition to space related to immune suppression increased cell housekeeping functions and reduced cell proliferation. In contrast, egress to Earth is related to immune reactivation. Conclusion The leukocytes' transcriptome changes describe rapid adaptations in response to entering space followed by opposite changes upon returning to Earth. These results shed light on immune modulation in space and highlight the major adaptive changes in cellular activity engaged to adapt to extreme environments.
Collapse
Affiliation(s)
- Daniel Stratis
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Physiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Odette Laneuville
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
23
|
Bonanni R, Cariati I, Marini M, Tarantino U, Tancredi V. Microgravity and Musculoskeletal Health: What Strategies Should Be Used for a Great Challenge? Life (Basel) 2023; 13:1423. [PMID: 37511798 PMCID: PMC10381503 DOI: 10.3390/life13071423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Space colonization represents the most insidious challenge for mankind, as numerous obstacles affect the success of space missions. Specifically, the absence of gravitational forces leads to systemic physiological alterations, with particular emphasis on the musculoskeletal system. Indeed, astronauts exposed to spaceflight are known to report a significant impairment of bone microarchitecture and muscle mass, conditions clinically defined as osteoporosis and sarcopenia. In this context, space medicine assumes a crucial position, as the development of strategies to prevent and/or counteract weightlessness-induced alterations appears to be necessary. Furthermore, the opportunity to study the biological effects induced by weightlessness could provide valuable information regarding adaptations to spaceflight and suggest potential treatments that can preserve musculoskeletal health under microgravity conditions. Noteworthy, improving knowledge about the latest scientific findings in this field of research is crucial, as is thoroughly investigating the mechanisms underlying biological adaptations to microgravity and searching for innovative solutions to counter spaceflight-induced damage. Therefore, this narrative study review, performed using the MEDLINE and Google Scholar databases, aims to summarize the most recent evidence regarding the effects of real and simulated microgravity on the musculoskeletal system and to discuss the effectiveness of the main defence strategies used in both real and experimental settings.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Mario Marini
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
24
|
Grigoryan EN. Impact of Microgravity and Other Spaceflight Factors on Retina of Vertebrates and Humans In Vivo and In Vitro. Life (Basel) 2023; 13:1263. [PMID: 37374046 PMCID: PMC10305389 DOI: 10.3390/life13061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Spaceflight (SF) increases the risk of developmental, regenerative, and physiological disorders in animals and humans. Astronauts, besides bone loss, muscle atrophy, and cardiovascular and immune system alterations, undergo ocular disorders affecting posterior eye tissues, including the retina. Few studies revealed abnormalities in the development and changes in the regeneration of eye tissues in lower vertebrates after SF and simulated microgravity. Under microgravity conditions, mammals show disturbances in the retinal vascular system and increased risk of oxidative stress that can lead to cell death in the retina. Animal studies provided evidence of gene expression changes associated with cellular stress, inflammation, and aberrant signaling pathways. Experiments using retinal cells in microgravity-modeling systems in vitro additionally indicated micro-g-induced changes at the molecular level. Here, we provide an overview of the literature and the authors' own data to assess the predictive value of structural and functional alterations for developing countermeasures and mitigating the SF effects on the human retina. Further emphasis is given to the importance of animal studies on the retina and other eye tissues in vivo and retinal cells in vitro aboard spacecraft for understanding alterations in the vertebrate visual system in response to stress caused by gravity variations.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
25
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
26
|
Lv W, Peng X, Tu Y, Shi Y, Song G, Luo Q. YAP Inhibition Alleviates Simulated Microgravity-Induced Mesenchymal Stem Cell Senescence via Targeting Mitochondrial Dysfunction. Antioxidants (Basel) 2023; 12:antiox12050990. [PMID: 37237856 DOI: 10.3390/antiox12050990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Weightlessness in space leads to bone loss, muscle atrophy, and impaired immune defense in astronauts. Mesenchymal stem cells (MSCs) play crucial roles in maintaining the homeostasis and function of the tissue. However, how microgravity affects the characteristics MSCs and the related roles in the pathophysiological changes in astronauts remain barely known. Here we used a 2D-clinostat device to simulate microgravity. Senescence-associated-β-galactosidase (SA-β-gal) staining and the expression of senescent markers p16, p21, and p53 were used to evaluate the senescence of MSCs. Mitochondrial membrane potential (mΔΨm), reactive oxygen species (ROS) production, and ATP production were used to evaluate mitochondrial function. Western blot and immunofluorescence staining were used to investigate the expression and localization of Yes-associated protein (YAP). We found that simulated microgravity (SMG) induced MSC senescence and mitochondrial dysfunction. Mito-TEMPO (MT), a mitochondrial antioxidant, restored mitochondrial function and reversed MSC senescence induced by SMG, suggesting that mitochondrial dysfunction mediates SMG-induced MSC senescence. Further, it was found that SMG promoted YAP expression and its nuclear translocation in MSCs. Verteporfin (VP), an inhibitor of YAP, restored SMG-induced mitochondrial dysfunction and senescence in MSCs by inhibiting YAP expression and nuclear localization. These findings suggest that YAP inhibition alleviates SMG-induced MSC senescence via targeting mitochondrial dysfunction, and YAP may be a potential therapeutic target for the treatment of weightlessness-related cell senescence and aging.
Collapse
Affiliation(s)
- Wenjun Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiufen Peng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yun Tu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yisong Shi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
27
|
Krüger M. Remove, Refine, Reduce: Cell Death in Biological Systems. Int J Mol Sci 2023; 24:ijms24087028. [PMID: 37108191 PMCID: PMC10138335 DOI: 10.3390/ijms24087028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Cell death is an important biological phenomenon [...].
Collapse
Affiliation(s)
- Marcus Krüger
- Environmental Cell Biology Group, Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
28
|
Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D. Current Knowledge about the Impact of Microgravity on Gene Regulation. Cells 2023; 12:cells12071043. [PMID: 37048115 PMCID: PMC10093652 DOI: 10.3390/cells12071043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Microgravity (µg) has a massive impact on the health of space explorers. Microgravity changes the proliferation, differentiation, and growth of cells. As crewed spaceflights into deep space are being planned along with the commercialization of space travelling, researchers have focused on gene regulation in cells and organisms exposed to real (r-) and simulated (s-) µg. In particular, cancer and metastasis research benefits from the findings obtained under µg conditions. Gene regulation is a key factor in a cell or an organism’s ability to sustain life and respond to environmental changes. It is a universal process to control the amount, location, and timing in which genes are expressed. In this review, we provide an overview of µg-induced changes in the numerous mechanisms involved in gene regulation, including regulatory proteins, microRNAs, and the chemical modification of DNA. In particular, we discuss the current knowledge about the impact of microgravity on gene regulation in different types of bacteria, protists, fungi, animals, humans, and cells with a focus on the brain, eye, endothelium, immune system, cartilage, muscle, bone, and various cancers as well as recent findings in plants. Importantly, the obtained data clearly imply that µg experiments can support translational medicine on Earth.
Collapse
Affiliation(s)
- Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
- Correspondence: ; Tel.: +45-28-992-179
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Maik Böhmer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Dario A. Ricciardi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gilmar S. Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
29
|
Cariati I, Bonanni R, Rinaldi AM, Marini M, Iundusi R, Gasbarra E, Tancredi V, Tarantino U. Recombinant irisin prevents cell death and mineralization defects induced by random positioning machine exposure in primary cultures of human osteoblasts: A promising strategy for the osteoporosis treatment. Front Physiol 2023; 14:1107933. [PMID: 37008023 PMCID: PMC10052411 DOI: 10.3389/fphys.2023.1107933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Spaceflight exposure, like prolonged skeletal unloading, is known to result in significant bone loss, but the molecular mechanisms responsible are still partly unknown. This impairment, characterizing both conditions, suggests the possibility of identifying common signalling pathways and developing innovative treatment strategies to counteract the bone loss typical of astronauts and osteoporotic patients. In this context, primary cell cultures of human osteoblasts derived from healthy subjects and osteoporotic patients were exposed to random positioning machine (RPM) to reproduce the absence of gravity and to exacerbate the pathological condition, respectively. The duration of exposure to RPM was 3 or 6 days, with the aim of determining whether a single administration of recombinant irisin (r-irisin) could prevent cell death and mineralizing capacity loss. In detail, cellular responses were assessed both in terms of death/survival, by MTS assay, analysis of oxidative stress and caspase activity, as well as the expression of survival and cell death proteins, and in terms of mineralizing capacity, by investigating the pentraxin 3 (PTX3) expression. Our results suggest that the effects of a single dose of r-irisin are maintained for a limited time, as demonstrated by complete protection after 3 days of RPM exposure and only partial protection when RPM exposure was for a longer time. Therefore, the use of r-irisin could be a valid strategy to counteract the bone mass loss induced by weightlessness and osteoporosis. Further studies are needed to determine an optimal treatment strategy based on the use of r-irisin that is fully protective even over very long periods of exposure and/or to identify further approaches to be used in a complementary manner.
Collapse
Affiliation(s)
- Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
- *Correspondence: Roberto Bonanni,
| | - Anna Maria Rinaldi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Mario Marini
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
| |
Collapse
|
30
|
Marfia G, Guarnaccia L, Navone SE, Ampollini A, Balsamo M, Benelli F, Gaudino C, Garzia E, Fratocchi C, Di Murro C, Ligarotti GK, Campanella C, Landolfi A, Perelli P, Locatelli M, Ciniglio Appiani G. Microgravity and the intervertebral disc: The impact of space conditions on the biomechanics of the spine. Front Physiol 2023; 14:1124991. [PMID: 36998982 PMCID: PMC10043412 DOI: 10.3389/fphys.2023.1124991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
The environmental conditions to which astronauts and other military pilots are subjected represent a unique example for understanding and studying the biomechanical events that regulate the functioning of the human body. In particular, microgravity has shown a significant impact on various biological systems, such as the cardiovascular system, immune system, endocrine system, and, last but not least, musculoskeletal system. Among the potential risks of flying, low back pain (LBP) has a high incidence among astronauts and military pilots, and it is often associated with intervertebral disc degeneration events. The mechanisms of degeneration determine the loss of structural and functional integrity and are accompanied by the aberrant production of pro-inflammatory mediators that exacerbate the degenerative environment, contributing to the onset of pain. In the present work, the mechanisms of disc degeneration, the conditions of microgravity, and their association have been discussed in order to identify possible molecular mechanisms underlying disc degeneration and the related clinical manifestations in order to develop a model of prevention to maintain health and performance of air- and space-travelers. The focus on microgravity also allows the development of new proofs of concept with potential therapeutic implications.
Collapse
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella Ampollini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Melissa Balsamo
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Benelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Gaudino
- Department of Neuroradiology, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Emanuele Garzia
- Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare, Milan, Italy
| | - Claudia Fratocchi
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare, Milan, Italy
| | - Claudia Di Murro
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale “A. Mosso”, Aeronautica Militare, Milan, Italy
| | | | - Carmelo Campanella
- Istituto di Medicina Aerospaziale “Aldo Di Loreto”, Aeronautica Militare, Rome, Italy
| | | | | | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
31
|
Li W, Shu X, Zhang X, Zhang Z, Sun S, Li N, Long M. Potential Roles of YAP/TAZ Mechanotransduction in Spaceflight-Induced Liver Dysfunction. Int J Mol Sci 2023; 24:ijms24032197. [PMID: 36768527 PMCID: PMC9917057 DOI: 10.3390/ijms24032197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Microgravity exposure during spaceflight causes the disordered regulation of liver function, presenting a specialized mechano-biological coupling process. While YAP/TAZ serves as a typical mechanosensitive pathway involved in hepatocyte metabolism, it remains unclear whether and how it is correlated with microgravity-induced liver dysfunction. Here, we discussed liver function alterations induced by spaceflight or simulated effects of microgravity on Earth. The roles of YAP/TAZ serving as a potential bridge in connecting liver metabolism with microgravity were specifically summarized. Existing evidence indicated that YAP/TAZ target gene expressions were affected by mechanotransductive pathways and phase separation, reasonably speculating that microgravity might regulate YAP/TAZ activation by disrupting these pathways via cytoskeletal remodeling or nuclear deformation, or disturbing condensates formation via diffusion limit, and then breaking liver homeostasis.
Collapse
Affiliation(s)
- Wang Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziliang Zhang
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shujin Sun
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| | - Mian Long
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (N.L.); (M.L.)
| |
Collapse
|
32
|
Yang S, Wang L, Wu Y, Wu A, Huang F, Tang X, Kantawong F, Anuchapreeda S, Qin D, Mei Q, Chen J, Huang X, Zhang C, Wu J. Apoptosis in megakaryocytes: Safeguard and threat for thrombopoiesis. Front Immunol 2023; 13:1025945. [PMID: 36685543 PMCID: PMC9845629 DOI: 10.3389/fimmu.2022.1025945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Platelets, generated from precursor megakaryocytes (MKs), are central mediators of hemostasis and thrombosis. The process of thrombopoiesis is extremely complex, regulated by multiple factors, and related to many cellular events including apoptosis. However, the role of apoptosis in thrombopoiesis has been controversial for many years. Some researchers believe that apoptosis is an ally of thrombopoiesis and platelets production is apoptosis-dependent, while others have suggested that apoptosis is dispensable for thrombopoiesis, and is even inhibited during this process. In this review, we will focus on this conflict, discuss the relationship between megakaryocytopoiesis, thrombopoiesis and apoptosis. In addition, we also consider why such a vast number of studies draw opposite conclusions of the role of apoptosis in thrombopoiesis, and try to figure out the truth behind the mystery. This review provides more comprehensive insights into the relationship between megakaryocytopoiesis, thrombopoiesis, and apoptosis and finds some clues for the possible pathological mechanisms of platelet disorders caused by abnormal apoptosis.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Kim M, Jang G, Kim KS, Shin J. Detrimental effects of simulated microgravity on mast cell homeostasis and function. Front Immunol 2022; 13:1055531. [PMID: 36591304 PMCID: PMC9800517 DOI: 10.3389/fimmu.2022.1055531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Exposure to microgravity causes significant alterations in astronauts' immune systems during spaceflight; however, it is unknown whether microgravity affects mast cell homeostasis and activation. Here we show that microgravity negatively regulates the survival and effector function of mast cells. Murine bone marrow-derived mast cells (BMMCs) were cultured with IL-3 in a rotary cell culture system (RCCS) that generates a simulated microgravity (SMG) environment. BMMCs exposed to SMG showed enhanced apoptosis along with the downregulation of Bcl-2, and reduced proliferation compared to Earth's gravity (1G) controls. The reduction in survival and proliferation caused by SMG exposure was recovered by stem cell factor. In addition, SMG impaired mast cell degranulation and cytokine secretion. BMMCs pre-exposed to SMG showed decreased release of β-hexosaminidase, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) upon stimulation with phorbol 12-myristate-13-acetate (PMA) plus calcium ionophore ionomycin, which correlated with decreased calcium influx. These findings provide new insights into microgravity-mediated alterations of mast cell phenotypes, contributing to the understanding of immune system dysfunction for further space medicine research.
Collapse
Affiliation(s)
- Minjin Kim
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Gyeongin Jang
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Kyu-Sung Kim
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Otorhinolaryngology-Head and Neck Surgery, Inha University Hospital, Incheon, Republic of Korea
| | - Jinwook Shin
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea,Department of Microbiology, Inha University College of Medicine, Incheon, Republic of Korea,*Correspondence: Jinwook Shin,
| |
Collapse
|
34
|
Hao Y, Lu L, Liu A, Lin X, Xiao L, Kong X, Li K, Liang F, Xiong J, Qu L, Li Y, Li J. Integrating bioinformatic strategies in spatial life science research. Brief Bioinform 2022; 23:bbac415. [PMID: 36198665 PMCID: PMC9677476 DOI: 10.1093/bib/bbac415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022] Open
Abstract
As space exploration programs progress, manned space missions will become more frequent and farther away from Earth, putting a greater emphasis on astronaut health. Through the collaborative efforts of researchers from various countries, the effect of the space environment factors on living systems is gradually being uncovered. Although a large number of interconnected research findings have been produced, their connection seems to be confused, and many unknown effects are left to be discovered. Simultaneously, several valuable data resources have emerged, accumulating data measuring biological effects in space that can be used to further investigate the unknown biological adaptations. In this review, the previous findings and their correlations are sorted out to facilitate the understanding of biological adaptations to space and the design of countermeasures. The biological effect measurement methods/data types are also organized to provide references for experimental design and data analysis. To aid deeper exploration of the data resources, we summarized common characteristics of the data generated from longitudinal experiments, outlined challenges or caveats in data analysis and provided corresponding solutions by recommending bioinformatics strategies and available models/tools.
Collapse
Affiliation(s)
- Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Liang Lu
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Li Xiao
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Xiaoyue Kong
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Kai Li
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Fengji Liang
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Jianghui Xiong
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Lina Qu
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Yinghui Li
- The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
35
|
Translation from Microgravity Research to Earth Application. Int J Mol Sci 2022; 23:ijms231910995. [PMID: 36232297 PMCID: PMC9569622 DOI: 10.3390/ijms231910995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
|
36
|
Marfia G, Navone SE, Guarnaccia L, Campanella R, Locatelli M, Miozzo M, Perelli P, Della Morte G, Catamo L, Tondo P, Campanella C, Lucertini M, Ciniglio Appiani G, Landolfi A, Garzia E. Space flight and central nervous system: Friends or enemies? Challenges and opportunities for neuroscience and neuro-oncology. J Neurosci Res 2022; 100:1649-1663. [PMID: 35678198 PMCID: PMC9544848 DOI: 10.1002/jnr.25066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Space environment provides many challenges to pilots, astronauts, and space scientists, which are constantly subjected to unique conditions, including microgravity, radiations, hypoxic condition, absence of the day and night cycle, etc. These stressful stimuli have the potential to affect many human physiological systems, triggering physical and biological adaptive changes to re‐establish the homeostatic state. A particular concern regards the risks for the effects of spaceflight on the central nervous system (CNS), as several lines of evidence reported a great impact on neuroplasticity, cognitive functions, neurovestibular system, short‐term memory, cephalic fluid shift, reduction in motor function, and psychological disturbances, especially during long‐term missions. Aside these potential detrimental effects, the other side of the coin reflects the potential benefit of applicating space‐related conditions on Earth‐based life sciences, as cancer research. Here, we focused on examining the effect of real and simulated microgravity on CNS functions, both in humans and in cellular models, browsing the different techniques to experience or mime microgravity on‐ground. Increasing evidence demonstrate that cancer cells, and brain cancer cells in particular, are negatively affected by microgravity, in terms of alteration in cell morphology, proliferation, invasion, migration, and apoptosis, representing an advancing novel side of space‐based investigations. Overall, deeper understandings about the mechanisms by which space environment influences CNS and tumor biology may be promisingly translated into many clinical fields, ranging from aerospace medicine to neuroscience and oncology, representing an enormous pool of knowledge for the implementation of countermeasures and therapeutic applications.
Collapse
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy.,Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Aldo Ravelli' Research Center, Milan, Italy.,Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Monica Miozzo
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Unit of Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
| | - Pietro Perelli
- Istituto di Medicina Aerospaziale "Aldo Di Loreto", Aeronautica Militare, Rome, Italy
| | - Giulio Della Morte
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Leonardo Catamo
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Pietro Tondo
- Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| | - Carmelo Campanella
- Istituto di Medicina Aerospaziale "Aldo Di Loreto", Aeronautica Militare, Roma, Italy
| | | | | | | | - Emanuele Garzia
- Istituto di Medicina Aerospaziale "A. Mosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
37
|
Vroom MM, Troncoso-Garcia A, Duscher AA, Foster JS. Modeled microgravity alters apoptotic gene expression and caspase activity in the squid-vibrio symbiosis. BMC Microbiol 2022; 22:202. [PMID: 35982413 PMCID: PMC9389742 DOI: 10.1186/s12866-022-02614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Spaceflight is a novel and profoundly stressful environment for life. One aspect of spaceflight, microgravity, has been shown to perturb animal physiology thereby posing numerous health risks, including dysregulation of normal developmental pathways. Microgravity can also negatively impact the interactions between animals and their microbiomes. However, the effects of microgravity on developmental processes influenced by beneficial microbes, such as apoptosis, remains poorly understood. Here, the binary mutualism between the bobtail squid, Euprymna scolopes, and the gram-negative bacterium, Vibrio fischeri, was studied under modeled microgravity conditions to elucidate how this unique stressor alters apoptotic cell death induced by beneficial microbes. Results Analysis of the host genome and transcriptome revealed a complex network of apoptosis genes affiliated with extrinsic/receptor-mediated and intrinsic/stress-induced apoptosis. Expression of apoptosis genes under modeled microgravity conditions occurred earlier and at high levels compared to gravity controls, in particular the expression of genes encoding initiator and executioner caspases. Functional assays of these apoptotic proteases revealed heightened activity under modeled microgravity; however, these increases could be mitigated using caspase inhibitors. Conclusions The outcomes of this study indicated that modeled microgravity alters the expression of both extrinsic and intrinsic apoptosis gene expression and that this process is mediated in part by caspases. Modeled microgravity-associated increases of caspase activity can be pharmacologically inhibited suggesting that perturbations to the normal apoptosis signaling cascade can be mitigated, which may have broader implications for maintaining animal-microbial homeostasis in spaceflight. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02614-x.
Collapse
Affiliation(s)
- Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Angel Troncoso-Garcia
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
38
|
Effects of Titanium Dioxide Nanoparticles on Cell Growth and Migration of A549 Cells under Simulated Microgravity. NANOMATERIALS 2022; 12:nano12111879. [PMID: 35683734 PMCID: PMC9182076 DOI: 10.3390/nano12111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023]
Abstract
With the increasing application of nanomaterials in aerospace technology, the long-term space exposure to nanomaterials especially in the space full of radiation coupled with microgravity condition has aroused great health concerns of the astronauts. However, few studies have been conducted to assess these effects, which are crucial for seeking the possible intervention strategy. Herein, using a random positioning machine (RPM) to simulate microgravity, we investigated the behaviors of cells under simulated microgravity and also evaluated the possible toxicity of titanium dioxide nanoparticles (TiO2 NPs), a multifunctional nanomaterial with potential application in aerospace. Pulmonary epithelial cells A549 were exposed to normal gravity (1 g) and simulated gravity (~10−3 g), respectively. The results showed that simulated microgravity had no significant effect on the viability of A549 cells as compared with normal gravity within 48 h. The effects of TiO2 NPs exposure on cell viability and apoptosis were marginal with only a slightly decrease in cell viability and a subtle increase in apoptosis rate observed at a high concentration of TiO2 NPs (100 μg/mL). However, it was observed that the exposure to simulated microgravity could obviously reduce A549 cell migration compared with normal gravity. The disruption of F-actin network and the deactivation of FAK (Tyr397) might be responsible for the impaired mobility of simulated microgravity-exposed A549 cells. TiO2 NPs exposure inhibited cell migration under two different gravity conditions, but to different degrees, with a milder inhibition under simulated microgravity. Meanwhile, it was found that A549 cells internalized more TiO2 NPs under normal gravity than simulated microgravity, which may account for the lower cytotoxicity and the lighter inhibition of cell migration induced by the same exposure concentration of TiO2 NPs under simulated microgravity at least partially. Our study has provided some tentative information on the effects of TiO2 NPs exposure on cell behaviors under simulated microgravity.
Collapse
|
39
|
The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int J Mol Sci 2022; 23:ijms23063073. [PMID: 35328492 PMCID: PMC8953941 DOI: 10.3390/ijms23063073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.
Collapse
|
40
|
Fedeli V, Cucina A, Dinicola S, Fabrizi G, Catizone A, Gesualdi L, Ceccarelli S, Harrath AH, Alwasel SH, Ricci G, Pedata P, Bizzarri M, Monti N. Microgravity Modifies the Phenotype of Fibroblast and Promotes Remodeling of the Fibroblast-Keratinocyte Interaction in a 3D Co-Culture Model. Int J Mol Sci 2022; 23:ijms23042163. [PMID: 35216279 PMCID: PMC8879576 DOI: 10.3390/ijms23042163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Microgravity impairs tissue organization and critical pathways involved in the cell–microenvironment interplay, where fibroblasts have a critical role. We exposed dermal fibroblasts to simulated microgravity by means of a Random Positioning Machine (RPM), a device that reproduces conditions of weightlessness. Molecular and structural changes were analyzed and compared to control samples growing in a normal gravity field. Simulated microgravity impairs fibroblast conversion into myofibroblast and inhibits their migratory properties. Consequently, the normal interplay between fibroblasts and keratinocytes were remarkably altered in 3D co-culture experiments, giving rise to several ultra-structural abnormalities. Such phenotypic changes are associated with down-regulation of α-SMA that translocate in the nucleoplasm, altogether with the concomitant modification of the actin-vinculin apparatus. Noticeably, the stress associated with weightlessness induced oxidative damage, which seemed to concur with such modifications. These findings disclose new opportunities to establish antioxidant strategies that counteract the microgravity-induced disruptive effects on fibroblasts and tissue organization.
Collapse
Affiliation(s)
- Valeria Fedeli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (V.F.); (S.C.); (M.B.)
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy; (S.D.); (G.F.)
| | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy;
- Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Simona Dinicola
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy; (S.D.); (G.F.)
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy;
| | - Gianmarco Fabrizi
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy; (S.D.); (G.F.)
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy;
| | - Angela Catizone
- Section of Histology and Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (A.C.); (L.G.)
| | - Luisa Gesualdi
- Section of Histology and Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (A.C.); (L.G.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (V.F.); (S.C.); (M.B.)
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Giulia Ricci
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Paola Pedata
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (V.F.); (S.C.); (M.B.)
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy; (S.D.); (G.F.)
| | - Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (V.F.); (S.C.); (M.B.)
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy; (S.D.); (G.F.)
- Correspondence:
| |
Collapse
|
41
|
Matsuyama S, Tanaka Y, Hasebe R, Hojyo S, Murakami M. Gateway Reflex and Mechanotransduction. Front Immunol 2022; 12:780451. [PMID: 35003096 PMCID: PMC8728022 DOI: 10.3389/fimmu.2021.780451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The gateway reflex explains how autoreactive CD4+ T cells cause inflammation in tissues that have blood-barriers, such as the central nervous system and retina. It depends on neural activations in response to specific external stimuli, such as gravity, pain, stress, and light, which lead to the secretion of noradrenaline at specific vessels in the tissues. Noradrenaline activates NFkB at these vessels, followed by an increase of chemokine expression as well as a reduction of tight junction molecules to accumulate autoreactive CD4+ T cells, which breach blood-barriers. Transient receptor potential vanilloid 1 (TRPV1) molecules on sensory neurons are critical for the gateway reflex, indicating the importance of mechano-sensing. In this review, we overview the gateway reflex with a special interest in mechanosensory transduction (mechanotransduction).
Collapse
Affiliation(s)
- Shiina Matsuyama
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Rie Hasebe
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Division of Neurommunology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
42
|
Cortés-Sánchez JL, Callant J, Krüger M, Sahana J, Kraus A, Baselet B, Infanger M, Baatout S, Grimm D. Cancer Studies under Space Conditions: Finding Answers Abroad. Biomedicines 2021; 10:biomedicines10010025. [PMID: 35052703 PMCID: PMC8773191 DOI: 10.3390/biomedicines10010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, we discuss the current state of knowledge in cancer research under real and simulated microgravity conditions and point out further research directions in this field. Outer space is an extremely hostile environment for human life, with radiation, microgravity, and vacuum posing significant hazards. Although the risk for cancer in astronauts is not clear, microgravity plays a thought-provoking role in the carcinogenesis of normal and cancer cells, causing such effects as multicellular spheroid formation, cytoskeleton rearrangement, alteration of gene expression and protein synthesis, and apoptosis. Furthermore, deleterious effects of radiation on cells seem to be accentuated under microgravity. Ground-based facilities have been used to study microgravity effects in addition to laborious experiments during parabolic flights or on space stations. Some potential 'gravisensors' have already been detected, and further identification of these mechanisms of mechanosensitivity could open up ways for therapeutic influence on cancer growth and apoptosis. These novel findings may help to find new effective cancer treatments and to provide health protection for humans on future long-term spaceflights and exploration of outer space.
Collapse
Affiliation(s)
- José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
| | - Jonas Callant
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
- Department Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
43
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:1437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
44
|
Simulated Microgravity Induces the Proliferative Inhibition and Morphological Changes in Porcine Granulosa Cells. Curr Issues Mol Biol 2021; 43:2210-2219. [PMID: 34940129 PMCID: PMC8929043 DOI: 10.3390/cimb43030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Astronauts are always faced with serious health problems during prolonged spaceflights. Previous studies have shown that weightlessness significantly affects the physiological function of female astronauts, including a change in reproductive hormones and ovarian cells, such as granulosa and theca cells. However, the effects of microgravity on these cells have not been well characterized, especially in granulosa cells. This study aimed to investigate the effects of simulated microgravity (SMG) on the proliferation and morphology of porcine granulosa cells (pGCs). pGC proliferation from the SMG group was inhibited, demonstrated by the reduced O.D. value and cell density in the WST-1 assay and cell number counting. SMG-induced pGCs exhibited an increased ratio of cells in the G0/G1 phase and a decreased ratio of cells in the S and G2/M phase. Western blot analysis indicated a down-regulation of cyclin D1, cyclin-dependent kinase 4 (cdk4), and cyclin-dependent kinase 6 (cdk6), leading to the prevention of the G1-S transition and inducing the arrest phase. pGCs under the SMG condition showed an increase in nuclear area. This caused a reduction in nuclear shape value in pGCs under the SMG condition. SMG-induced pGCs exhibited different morphologies, including fibroblast-like shape, rhomboid shape, and pebble-like shape. These results revealed that SMG inhibited proliferation and induced morphological changes in pGCs.
Collapse
|
45
|
Cialdai F, Bolognini D, Vignali L, Iannotti N, Cacchione S, Magi A, Balsamo M, Vukich M, Neri G, Donati A, Monici M, Capaccioli S, Lulli M. Effect of space flight on the behavior of human retinal pigment epithelial ARPE-19 cells and evaluation of coenzyme Q10 treatment. Cell Mol Life Sci 2021; 78:7795-7812. [PMID: 34714361 PMCID: PMC11073052 DOI: 10.1007/s00018-021-03989-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Davide Bolognini
- Department of Experimental and Clinical Medicine, Università Degli Studi Di Firenze, Firenze, Italy
| | - Leonardo Vignali
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Nicola Iannotti
- Department of Life Sciences, Università Degli Studi Di Siena, Siena, Italy
| | - Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin", Università Di Roma "La Sapienza", Roma, Italy
| | - Alberto Magi
- Department of Information Engineering, Università Degli Studi Di Firenze, Firenze, Italy
| | | | | | | | | | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, Firenze, Italy
| | - Sergio Capaccioli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi Di Firenze, viale Morgagni 50, 50134, Firenze, Italy.
| |
Collapse
|
46
|
Fibroblast Differentiation and Matrix Remodeling Impaired under Simulated Microgravity in 3D Cell Culture Model. Int J Mol Sci 2021; 22:ijms222111911. [PMID: 34769342 PMCID: PMC8584780 DOI: 10.3390/ijms222111911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Exposure to microgravity affects astronauts' health in adverse ways. However, less is known about the extent to which fibroblast differentiation during the wound healing process is affected by the lack of gravity. One of the key steps of this process is the differentiation of fibroblasts into myofibroblasts, which contribute functionally through extracellular matrix production and remodeling. In this work, we utilized collagen-based three-dimensional (3D) matrices to mimic interstitial tissue and studied fibroblast differentiation under simulated microgravity (sµG). Our results demonstrated that alpha-smooth muscle actin (αSMA) expression and translocation of Smad2/3 into the cell nucleus were reduced upon exposure to sµG compared to the 1g control, which suggests the impairment of fibroblast differentiation under sµG. Moreover, matrix remodeling and production were decreased under sµG, which is in line with the impaired fibroblast differentiation. We further investigated changes on a transcriptomic level using RNA sequencing. The results demonstrated that sµG has less effect on fibroblast transcriptomes, while sµG triggers changes in the transcriptome of myofibroblasts. Several genes and biological pathways found through transcriptome analysis have previously been reported to impair fibroblast differentiation. Overall, our data indicated that fibroblast differentiation, as well as matrix production and remodeling, are impaired in 3D culture under sµG conditions.
Collapse
|
47
|
Buravkova L, Larina I, Andreeva E, Grigoriev A. Microgravity Effects on the Matrisome. Cells 2021; 10:2226. [PMID: 34571874 PMCID: PMC8471442 DOI: 10.3390/cells10092226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the "gravisensors" in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity. This review covers the current understanding of ECM and associated molecules as the matrisome, the features of the above components in connective tissues, and the role of the latter in the cell and tissue responses to the gravity alterations. Special attention is paid to contemporary methodological approaches to the matrisome composition analysis under real space flights and ground-based simulation of its effects on Earth.
Collapse
Affiliation(s)
- Ludmila Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, 123007 Moscow, Russia; (I.L.); (E.A.); (A.G.)
| | | | | | | |
Collapse
|
48
|
Kumar A, Tahimic CGT, Almeida EAC, Globus RK. Spaceflight Modulates the Expression of Key Oxidative Stress and Cell Cycle Related Genes in Heart. Int J Mol Sci 2021; 22:9088. [PMID: 34445793 PMCID: PMC8396460 DOI: 10.3390/ijms22169088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Spaceflight causes cardiovascular changes due to microgravity-induced redistribution of body fluids and musculoskeletal unloading. Cardiac deconditioning and atrophy on Earth are associated with altered Trp53 and oxidative stress-related pathways, but the effects of spaceflight on cardiac changes at the molecular level are less understood. We tested the hypothesis that spaceflight alters the expression of key genes related to stress response pathways, which may contribute to cardiovascular deconditioning during extended spaceflight. Mice were exposed to spaceflight for 15 days or maintained on Earth (ground control). Ventricle tissue was harvested starting ~3 h post-landing. We measured expression of select genes implicated in oxidative stress pathways and Trp53 signaling by quantitative PCR. Cardiac expression levels of 37 of 168 genes tested were altered after spaceflight. Spaceflight downregulated transcription factor, Nfe2l2 (Nrf2), upregulated Nox1 and downregulated Ptgs2, suggesting a persistent increase in oxidative stress-related target genes. Spaceflight also substantially upregulated Cdkn1a (p21) and cell cycle/apoptosis-related gene Myc, and downregulated the inflammatory response gene Tnf. There were no changes in apoptosis-related genes such as Trp53. Spaceflight altered the expression of genes regulating redox balance, cell cycle and senescence in cardiac tissue of mice. Thus, spaceflight may contribute to cardiac dysfunction due to oxidative stress.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| | | | - Eduardo A. C. Almeida
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA; (A.K.); (E.A.C.A.)
| |
Collapse
|
49
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
50
|
Interaction Network Provides Clues on the Role of BCAR1 in Cellular Response to Changes in Gravity. COMPUTATION 2021. [DOI: 10.3390/computation9080081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
When culturing cells in space or under altered gravity conditions on Earth to investigate the impact of gravity, their adhesion and organoid formation capabilities change. In search of a target where the alteration of gravity force could have this impact, we investigated p130cas/BCAR1 and its interactions more thoroughly, particularly as its activity is sensitive to applied forces. This protein is well characterized regarding its role in growth stimulation and adhesion processes. To better understand BCAR1′s force-dependent scaffolding of other proteins, we studied its interactions with proteins we had detected by proteome analyses of MCF-7 breast cancer and FTC-133 thyroid cancer cells, which are both sensitive to exposure to microgravity and express BCAR1. Using linked open data resources and our experiments, we collected comprehensive information to establish a semantic knowledgebase and analyzed identified proteins belonging to signaling pathways and their networks. The results show that the force-dependent phosphorylation and scaffolding of BCAR1 influence the structure, function, and degradation of intracellular proteins as well as the growth, adhesion and apoptosis of cells similarly to exposure of whole cells to altered gravity. As BCAR1 evidently plays a significant role in cell responses to gravity changes, this study reveals a clear path to future research performing phosphorylation experiments on BCAR1.
Collapse
|