1
|
Castonguay-Paradis S, Demers-Potvin É, Rochefort G, Lacroix S, Perron J, Martin C, Flamand N, Raymond F, Di Marzo V, Veilleux A. Seasonal variations in circulating endocannabinoidome mediators and gut microbiota composition in humans. Gut Microbes 2025; 17:2476563. [PMID: 40111342 PMCID: PMC11926903 DOI: 10.1080/19490976.2025.2476563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/20/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The human gut microbiome-endocannabinoidome axis is crucial for several homeostatic processes, including inflammation and energy metabolism, and is influenced by many endogenous and exogenous factors, such as dietary habits. Changes in the gut microbiome in response to seasonal variations were previously reported and tentatively attributed to shifts in dietary patterns. However, there is a need for longitudinal studies in industrialized populations to comprehensively explore seasonal variations independently of lifestyle confounding factors. OBJECTIVE To investigate the longitudinal effects of seasonal variations on the composition of the gut microbiome and the circulating levels of endocannabinoidome mediators in humans, while elucidating the contributing factors underlying these changes. METHODS Plasma and fecal samples were collected at the end of both the winter and summer in a longitudinal cohort of 48 individuals living in Québec City (Canada). Dietary habits, medical history, fecal microbiota taxonomic composition and plasma levels of circulating N‑acyl‑ethanolamines (NAEs) and 2‑monoacyl-glycerols (2‑MAGs) were obtained at each time point. RESULTS Lower circulating levels of most NAEs were observed at the end of summer. These changes were accompanied by a reduction in the relative abundance of the Bifidobacteriaceae and Lachnospiraceae families, along with an increase in the abundance of the Bacteroidaceae and Ruminococcaceae families. These seasonal variations were not associated with concurrent changes in adiposity parameters, dietary intakes, physical activity habits, or vitamin D status. Importantly, the magnitude of the shift in gut microbiota composition from winter to summer was found to be associated with the seasonal variations in circulating endocannabinoidome (eCBome) mediators. CONCLUSION This study identified specific seasonal changes in gut microbiota composition and circulating levels of several NAEs, which were not associated with vitamin D status and lifestyle habits. It underscores the importance of the gut microbiota-endocannabinoidome axis in the pathophysiology of seasonal changes, and of considering seasons in clinical trials on these systems.
Collapse
Affiliation(s)
- Sophie Castonguay-Paradis
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome mediators Axis in Metabolic Health (CERC-MEND), Université Laval ,Québec, Qc, Canada
| | - Élisabeth Demers-Potvin
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
| | - Gabrielle Rochefort
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
| | - Sébastien Lacroix
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome mediators Axis in Metabolic Health (CERC-MEND), Université Laval ,Québec, Qc, Canada
| | - Julie Perron
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
| | - Cyril Martin
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome mediators Axis in Metabolic Health (CERC-MEND), Université Laval ,Québec, Qc, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec, QC, Canada
| | - Nicolas Flamand
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome mediators Axis in Metabolic Health (CERC-MEND), Université Laval ,Québec, Qc, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec, QC, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Frédéric Raymond
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome mediators Axis in Metabolic Health (CERC-MEND), Université Laval ,Québec, Qc, Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome mediators Axis in Metabolic Health (CERC-MEND), Université Laval ,Québec, Qc, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec, QC, Canada
- Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada
- Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu) between Université Laval and Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Italy
| | - Alain Veilleux
- Centre Nutrition, santé et société (NUTRISS), Institut sur la nutrition et les aliments fonctionnels (INAF), Québec, QC, Canada
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, QC, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome mediators Axis in Metabolic Health (CERC-MEND), Université Laval ,Québec, Qc, Canada
| |
Collapse
|
2
|
Friuli M, Eramo B, Sepe C, Kiani M, Casolini P, Zuena AR. The endocannabinoid and paracannabinoid systems in natural reward processes: possible pharmacological targets? Physiol Behav 2025; 296:114929. [PMID: 40274041 DOI: 10.1016/j.physbeh.2025.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Natural rewards such as food, mating, and social interaction are essential for survival and species preservation, and their regulation involves a complex interplay of motivational, cognitive, and emotional processes. Over the past two decades, increasing attention has been directed toward the endocannabinoid system and its paracannabinoid counterpart as key modulators of these behaviors. This review aims to provide an integrated overview of the roles played by the endocannabinoid and paracannabinoid systems in regulating natural reward-driven behaviors, focusing on feeding, reproductive behavior, and social interaction. We highlight how the endocannabinoid system - mainly through CB1 receptor signaling - modulates central and peripheral circuits involved in energy homeostasis, reward processing, and emotional regulation. In parallel, we explore the role of paracannabinoids, such as oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and stearoylethanolamide (SEA), which act primarily via non-cannabinoid receptors and contribute to the regulation of appetite, sexual motivation, and social behavior. Special attention is given to the relevance of these systems in the pathophysiology of obesity, eating disorders, sexual dysfunctions, and social impairments, as well as their potential as pharmacological targets. Overall, the evidence discussed supports a broader conceptualization of endocannabinoid and paracannabinoid signaling as pivotal regulators of natural rewards and opens new avenues for the development of targeted interventions for motivational and reward-related disorders.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Barbara Eramo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Christian Sepe
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Mitra Kiani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Paola Casolini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Lee JE, Im DS. Oleoylethanolamide ameliorates allergic asthma and atopic dermatitis via activation of GPR119. Int Immunopharmacol 2025; 149:114258. [PMID: 39933361 DOI: 10.1016/j.intimp.2025.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Serum levels of oleoylethanolamide (OEA) have been associated with the severity of pulmonary diseases, and augmented levels of epidermal OEA have been observed in response to low-grade inflammation in human skin. OEA acts as an endogenous ligand for GPR119; thus, the functional roles of GPR119 were investigated using two murine models. We tested effects of OEA and AR231453, a selective synthetic GPR119 agonist on ovalbumin (OVA)-induced allergic asthma and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis-like models in GPR119 wild-type (WT) and deficient mice. In OVA-induced allergic asthma model, administration of OEA or AR231453 reduced allergic feature, including airway hyperresponsiveness, eosinophil accumulation in bronchoalveolar lavage fluid, airway inflammation, and mucin secretion in the lungs, and both ameliorated DNCB-induced atopic dermatitis-like skin lesions, such as hypertrophy and mast cell accumulation, in GPR119 wild-type (WT) mice, but not in GPR119-deficient mice. OEA or AR231453 treatment reduced OVA-induced increase in pro-inflammatory cytokine expression, and type 2 innate lymphoid cells in the lungs, and both significantly suppressed the DNCB-induced lymph node enlargement and inflammatory Th2/1/17 cells in GPR119 WT mice, but not in GPR119-deficient mice. In RBL-2H3 mast cells, OEA or AR231453 suppressed degranulation and Th2 cytokine expression. These findings suggest that OEA functions to protect against allergic asthma and atopic dermatitis via GPR119 activation by suppressing immune responses in the lungs, lymph nodes, and skin, highlighting GPR119 activation as a therapeutic target for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Biomedical & Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446 Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical & Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446 Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446 Republic of Korea.
| |
Collapse
|
4
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
5
|
Davis MP, Ulrich A, Segal R, Gudena V, Ruddy KJ, D’Andre S, Giridhar KV, Vasireddy VK, Agarwal R, Azzouqa AG, Novotny P, McCue S, Bauer B, Loprinzi CL. Treatment of Established Chemotherapy-Induced Neuropathy with N-Palmitoylethanolamide: A Randomized, Double-Blind Phase II Pilot Study. Cancers (Basel) 2024; 16:4244. [PMID: 39766143 PMCID: PMC11674762 DOI: 10.3390/cancers16244244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) from oxaliplatin and taxane drugs is a bothersome toxicity. Palmitoylethanolamide (PEA) has been reported to improve myelinated nerve fiber function in patients experiencing painful CIPN. We conducted a double-blind, placebo-controlled, randomized trial of PEA in patients with established CIPN. Methods: Eligible patients were adults who had pain, numbness, tingling, or other symptoms of CIPN for at least three months following completion of paclitaxel, oxaliplatin, or cisplatin-based chemotherapy. Study patients were randomized to one of the two treatment groups (PEA versus placebo, both administered either once or twice daily). The CIPN20 questionnaire was assessed weekly. Results: A total of 17 males and 71 females participated in the study; most had neuropathy from paclitaxel. Most (85%) finished 8 weeks of treatment. There was no suggestion that either of the PEA arms did any better than the combined placebo arms. There was no signal of significant toxicity differences between the three study arms. Quality of life outcome measures were similar between the study arms, as were cognitive function evaluations. Discussion: PEA failed to improve established CIPN. Future trials might explore whether PEA may be effective in preventing CIPN or cognitive changes based on data that suggest it may be helpful in this situation. Conclusions: PEA failed to improve established chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
| | - Angela Ulrich
- Biostatistics, Mayo Clinic, Rochester, MN 55905, USA (P.N.)
| | - Rebecca Segal
- Cone Health Cancer Center, Greensboro, NC 27403, USA; (R.S.); (V.G.)
| | - Vinay Gudena
- Cone Health Cancer Center, Greensboro, NC 27403, USA; (R.S.); (V.G.)
| | - Kathryn J. Ruddy
- Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA (K.V.G.)
| | - Stacy D’Andre
- Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA (K.V.G.)
| | | | | | - Rajiv Agarwal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | | | - Paul Novotny
- Biostatistics, Mayo Clinic, Rochester, MN 55905, USA (P.N.)
| | - Shaylene McCue
- Biostatistics, Mayo Clinic, Rochester, MN 55905, USA (P.N.)
| | - Brent Bauer
- Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
6
|
Drzazga A, Bernat P, Nowak A, Szustak M, Korkus E, Gendaszewska-Darmach E, Koziołkiewicz M. N-acyl glycines produced by commensal bacteria potentiate GLP-1 secretion as GPCR ligands. Biomed Pharmacother 2024; 180:117467. [PMID: 39362066 DOI: 10.1016/j.biopha.2024.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Commensal microbiota is crucial for nutrient digestion and production of biologically active molecules, many of which mimic endogenous ligands of human GPCRs. Bacteroides spp. are among the most abundant bacteria residing in the human gut and their absence has been positively correlated with metabolic disorders. In the present study, we focused on N-acylated glycines (NAGlys) as products of Bacteroides spp. and potential GPCR ligands modulating GLP-1 secretion. Representative strains of the most abundant commensal Bacteroides were cultured in either yeast- or animal-based nutrient broths. The broths post-culture were investigated in terms of the contents of NAGlys and stimulatory effects towards GLP-1 production in GLUTag and NCI-H716 cell lines. Pure preparations of the detected NAGlys were further studied to evaluate stimulation of GLP-1 production and related cellular signalling evoked. The most potent NAGlys were also tested as ligands of key lipid GPCRs involved in the regulation of carbohydrate metabolism: GPR40/FFAR1, GPR55, GPR119, and GPR120/FFAR4. We found that Bacteroides potentiate GLP-1 production, depending on the strain and provided nutrient mix. Long-chain unsaturated oleoyl and arachidonoyl glycines, produced by B. thetaiotaomicron and B. intestinalis in the animal-based broth, were particularly effective in stimulation of GLP-1 secretion. They served as agonists of all the receptors under study expressed in GLP-1-producing cells. The obtained results broaden the knowledge of microbial signalling molecules and their role in regulation of carbohydrate homeostasis. They also emphasise the importance of balanced diet as a source of building blocks for commensal bacteria to produce efficient agonists of lipid GPCRs.
Collapse
Affiliation(s)
- Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland.
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, Lodz 90-237, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska Street 171/173, Lodz 90-530, Poland
| | - Marcin Szustak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Eliza Korkus
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Maria Koziołkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| |
Collapse
|
7
|
Zomeño MD, Malcampo M, Pérez-Vega KA, Pastor A, López-Roura M, Arrufat B, Atarés S, Ramos SJ, Alonso D, Subirana I, Muñoz-Aguayo D, Blanchart G, Gaixas S, Cabañero M, Tello S, Konstantinidou V, Hernando-Redondo J, Goday A, Castañer O, Schröder H, Fitó M. Effect on Satiety-Related Biomarkers of Bar Snacks Containing Chickpea Flour and Pork Protein. Nutrients 2024; 16:3180. [PMID: 39339780 PMCID: PMC11434683 DOI: 10.3390/nu16183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This project aims to establish the acceptability and satiety of a hybrid snack containing plant protein and a small percentage of animal protein compared to a meat-based snack. DESIGN Randomised, crossover, double-blind, controlled post-prandial trial involving 24 participants (18-30 years), with two interventions: (a) a hybrid snack containing plant protein derived from chickpeas and 6.6% lean high-quality pork meat; and (b) a meat-based snack containing 90% lean pork meat. METHODS General, life-style, sensory acceptability questionnaire, and the following laboratory analyses were performed: lipid profile, endocannabinoids, and related compounds. RESULTS Sensory questionnaires showed in general good acceptability for both bars. Additionally, there was a greater increase in glycemia at 30, 60, and 90 min after consuming the hybrid snack compared to the meat-based snack, with no changes in the lipid profile. Regarding the endocannabinoid compounds and related compounds, the compound N-palmitoleoyl ethanolamine in the acylethanolamide group showed higher levels overall following the consumption of the hybrid snack compared to the meat-based snack, particularly at 2 h. CONCLUSIONS The hybrid snack was associated with changes in endocannabinoid-like compounds. Therefore, it may provide a lasting satiating effect, while complementing the protein profile of plant-based foods with the quality of animal protein.
Collapse
Affiliation(s)
- María-Dolores Zomeño
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
| | - Mireia Malcampo
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
| | - Karla Alejandra Pérez-Vega
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Antoni Pastor
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Maria López-Roura
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
| | - Begoña Arrufat
- Fertinagro Biotech S.L., 44195 Teruel, Spain; (B.A.); (S.A.)
| | - Sergio Atarés
- Fertinagro Biotech S.L., 44195 Teruel, Spain; (B.A.); (S.A.)
| | | | - David Alonso
- Naturuel S.L., 44002 Teruel, Spain; (S.J.R.); (D.A.)
| | - Isaac Subirana
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
- Consortium Center for Biomedical Research Network (CIBER), M.P. Cardiovascular Diseases (CIBERcv), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Muñoz-Aguayo
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Gemma Blanchart
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
| | - Sònia Gaixas
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
| | - Marta Cabañero
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Epidemiology and Public Health (CIBEResp), Carlos III Health Institute, 28029 Madrid, Spain
| | - Susanna Tello
- Consortium Center for Biomedical Research Network (CIBER), M.P. Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | | | - Javier Hernando-Redondo
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Albert Goday
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Olga Castañer
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Epidemiology and Public Health (CIBEResp), Carlos III Health Institute, 28029 Madrid, Spain
| | - Helmut Schröder
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Epidemiology and Public Health (CIBEResp), Carlos III Health Institute, 28029 Madrid, Spain
| | - Montserrat Fitó
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.-D.Z.); (M.M.); (K.A.P.-V.); (A.P.); (M.L.-R.); (I.S.); (D.M.-A.); (G.B.); (M.C.); (J.H.-R.); (A.G.); (H.S.); (M.F.)
- Consortium Center for Biomedical Research Network (CIBER), M.P. Pathophysiology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
8
|
Davis MP. Novel drug treatments for pain in advanced cancer and serious illness: a focus on neuropathic pain and chemotherapy-induced peripheral neuropathy. Palliat Care Soc Pract 2024; 18:26323524241266603. [PMID: 39086469 PMCID: PMC11289827 DOI: 10.1177/26323524241266603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Drugs that are commercially available but have novel mechanisms of action should be explored as analgesics. This review will discuss haloperidol, miragabalin, palmitoylethanolamide (PEA), and clonidine as adjuvant analgesics or analgesics. Haloperidol is a sigma-1 receptor antagonist. Under stress and neuropathic injury, sigma-1 receptors act as a chaperone protein, which downmodulates opioid receptor activities and opens several ion channels. Clinically, there is only low-grade evidence that haloperidol improves pain when combined with morphine, methadone, or tramadol in patients who have cancer, pain from fibrosis, radiation necrosis, or neuropathic pain. Miragabalin is a gabapentinoid approved for the treatment of neuropathic pain in Japan since 2019. In randomized trials, patients with diabetic neuropathy have responded to miragabalin. Its long binding half-life on the calcium channel subunit may provide an advantage over other gabapentinoids. PEA belongs to a group of endogenous bioactive lipids called ALIAmides (autocoid local injury antagonist amides), which have a sense role in modulating numerous biological processes in particular non-neuronal neuroinflammatory responses to neuropathic injury and systemic inflammation. Multiple randomized trials and meta-analyses have demonstrated PEA's effectiveness in reducing pain severity arising from diverse pain phenotypes. Clonidine is an alpha2 adrenoceptor agonist and an imidazoline2 receptor agonist, which is U.S. Federal Drug Administration approved for attention deficit hyperactivity disorder in children, Tourette's syndrome, adjunctive therapy for cancer-related pain, and hypertension. Clonidine activation at alpha2 adrenoceptors causes downstream activation of inhibitory G-proteins (Gi/Go), which inhibits cyclic Adenosine monophosphate (AMP) production and hyperpolarizes neuron membranes, thus reducing allodynia. Intravenous clonidine has been used in terminally ill patients with poorly controlled symptoms, in particular pain and agitation.
Collapse
Affiliation(s)
- Mellar P. Davis
- Geisinger Commonwealth School of Medicine, 100 North Academy Avenue, Danville, PA 17822, USA
| |
Collapse
|
9
|
Son SE, Lee YJ, Shin YJ, Kim DH, Im DS. GPR55 Antagonist CID16020046 Attenuates Obesity-Induced Airway Inflammation by Suppressing Chronic Low-Grade Inflammation in the Lungs. Int J Mol Sci 2024; 25:7358. [PMID: 39000464 PMCID: PMC11242637 DOI: 10.3390/ijms25137358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
GPR55 is a receptor for lysophosphatidylinositols (LPIs) in digestive metabolites. Overnutrition leads to obesity, insulin resistance, and increased LPI levels in the plasma. The involvement of LPIs and GPR55 in adiposity, hepatic steatosis, and atherosclerosis has been previously elucidated. However, the therapeutic efficacy of GPR55 antagonists against obesity-induced airway inflammation has not been studied. The present study investigated whether CID16020046, a selective antagonist of GPR55, could modulate obesity-induced airway inflammation caused by a high-fat diet (HFD) in C57BL/6 mice. Administration of CID16020046 (1 mg/kg) inhibits HFD-induced adiposity and glucose intolerance. Analysis of immune cells in BALF showed that CID16020046 inhibited HFD-induced increase in immune cell infiltration. Histological analysis revealed the HFD induced hypersecretion of mucus and extensive fibrosis in the lungs. CID16020046 inhibited these HFD-induced pathological features. qRT-PCR revealed the HFD-induced increase in the expression of Ifn-γ, Tnf-α, Il-6, Il-13, Il-17A, Il-1β, Nlrp3, and Mpo mRNAs in the lungs. CID16020046 inhibited the HFD-induced increases in these genes. The expression levels of adipokines were regulated by the HFD and CID16020046. AdipoQ in the lungs and gonadal white adipose tissue was decreased by the HFD and reversed by CID16020046. In contrast, Lep was increased by the HFD and suppressed by CID16020046. The findings suggest the potential application of the GPR55 antagonist CID16020046 in obesity-induced airway inflammation.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Ye-Ji Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Yoon-Jung Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
| | - Dong-Hyun Kim
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-E.S.); (Y.-J.L.); (Y.-J.S.)
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
10
|
Duncan RS, Riordan SM, Gernon MC, Koulen P. Cannabinoids and endocannabinoids as therapeutics for nervous system disorders: preclinical models and clinical studies. Neural Regen Res 2024; 19:788-799. [PMID: 37843213 PMCID: PMC10664133 DOI: 10.4103/1673-5374.382220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 10/17/2023] Open
Abstract
Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body. They have been studied in cellular and animal models as well as in human clinical trials for their therapeutic benefits in several human diseases. Some of these include central nervous system (CNS) diseases and dysfunctions such as forms of epilepsy, multiple sclerosis, Parkinson's disease, pain and neuropsychiatric disorders. In addition, the endogenously produced cannabinoid lipids, endocannabinoids, are critical for normal CNS function, and if controlled or modified, may represent an additional therapeutic avenue for CNS diseases. This review discusses in vitro cellular, ex vivo tissue and in vivo animal model studies on cannabinoids and their utility as therapeutics in multiple CNS pathologies. In addition, the review provides an overview on the use of cannabinoids in human clinical trials for a variety of CNS diseases. Cannabinoids and endocannabinoids hold promise for use as disease modifiers and therapeutic agents for the prevention or treatment of neurodegenerative diseases and neurological disorders.
Collapse
Affiliation(s)
- R. Scott Duncan
- Department of Ophthalmology, School of Medicine, University of Missouri, Kansas, MO, USA
| | - Sean M. Riordan
- Department of Ophthalmology, School of Medicine, University of Missouri, Kansas, MO, USA
| | - Matthew C. Gernon
- Department of Ophthalmology, School of Medicine, University of Missouri, Kansas, MO, USA
| | - Peter Koulen
- Department of Ophthalmology, School of Medicine, University of Missouri, Kansas, MO, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas, MO, USA
| |
Collapse
|
11
|
Bottiroli S, Greco R, Franco V, Zanaboni A, Palmisani M, Vaghi G, Sances G, De Icco R, Tassorelli C. Peripheral Endocannabinoid Components and Lipid Plasma Levels in Patients with Resistant Migraine and Co-Morbid Personality and Psychological Disorders: A Cross-Sectional Study. Int J Mol Sci 2024; 25:1893. [PMID: 38339171 PMCID: PMC10855606 DOI: 10.3390/ijms25031893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Resistant migraine characterizes those patients who have failed at least three classes of migraine prophylaxis. These difficult-to-treat patients are likely to be characterized by a high prevalence of psychological disturbances. A dysfunction of the endocannabinoid system (ECS), including alteration in the levels of endocannabinoid congeners, may underlie several psychiatric disorders and the pathogenesis of migraines. Here we explored whether the peripheral gene expression of major components of the ECS and the plasma levels of endocannabinoids and related lipids are associated with psychological disorders in resistant migraine. Fifty-one patients (age = 46.0 ± 11.7) with resistant migraine received a comprehensive psychological evaluation according to the DSM-5 criteria. Among the patients, 61% had personality disorders (PD) and 61% had mood disorders (MD). Several associations were found between these psychological disorders and peripheral ECS alterations. Lower plasma levels of palmitoiletanolamide (PEA) were found in the PD group compared with the non-PD group. The MD group was characterized by lower mRNA levels of diacylglycerol lipase α (DAGLα) and CB2 (cannabinoid-2) receptor. The results suggest the existence of peripheral dysfunction in some components of the ECS and an alteration in plasma levels of PEA in patients with resistant migraine and mood or personality disorders.
Collapse
Affiliation(s)
- Sara Bottiroli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Valentina Franco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Annamaria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Michela Palmisani
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Grazia Sances
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| |
Collapse
|
12
|
Ahmed F, Torrens A, Mahler SV, Ferlenghi F, Huestis MA, Piomelli D. A Sensitive Ultrahigh-Performance Liquid Chromatography/Tandem Mass Spectrometry Method for the Simultaneous Analysis of Phytocannabinoids and Endocannabinoids in Plasma and Brain. Cannabis Cannabinoid Res 2024; 9:371-385. [PMID: 36367975 PMCID: PMC10874825 DOI: 10.1089/can.2022.0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are major chemical constituents of cannabis, which may interact either directly or indirectly with the endocannabinoid and endocannabinoid-like ("paracannabinoid") systems, two lipid-based signaling complexes that play important roles in physiology. Legislative changes emphasize the need to understand how THC and CBD might impact endocannabinoid and paracannabinoid signaling, and to develop analytical approaches to study such impact. In this study, we describe a sensitive and accurate method for the simultaneous quantification of THC, its main oxidative metabolites [11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)], CBD, and a representative set of endocannabinoid [anandamide and 2-arachidonoyl-sn-glycerol (2-AG)] and paracannabinoid [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] compounds. Analyte separation relies on the temperature-dependent shape selectivity properties of polymerically bonded C18 stationary phases. Materials and Methods: Analytes are extracted from tissues using acetonitrile precipitation followed by phospholipid removal. The ultrahigh-performance liquid chromatography/tandem mass spectrometry protocol utilizes a commercially available C18 polymeric-bonded phase column and a simple gradient elution system. Results: Ten-point calibration curves show excellent linearity (R2>0.99) over a wide range of analyte concentrations (0.02-500 ng/mL). Lowest limits of quantification are 0.05 ng/mL for anandamide, 0.1 ng/mL for 11-OH-THC and OEA, 0.2 ng/mL for THC and CBD, 0.5 ng/mL for 11-COOH-THC, 1.0 ng/mL for 2-AG, and 2.0 ng/mL for PEA. The lowest limits of detection are 0.02 ng/mL for anandamide, 0.05 ng/mL for 11-OH-THC and OEA, 0.1 ng/mL for THC and CBD, 0.2 ng/mL for 11-COOH-THC, 0.5 ng/mL for 2-AG, and 1.0 ng/mL for PEA. Conclusions: An application of the method is presented, which showed that phytocannabinoid administration elevates endocannabinoid levels in plasma and brain of adolescent male and female mice.
Collapse
Affiliation(s)
- Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Francesca Ferlenghi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
13
|
Herrera-Imbroda J, Flores-López M, Requena-Ocaña N, Araos P, García-Marchena N, Ropero J, Bordallo A, Suarez J, Pavón-Morón FJ, Serrano A, Mayoral F, Rodríguez de Fonseca F. Antidepressant Medication Does Not Contribute to the Elevated Circulating Concentrations of Acylethanolamides Found in Substance Use Disorder Patients. Int J Mol Sci 2023; 24:14788. [PMID: 37834235 PMCID: PMC10573451 DOI: 10.3390/ijms241914788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Circulating acylethanolamides (NAEs) are bioactive signaling molecules that modulate multiple homeostatic functions including mood and hedonic responses. Variations in their plasma concentrations are associated with substance use disorders (SUD) and recent studies suggest that psychotropic medication might influence its circulating levels, limiting its use as a clinical biomarker of addiction. In addition, they might have a role as mediators of the pharmacological effects of psychotropic drugs. Thus, in mild depression, the response to selective serotonin reuptake inhibitor-type antidepressants (SSRI) is associated with a marked increase in circulating NAEs. To further investigate if antidepressants are able to modify the plasma concentration of NAEs in SUD patients, we analyzed the circulating levels of NAEs in 333 abstinent and 175 healthy controls on the basis of the treatment with SSRI antidepressants. As described previously, SUD patients display higher concentrations of NAEs than those measured in a control population. This increase was not further modified by antidepressant therapy. Only marginal increases in palmitoylethanolamide (PEA), oleoylethanolamide (OEA), or docosatetraenoyl-ethanolamide (DEA) were found, and the net effect was very small. Thus, our study shows that treatment with SSRI-type antidepressants does not modify the clinical utility of monitoring enhanced NAE production as biomarkers of SUD. In addition, the possibility that a blunted NAE response to antidepressant therapy might be related to the loss of efficacy of SSRIs in dual depression emerges as an attractive hypothesis that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento de Psicología Básica, Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento de Psicobiología y Metodología, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Jessica Ropero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Antonio Bordallo
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Juan Suarez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento of Anatomía, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco J. Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Fermín Mayoral
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29001 Malaga, Spain
| |
Collapse
|
14
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
15
|
Su J, Luo Y, Hu S, Tang L, Ouyang S. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int J Mol Sci 2023; 24:13381. [PMID: 37686185 PMCID: PMC10487533 DOI: 10.3390/ijms241713381] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus is a chronic multifaceted disease with multiple potential complications, the treatment of which can only delay and prolong the terminal stage of the disease, i.e., type 2 diabetes mellitus (T2DM). The World Health Organization predicts that diabetes will be the seventh leading cause of death by 2030. Although many antidiabetic medicines have been successfully developed in recent years, such as GLP-1 receptor agonists and SGLT-2 inhibitors, single-target drugs are gradually failing to meet the therapeutic requirements owing to the individual variability, diversity of pathogenesis, and organismal resistance. Therefore, there remains a need to investigate the pathogenesis of T2DM in more depth, identify multiple therapeutic targets, and provide improved glycemic control solutions. This review presents an overview of the mechanisms of action and the development of the latest therapeutic agents targeting T2DM in recent years. It also discusses emerging target-based therapies and new potential therapeutic targets that have emerged within the last three years. The aim of our review is to provide a theoretical basis for further advancement in targeted therapies for T2DM.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Yingsheng Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Lu Tang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
16
|
De Filippo C, Costa A, Becagli MV, Monroy MM, Provensi G, Passani MB. Gut microbiota and oleoylethanolamide in the regulation of intestinal homeostasis. Front Endocrinol (Lausanne) 2023; 14:1135157. [PMID: 37091842 PMCID: PMC10113643 DOI: 10.3389/fendo.2023.1135157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
A vast literature strongly suggests that the endocannabinoid (eCB) system and related bioactive lipids (the paracannabinoid system) contribute to numerous physiological processes and are involved in pathological conditions such as obesity, type 2 diabetes, and intestinal inflammation. The gut paracannabinoid system exerts a prominent role in gut physiology as it affects motility, permeability, and inflammatory responses. Another important player in the regulation of host metabolism is the intestinal microbiota, as microorganisms are indispensable to protect the intestine against exogenous pathogens and potentially harmful resident microorganisms. In turn, the composition of the microbiota is regulated by intestinal immune responses. The intestinal microbial community plays a fundamental role in the development of the innate immune system and is essential in shaping adaptive immunity. The active interplay between microbiota and paracannabinoids is beginning to appear as potent regulatory system of the gastrointestinal homeostasis. In this context, oleoylethanolamide (OEA), a key component of the physiological systems involved in the regulation of dietary fat consumption, energy homeostasis, intestinal motility, and a key factor in modulating eating behavior, is a less studied lipid mediator. In the small intestine namely duodenum and jejunum, levels of OEA change according to the nutrient status as they decrease during food deprivation and increase upon refeeding. Recently, we and others showed that OEA treatment in rodents protects against inflammatory events and changes the intestinal microbiota composition. In this review, we briefly define the role of OEA and of the gut microbiota in intestinal homeostasis and recapitulate recent findings suggesting an interplay between OEA and the intestinal microorganisms.
Collapse
Affiliation(s)
- Carlotta De Filippo
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Alessia Costa
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | | | - Mariela Mejia Monroy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Gustavo Provensi
- Dipartimento di Neurofarba, Università di Firenze, Firenze, Italy
- *Correspondence: Maria Beatrice Passani, ; Gustavo Provensi,
| | - Maria Beatrice Passani
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
- *Correspondence: Maria Beatrice Passani, ; Gustavo Provensi,
| |
Collapse
|
17
|
Kytikova OY, Denisenko YK, Novgorodtseva TP, Kovalenko IS. Cannabinoids And Cannabinoid-Like Compounds: Biochemical Characterization And Pharmacological Perspectives. RUSSIAN OPEN MEDICAL JOURNAL 2023. [DOI: 10.15275/rusomj.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Publication interest in cannabinoids, including phytocannabinoids, endogenous cannabinoids, synthetic cannabinoids and cannabinomimetic compounds, is due to the therapeutic potential of these compounds in inflammatory pathology. Since recent years, scientific interest was focused on compounds with cannabinomimetic activity. The therapeutic use of phytocannabinoids and endocannabinoids is somewhat limited due to unresolved issues of dosing, toxicity and safety in humans, while cannabinoid-like compounds combine similar therapeutic effects with a high confirmed safety. Targets for endocannabinoids and phytocannabinoids are endocannabinoid receptors 1 and 2, G protein-coupled receptors (GPCRs), peroxisome proliferator-activated receptors (PPARs), and transient receptor potential ion channels (TRPs). Non-endocannabinoid N-acylethanolamines do not interact with cannabinoid receptors and exhibit agonist activity towards non-cannabinoid receptors, such as PPARs, GPCRs and TRPs. This literature review includes contemporary information on the biological activity, metabolism and pharmacological properties of cannabinoids and cannabinoid-like compounds, as well as their receptors. We established that only a few studies were devoted to the relationship of non-endocannabinoid N-acylethanolamines with non-cannabinoid receptors, such as PPARs, GPCRs, and also with TRPs. We have focused on issues that were insufficiently covered in the published sources in order to identify gaps in existing knowledge and determine the prospects for scientific research.
Collapse
|
18
|
The Mechanisms of GPR55 Receptor Functional Selectivity during Apoptosis and Proliferation Regulation in Cancer Cells. Int J Mol Sci 2023; 24:ijms24065524. [PMID: 36982628 PMCID: PMC10054013 DOI: 10.3390/ijms24065524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
GPR55 is a non-canonical cannabinoid receptor, important for cancer proliferation. Depending on the ligand, it induces either cell proliferation or death. The objective of the study was to establish the mechanisms of this multidirectional signaling. Using the CRISPR-Cas9 system, the GPR55, CB1, CB2, and GPR18 receptor knockouts of the MDA-MB-231 line were obtained. After the CB2 receptor knockout, the pro-apoptotic activity of the pro-apoptotic ligand docosahexaenoyl dopamine (DHA-DA) slightly increased, while the pro-proliferative activity of the most active synthetic ligand of the GPR55 receptor (ML-184) completely disappeared. On the original cell line, the stimulatory effect of ML-184 was removed by the CB2 receptor blocker and by GPR55 receptor knockout. Thus, it can be confidently assumed that when proliferation is stimulated with the participation of the GPR55 receptor, a signal is transmitted from the CB2 receptor to the GPR55 receptor due to the formation of a heterodimer. GPR18 was additionally involved in the implementation of the pro-apoptotic effect of DHA-DA, while the CB1 receptor is not involved. In the implementation of the pro-apoptotic action of DHA-DA, the elimination of Gα13 led to a decrease in cytotoxicity. The obtained data provide novel details to the mechanism of the pro-proliferative action of GPR55.
Collapse
|
19
|
Maccarrone M. Need for Methods to Investigate Endocannabinoid Signaling. Methods Mol Biol 2023; 2576:1-8. [PMID: 36152173 DOI: 10.1007/978-1-0716-2728-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Endocannabinoids (eCBs) are endogenous lipids able to bind to cannabinoid receptors, the primary molecular targets of the cannabis (Cannabis sativa) active principle Δ9-tetrahydrocannabinol. During the last 20 years, several N-acylethanolamines and acylesters have been shown to act as eCBs, and a complex array of receptors, metabolic enzymes, and transporters (that altogether form the so-called "eCB system") has been shown to finely tune their manifold biological activities. It appears now urgent to develop methods and protocols that allow to assay in a specific and quantitative manner the distinct components of the eCB system and that can properly localize them within the cell. A brief overview of eCBs and of the proteins that bind, transport, and metabolize these lipids is presented here, in orderto put in a better perspective, the relevance of methodologies that help to disclose molecular details of eCB signaling in health and disease. Proper methodological approaches form also the basis for a more rationale and effective drug design and therapeutic strategy to combat human disorders.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy.
| |
Collapse
|
20
|
Santa-María C, López-Enríquez S, Montserrat-de la Paz S, Geniz I, Reyes-Quiroz ME, Moreno M, Palomares F, Sobrino F, Alba G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023; 15:nu15010224. [PMID: 36615882 PMCID: PMC9824542 DOI: 10.3390/nu15010224] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
In 2010, the Mediterranean diet was recognized by UNESCO as an Intangible Cultural Heritage of Humanity. Olive oil is the most characteristic food of this diet due to its high nutraceutical value. The positive effects of olive oil have often been attributed to its minor components; however, its oleic acid (OA) content (70-80%) is responsible for its many health properties. OA is an effective biomolecule, although the mechanism by which OA mediates beneficial physiological effects is not fully understood. OA influences cell membrane fluidity, receptors, intracellular signaling pathways, and gene expression. OA may directly regulate both the synthesis and activities of antioxidant enzymes. The anti-inflammatory effect may be related to the inhibition of proinflammatory cytokines and the activation of anti-inflammatory ones. The best-characterized mechanism highlights OA as a natural activator of sirtuin 1 (SIRT1). Oleoylethanolamide (OEA), derived from OA, is an endogenous ligand of the peroxisome proliferator-activated receptor alpha (PPARα) nuclear receptor. OEA regulates dietary fat intake and energy homeostasis and has therefore been suggested to be a potential therapeutic agent for the treatment of obesity. OEA has anti-inflammatory and antioxidant effects. The beneficial effects of olive oil may be related to the actions of OEA. New evidence suggests that oleic acid may influence epigenetic mechanisms, opening a new avenue in the exploration of therapies based on these mechanisms. OA can exert beneficial anti-inflammatory effects by regulating microRNA expression. In this review, we examine the cellular reactions and intracellular processes triggered by OA in T cells, macrophages, and neutrophils in order to better understand the immune modulation exerted by OA.
Collapse
Affiliation(s)
- Consuelo Santa-María
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Seville, 41012 Seville, Spain
- Correspondence: (C.S.-M.); (S.L.-E.)
| | - Soledad López-Enríquez
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
- Correspondence: (C.S.-M.); (S.L.-E.)
| | - Sergio Montserrat-de la Paz
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - María Edith Reyes-Quiroz
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Manuela Moreno
- Departamento de Farmacia y Nutrición, Hospital Costa del Sol, 29603 Málaga, Spain
| | - Francisca Palomares
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Francisco Sobrino
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| | - Gonzalo Alba
- Departamento de Bioquímica Médica, Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Seville, 41009 Seville, Spain
| |
Collapse
|
21
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
22
|
Plasma and interstitial levels of endocannabinoids and N-acylethanolamines in patients with chronic widespread pain and fibromyalgia: a systematic review and meta-analysis. Pain Rep 2022; 7:e1045. [PMID: 36381652 PMCID: PMC9646668 DOI: 10.1097/pr9.0000000000001045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is an essential endogenous signaling system that may be involved in the pathophysiology of chronic widespread pain (CWP) and fibromyalgia syndrome (FMS). Further research is required to understand the role of ECS in the development and maintenance of CWP and FMS. We provided the first systematic review and meta-analysis exploring the clinical relevance of ECS alterations in patients with CWP and FMS by comparing plasma and interstitial levels of endocannabinoids and N-acylethanolamines in patients and healthy controls. A systematic search was conducted to identify studies that measured plasma and/or interstitial levels of endocannabinoids and N-acylethanolamines in patients with CWP or FMS and healthy controls. A total of 8 studies were included for qualitative review, and 7 studies were included for meta-analysis. The findings identified increased plasma levels of oleoylethanolamide and stearoylethanolamide in patients with FMS compared with those in controls (P = 0.005 and P < 0.0001, respectively) and increased plasma levels of palmitoylethanolamide and interstitial levels of stearoylethanolamide in patients with CWP compared with those in controls (P = 0.05 and P = 0.001, respectively). There were no significant differences in other ECS parameters. Most studies did not account for variables that may influence ECS function, including cannabis use, concomitant medication, comorbidities, physical activity, stress levels, circadian rhythm, sleep quality, and dietary factors, suggesting that future studies should explore the correlation between these variables and endocannabinoid activity. We highlight the importance of investigating endocannabinoid activity in CWP and FMS because it will underpin future translational research in the area.
Collapse
|
23
|
Seo Y, Tak H, Park D, Song H, Choe S, Park C, Park B. The Neuroprotective Effect of NEUROMIDE, a Compound Bioidentical to Commensal Bacteria Metabolites. Life (Basel) 2022; 12:life12101529. [PMID: 36294963 PMCID: PMC9605164 DOI: 10.3390/life12101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
GPR119 is a novel cannabinoid receptor that is primarily expressed in the pancreas and gastrointestinal tract and has beneficial effects on glucose homeostasis exerted through the stimulation of GLP-1 secretion, as demonstrated in the rodent brain. GLP-1 also has important anti-inflammatory effects in chronic inflammatory diseases, including type 1 and 2 diabetes, asthma, psoriasis, and neurodegenerative disorders. Recently, there has been increasing interest in the effect of the gut microbiota on both the gut and the brain. However, few studies have examined how gut microbes affect brain health through the endocannabinoid system. NEUROMIDE is a compound that shares a bioidentical structure with certain commensal bacterial metabolites, acting as a CB1 and GPR119 agonist. In an in vitro system exposed to reactive oxygen species (ROS), pretreatment with NEUROMIDE resulted in a significant increase in cell viability. The ROS-exposed system also showed decreased acetylcholine and an increase in inflammatory cytokines such as IL-1β, changes that were counteracted in a dose-dependent manner in the NEUROMIDE treatment groups. To measure the effectiveness of NEUROMIDE in an in vivo system, we used scopolamine-treated mice as a neurodegenerative disease model and performed a series of passive avoidance tests to observe and quantify the cognitive impairment of the mice. Mice in the NEUROMIDE treatment group had increased latency time, thus indicating an improvement in their cognitive function. Furthermore, the NEUROMIDE treatment groups showed dose-dependent increases in acetylcholine along with decreases in TNF-α and IL-1β. These experiments demonstrate that NEUROMIDE can potentially be used for neuroprotection and the improvement of cognitive ability.
Collapse
Affiliation(s)
- Yoonhee Seo
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Hyunji Tak
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Dohee Park
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Hyejin Song
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Sooyoung Choe
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Chaehyeong Park
- Pomona College, 333 N College Way, Claremont, CA 91711, USA or
| | - Byeongdeog Park
- Dr. Raymond Lab Inc., #301 GwanPyung 2 RO, 7-7, Daejeon 34019, Korea
- Correspondence: ; Tel.: +82-10-8449-0229
| |
Collapse
|
24
|
Why Multitarget Vasodilatory (Endo)cannabinoids are Not Effective as Antihypertensive Compounds after Chronic Administration: Comparison of Their Effects on Systemic and Pulmonary Hypertension. Pharmaceuticals (Basel) 2022; 15:ph15091119. [PMID: 36145339 PMCID: PMC9503677 DOI: 10.3390/ph15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic and pulmonary hypertension are multifactorial, high-pressure diseases. The first one is a civilizational condition, and the second one is characterized by a very high mortality rate. Searching for new therapeutic strategies is still an important task. (Endo)cannabinoids, known for their strong vasodilatory properties, have been proposed as possible drugs for different types of hypertension. Unfortunately, our review, in which we summarized all publications found in the PubMed database regarding chronic administration of (endo)cannabinoids in experimental models of systemic and pulmonary hypertension, does not confirm any encouraging suggestions, being based mainly on in vitro and acute in vivo experiments. We considered vasodilator or blood pressure (BP) responses and cardioprotective, anti-oxidative, and the anti-inflammatory effects of particular compounds and their influence on the endocannabinoid system. We found that multitarget (endo)cannabinoids failed to modify higher BP in systemic hypertension since they induced responses leading to decreased and increased BP. In contrast, multitarget cannabidiol and monotarget ligands effectively treated pulmonary and systemic hypertension, respectively. To summarize, based on the available literature, only (endo)cannabinoids with a defined site of action are recommended as potential antihypertensive compounds in systemic hypertension, whereas both mono- and multitarget compounds may be effective in pulmonary hypertension.
Collapse
|
25
|
da Silva EM, Yariwake VY, Alves RW, de Araujo DR, Andrade-Oliveira V. Crosstalk between incretin hormones, Th17 and Treg cells in inflammatory diseases. Peptides 2022; 155:170834. [PMID: 35753504 DOI: 10.1016/j.peptides.2022.170834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells constantly crosstalk with the gut microbiota and immune cells of the gut lamina propria. Enteroendocrine cells, secrete hormones, such as incretin hormones, which participate in host physiological events, such as stimulating insulin secretion, satiety, and glucose homeostasis. Interestingly, evidence suggests that the incretin pathway may influence immune cell activation. Consequently, drugs targeting the incretin hormone signaling pathway may ameliorate inflammatory diseases such as inflammatory bowel diseases, cancer, and autoimmune diseases. In this review, we discuss how these hormones may modulate two subsets of CD4 + T cells, the regulatory T cells (Treg)/Th17 axis important for gut homeostasis: thus, preventing the development and progression of inflammatory diseases. We also summarize the main experimental and clinical findings using drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP-1) signaling pathways and their great impact on conditions in which the Treg/Th17 axis is disturbed such as inflammatory diseases and cancer. Understanding the role of incretin stimulation in immune cell activation and function, might contribute to new therapeutic designs for the treatment of inflammatory diseases, autoimmunity, and tumors.
Collapse
Affiliation(s)
| | - Victor Yuji Yariwake
- Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Renan Willian Alves
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil
| | | | - Vinicius Andrade-Oliveira
- Paulista School of Medicine, Federal University of São Paulo (UNIFESP), Brazil; Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil; Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil.
| |
Collapse
|
26
|
della Rocca G, Re G. Palmitoylethanolamide and Related ALIAmides for Small Animal Health: State of the Art. Biomolecules 2022; 12:biom12091186. [PMID: 36139024 PMCID: PMC9496254 DOI: 10.3390/biom12091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
ALIAmides are a family of fatty acid amides whose name comes from their mechanism of action, i.e., the Autacoid Local Injury Antagonism (ALIA). Actually, the ALIAmide parent molecule, palmitoylethanolamide (PEA), is locally produced on demand from a cell membrane precursor in order to control immune-inflammatory cell responses, avert chronic non-resolving inflammation, and limit the resulting clinical signs. ALIAmide sister compounds, such as Adelmidrol and palmitoylglucosamine, share mechanisms of action with PEA and may also increase endogenous levels of PEA. Provided that their respective bioavailability is properly addressed (e.g., through decreasing the particle size through micronization), exogenously administered ALIAmides thus mimic or sustain the prohomeostatic functions of endogenous PEA. The aim of the present paper is to review the main findings on the use of ALIAmides in small animals as a tribute to the man of vision who first believed in this “according-to-nature” approach, namely Francesco della Valle. After briefly presenting some key issues on the molecular targets, metabolism, and pharmacokinetics of PEA and related ALIAmides, here we will focus on the preclinical and clinical studies performed in dogs and cats. Although more data are still needed, ALIAmides may represent a novel and promising approach to small animal health.
Collapse
Affiliation(s)
- Giorgia della Rocca
- Department of Veterinary Medicine, Centro di Ricerca sul Dolore Animale (CeRiDA), University of Perugia, 06123 Perugia, Italy
- Correspondence:
| | - Giovanni Re
- Department of Veterinary Sciences, Division of Pharmacology & Toxicology, University of Turin, 10095 Grugliasco, Torino, Italy
| |
Collapse
|
27
|
Selective Supercritical CO 2 Extraction and Biocatalytic Valorization of Cucurbita pepo L. Industrial Residuals. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154783. [PMID: 35897957 PMCID: PMC9332722 DOI: 10.3390/molecules27154783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
The valorization of biomass residuals constitutes a key aspect of circular economy and thus a major challenge for the scientific community. Among industrial wastes, plant residuals could represent an attractive source of bioactive compounds. In this context, a residue from the industrial extraction of Cucurbita pepo L. seeds, whose oil is commercialized for the treatment of genito-urinary tract pathologies, has been selected. Supercritical CO2 technology has been employed as a highly selective "green" methodology allowing the recovery of compounds without chemical degradation and limited operational costs. Free fatty acids have been collected in mild conditions while an enrichment in sterols has been selectively obtained from sc-CO2 extracts by appropriate modulation of process parameters (supercritical fluid pressure and temperature), hence demonstrating the feasibility of the technique to target added-value compounds in a selective way. Obtained fatty acids were thus converted into the corresponding ethanol carboxamide derivatives by lipase-mediated biocatalyzed reactions, while the hydroxylated derivatives of unsaturated fatty acids were obtained by stereoselective hydration reaction under reductive conditions in the presence of a selected FADH2-dependent oleate hydratase.
Collapse
|
28
|
GPR55 and GPR119 Receptors Contribute to the Processing of Neuropathic Pain in Rats. Pharmaceuticals (Basel) 2022; 15:ph15010067. [PMID: 35056124 PMCID: PMC8778754 DOI: 10.3390/ph15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/05/2022] Open
Abstract
Orphan G-protein-coupled receptors (GPCR) comprise a large number of receptors which are widely distributed in the nervous system and represent an opportunity to identify new molecular targets in pain medicine. GPR55 and GPR119 are two orphan GPCR receptors whose physiological function is unclear. The aim was to explore the participation of spinal GPR55 and GPR119 in the processing of neuropathic pain in rats. Mechanical allodynia was evaluated using von Frey filaments. Protein localization and modulation were measured by immunohistochemistry and western blotting, respectively. Intrathecal administration of CID16020046 (selective GPR55 antagonist) or AS1269574 (selective GPR119 agonist) produced a dose-dependent antiallodynic effect, whereas O1062 (GPR55 agonist) and G-protein antagonist peptide dose-dependently prevented the antiallodynic effect of CID16020046 and AS1269574, respectively. Both GPR55 and GPR119 receptors were expressed in spinal cord, dorsal root ganglia and sciatic nerve, but only GPR119 was downregulated after 14 days of spinal nerve ligation. Data suggest that GPR55 and GPR119 participate in the processing of neuropathic pain and could be useful targets to manage neuropathic pain disorders.
Collapse
|
29
|
Lee SJ, Im DS. GPR55 Antagonist CID16020046 Protects against Atherosclerosis Development in Mice by Inhibiting Monocyte Adhesion and Mac-1 Expression. Int J Mol Sci 2021; 22:ijms222313084. [PMID: 34884889 PMCID: PMC8658038 DOI: 10.3390/ijms222313084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
GPR55 recognizes several lipid molecules such as lysophosphatidylinositol. GPR55 expression was reported in human monocytes. However, its role in monocyte adhesion and atherosclerosis development has not been studied. The role of GPR55 in monocyte adhesion and atherosclerosis development was investigated in human THP-1 monocytes and ApoE-/- mice using O-1602 (a potent agonist of GPR55) and CID16020046 (a specific GPR55 antagonist). O-1602 treatment significantly increased monocyte adhesion to human umbilical vein endothelial cells, and the O-1602-induced adhesion was inhibited by treatment with CID16020046. O-1602 induced the expression of Mac-1 adhesion molecules, whereas CID16020046 inhibited this induction. Analysis of the promoter region of Mac-1 elucidated the binding sites of AP-1 and NF-κB between nucleotides -750 and -503 as GPR55 responsive elements. O-1602 induction of Mac-1 was found to be dependent on the signaling components of GPR55, that is, Gq protein, Ca2+, CaMKK, and PI3K. In Apo-/- mice, administration of CID16020046 ameliorated high-fat diet-induced atherosclerosis development. These results suggest that high-fat diet-induced GPR55 activation leads to the adhesion of monocytes to endothelial cells via induction of Mac-1, and CID16020046 blockage of GPR55 could suppress monocyte adhesion to vascular endothelial cells through suppression of Mac-1 expression, leading to protection against the development of atherosclerosis.
Collapse
Affiliation(s)
- Seung-Jin Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Dong-Soon Im
- East West Pharmaceutical Research Center, Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-7399; Fax: +82-2-961-9580
| |
Collapse
|
30
|
Paternoster S, Simpson PV, Kokh E, Kizilkaya HS, Rosenkilde MM, Mancera RL, Keating DJ, Massi M, Falasca M. Pharmacological and structure-activity relationship studies of oleoyl-lysophosphatidylinositol synthetic mimetics. Pharmacol Res 2021; 172:105822. [PMID: 34411732 DOI: 10.1016/j.phrs.2021.105822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023]
Abstract
Metabolic diseases, such as obesity and type 2 diabetes, are relentlessly spreading worldwide. The beginning of the 21st century has seen the introduction of mechanistically novel types of drugs, aimed primarily at keeping these pathologies under control. In particular, an important family of therapeutics exploits the beneficial physiology of the gut-derived glucagon-like peptide-1 (GLP-1), with important clinical benefits, from glycaemic control to cardioprotection. Nonetheless, these protein-based drugs act systemically as exogenous GLP-1 mimetics and are not exempt from side effects. The food-derived lipid oleoyl-lysophosphatidylinositol (LPI) is a potent GPR119-dependent GLP-1 secreting agent. Here we present a structure-activity relationship (SAR) study of a synthetic library of oleoyl-LPI mimetics capable to induce the physiological release of GLP-1 from gastrointestinal enteroendocrine cells (EECs). The best lead compounds have shown potent and efficient release of GLP-1 in vitro from human and murine cells, and in vivo in diabetic db/db mice. We have also generated a molecular model of oleoyl-LPI, as well as its best performing analogues, interacting with the orthosteric site of GPR119, laying foundational evidence for their pharmacological activity.
Collapse
Affiliation(s)
- Silvano Paternoster
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Peter V Simpson
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Elena Kokh
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ricardo L Mancera
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
31
|
Oral Capsaicinoid Administration Alters the Plasma Endocannabinoidome and Fecal Microbiota of Reproductive-Aged Women Living with Overweight and Obesity. Biomedicines 2021; 9:biomedicines9091246. [PMID: 34572432 PMCID: PMC8471891 DOI: 10.3390/biomedicines9091246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Capsaicinoids, the pungent principles of chili peppers and prototypical activators of the transient receptor potential of the vanilloid type-1 (TRPV1) channel, which is a member of the expanded endocannabinoid system known as the endocannabinoidome (eCBome), counteract food intake and obesity. In this exploratory study, we examined the blood and stools from a subset of the participants in a cohort of reproductive-aged women with overweight/obesity who underwent a 12-week caloric restriction of 500 kcal/day with the administration of capsaicinoids (two capsules containing 100 mg of a capsicum annuum extract (CAE) each for a daily dose of 4 mg of capsaicinoids) or a placebo. Samples were collected immediately before and after the intervention, and plasma eCBome mediator levels (from 23 participants in total, 13 placebo and 10 CAE) and fecal microbiota taxa (from 15 participants in total, 9 placebo and 6 CAE) were profiled using LC-MS/MS and 16S metagenomic sequencing, respectively. CAE prevented the reduced caloric-intake-induced decrease in beneficial eCBome mediators, i.e., the TRPV1, GPR119 and/or PPARα agonists, N-oleoyl-ethanolamine, N-linoleoyl-ethanolamine and 2-oleoyl-glycerol, as well as the anti-inflammatory N-acyl-ethanolamines N-docosapentaenyl-ethanolamine and N-docosahexaenoyl-ethanolamine. CAE produced few but important alterations in the fecal microbiota, such as an increased relative abundance of the genus Flavonifractor, which is known to be inversely associated with obesity. Correlations between eCBome mediators and other potentially beneficial taxa were also observed, thus reinforcing the hypothesis of the existence of a link between the eCBome and the gut microbiome in obesity.
Collapse
|
32
|
della Rocca G, Gamba D. Chronic Pain in Dogs and Cats: Is There Place for Dietary Intervention with Micro-Palmitoylethanolamide? Animals (Basel) 2021; 11:952. [PMID: 33805489 PMCID: PMC8065429 DOI: 10.3390/ani11040952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The management of chronic pain is an integral challenge of small animal veterinary practitioners. Multiple pharmacological agents are usually employed to treat maladaptive pain including opiates, non-steroidal anti-inflammatory drugs, anticonvulsants, antidepressants, and others. In order to limit adverse effects and tolerance development, they are often combined with non-pharmacologic measures such as acupuncture and dietary interventions. Accumulating evidence suggests that non-neuronal cells such as mast cells and microglia play active roles in the pathogenesis of maladaptive pain. Accordingly, these cells are currently viewed as potential new targets for managing chronic pain. Palmitoylethanolamide is an endocannabinoid-like compound found in several food sources and considered a body's own analgesic. The receptor-dependent control of non-neuronal cells mediates the pain-relieving effect of palmitoylethanolamide. Accumulating evidence shows the anti-hyperalgesic effect of supplemented palmitoylethanolamide, especially in the micronized and co-micronized formulations (i.e., micro-palmitoylethanolamide), which allow for higher bioavailability. In the present paper, the role of non-neuronal cells in pain signaling is discussed and a large number of studies on the effect of palmitoylethanolamide in inflammatory and neuropathic chronic pain are reviewed. Overall, available evidence suggests that there is place for micro-palmitoylethanolamide in the dietary management of chronic pain in dogs and cats.
Collapse
Affiliation(s)
- Giorgia della Rocca
- Department of Veterinary Medicine, Centro di Ricerca sul Dolore Animale (CeRiDA), Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Davide Gamba
- Operational Unit of Anesthesia, Centro Veterinario Gregorio VII, 00165 Roma, Italy;
- Freelance, DG Vet Pain Therapy, 24124 Bergamo, Italy
| |
Collapse
|
33
|
Mollica MP, Trinchese G, Cimmino F, Penna E, Cavaliere G, Tudisco R, Musco N, Manca C, Catapano A, Monda M, Bergamo P, Banni S, Infascelli F, Lombardi P, Crispino M. Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients 2021; 13:1111. [PMID: 33800688 PMCID: PMC8066999 DOI: 10.3390/nu13041111] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding-the main way to modify milk fat composition-may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.
Collapse
Affiliation(s)
- Maria P. Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.M.); (S.B.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Paolo Bergamo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.M.); (S.B.)
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| |
Collapse
|