1
|
Wei Z, Yuan J, Chen Q, Pang J, Shi Q, Peng B, Wei M, Wei Y, Zhang Z, Lu X, Lin X, Liang Q. Bifunctional chemokine-nanobody fusion protein enhances neutrophil recruitment to impede Acanthamoeba immune evasion. EBioMedicine 2025; 115:105685. [PMID: 40222104 PMCID: PMC12013128 DOI: 10.1016/j.ebiom.2025.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Acanthamoeba keratitis (AK) is a severe infectious disease that causes serious visual impairment and low quality of life. This study aims to investigate the immune landscape in AK, with the goal of improving treatment outcomes through immunotherapy. METHODS We conducted single-cell transcriptome sequencing on corneal tissues from nine patients (3 AK patients, 3 patients with fungal keratitis and 3 patients with bacterial keratitis). Bioinformatic analysis calculated the cell subsets and their proportions within different infectious keratitis. CellChat analysis elucidated the differential expression of chemokines in keratitis. After that, screening amebic nano-antibodies, synthesizing antibody-chemokine fusion proteins, and validated their affinity and chemotactic abilities in vitro and in vivo. And assessing of the therapeutic efficacy of antibody-chemokine fusion proteins. FINDINGS The UMAP plot demonstrated the 13 major cell clusters in infectious keratitis. Compared with non-AK group, the neutrophil proportion of AK group is markedly reduced. Cell communication indicated a diminished CXCL pathway in AK. Acanthamoeba-specific antibodies were obtained by screening a natural antibody library derived from alpacas. The amoeba-specific antibodies were conjugated with the CXCL1 chemokine, and this fusion protein exhibited robust binding affinity to Acanthamoeba and chemotactic capacity both in vitro and in vivo. Furthermore, in vivo animal investigations indicated that the fusion protein presented excellent therapeutic effect and could effectively eliminate the Acanthamoeba burden. INTERPRETATION This study revealed an immune evasion mechanism employed by Acanthamoeba and offered a therapeutic approach. It presents promising potential for enhancing the treatment of infectious diseases by targeting and overcoming challenges posed by immune evasion. FUNDING This work was funded by National Natural Science Foundation of China (grant number 82171017 and 82471041) and the Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes (PWD&RPP-MRI, JYY2023-6).
Collapse
Affiliation(s)
- Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Jianlong Yuan
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Jinding Pang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Qingquan Shi
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Bo Peng
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Mingda Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Zhibao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Xinxin Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China.
| |
Collapse
|
2
|
Boonhok R, Senghoi W, Sangkanu S, Lim CL, Pudla M, Pereira MDL, Wilairatana P, Mahboob T, Rahman MA, Utaisincharoen P, Hiransai P, Nissapatorn V. Acanthamoeba castellanii-Mediated Reduction of Interleukin-1β Secretion and Its Association With Macrophage Autophagy. SCIENTIFICA 2025; 2025:3430892. [PMID: 40109888 PMCID: PMC11922611 DOI: 10.1155/sci5/3430892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Noncanonical autophagy including unconventional protein secretion has been extensively studied. Our work focused on a leaderless IL-1β protein secretion from human macrophage in response to Acanthamoeba castellanii components, Acanthamoeba culture supernatant (CS) and cell lysate (CL), as well as its association with macrophage autophagy. Phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages were treated with Acanthamoeba components of pathogenic (ATCC50739) and nonpathogenic (ATCC30010) strains in vitro. The data showed that Acanthamoeba treatment resulted in low IL-1β secretion from macrophages. In addition, Acanthamoeba CL of both strains was able to upregulate autophagy-related (Atg) protein 8, an autophagy marker, whereas Acanthamoeba CS downregulated Atg8 expression. We further manipulated autophagy and found that autophagy induction by starvation diminished IL-1β secretion while autophagy inhibition by 3-methyladenine (3MA) increased IL-1β secretion. Interestingly, in the presence of Acanthamoeba components either under starvation or 3MA treatment, IL-1β secretion was significantly reduced. Transcriptional expression of other ATG genes, i.e., ATG6, ATG7, and ATG5, were investigated and showed that their mRNA expression was maintained at the basal level under A. castellanii CS or CL treatment. Inflammasome-related genes, NLRP3 and CASPASE1, were upregulated following A. castellanii 50739 CS treatment but not in A. castellanii 50739 CL-treated condition. However, both conditions were able to increase IL-1β mRNA expression. TEM micrographs revealed that 3MA treatment induced the formation of large vacuoles and accumulation of autophagosome at the edge of THP-1 macrophages. However, the number and size of their structures were declined in the presence of A. castellanii 50739 CS with 3MA. Furthermore, immunofluorescence staining demonstrated the association between Atg8/LC3 and IL-1β expression, where downregulation of Atg8 by A. castellanii 50739 CS led to the upregulation of IL-1β. Altogether, the data indicate that Acanthamoeba can manipulate macrophage autophagy, thereby controlling low IL-1β secretion. The expression of autophagy- and inflammasome-related genes also indicates multiple mechanisms in IL-1β secretion in response to Acanthamoeba components. However, further characterization of Atg proteins and investigations into other intracellular pathways or defense mechanisms are needed to fully understand the unconventional secretion of IL-1β in macrophages. This knowledge could eventually lead to the development of innovative therapeutic strategies against Acanthamoeba infection by modulating autophagy or macrophage responses.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Wilaiwan Senghoi
- Department of Medical Technology, School of Allied Health Sciences, and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Suthinee Sangkanu
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Matsayapan Pudla
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tooba Mahboob
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Pongsak Utaisincharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Poonsit Hiransai
- Department of Medical Technology, School of Allied Health Sciences, and Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Banerjee CT, Conlan S, Mostaghim A, Michelin A, Arduino M, Mattioli M, Haston JC, Das S, Seyedmousavi A, Chang BH, O'Connell EM, Kanakry CG, Dilara A, Quezado M, Gea‐Banacloche J, Deming C, Segre JA, Han A, Cuellar‐Rodriguez J. Acanthamoeba Infection in a Hematopoietic Cell Transplant Recipient: Challenges in Diagnosis, Management, and Source Identification. Transpl Infect Dis 2025; 27:e14425. [PMID: 39731681 PMCID: PMC11827738 DOI: 10.1111/tid.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
We report a case of Acanthamoeba infection in an HCT recipient with steroid-refractory GVHD. We highlight the multiple challenges that free-living ameba infections present to the clinician, the clinical laboratory, transplant infectious disease for review, hospital epidemiology if nosocomial transmission is considered, and public health officials, as exposure source identification can be a significant challenge. Transplant physicians should include Acanthamoeba infections in their differential diagnosis of a patient with skin, sinus, lung, and/or brain involvement.
Collapse
Affiliation(s)
- Camellia T. Banerjee
- Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID)National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Sean Conlan
- Microbial Genomics SectionNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Anahita Mostaghim
- Hospital Epidemiology ServiceClinical Center, NIHBethesdaMarylandUSA
| | - Angela Michelin
- Hospital Epidemiology ServiceClinical Center, NIHBethesdaMarylandUSA
| | - Matthew Arduino
- Division of Healthcare Quality and PromotionNational Center for Emerging and Zoonotic Infectious Diseases, CDCAtlantaGeorgiaUSA
| | - Mia Mattioli
- Division of Foodborne, Waterborne and Environmental DiseasesNational Center for Emerging and Zoonotic Infectious Diseases, CDCAtlantaGeorgiaUSA
| | - Julia C. Haston
- Division of Foodborne, Waterborne and Environmental DiseasesNational Center for Emerging and Zoonotic Infectious Diseases, CDCAtlantaGeorgiaUSA
| | - Sanchita Das
- Microbiology Service, Department of Laboratory MedicineClinical Center, NIHBethesdaMarylandUSA
| | - Amir Seyedmousavi
- Microbiology Service, Department of Laboratory MedicineClinical Center, NIHBethesdaMarylandUSA
| | - Bickey H. Chang
- Laboratory of Immunogenetics, Division of Intramural ResearchNIAID, NIHBethesdaMarylandUSA
| | - Elise M. O'Connell
- Clinical Parasitology Unit, Laboratory of Parasitic DiseasesNIAID, NIHBethesdaMarylandUSA
| | - Christopher G. Kanakry
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer Institute (NCI)NIHBethesdaMarylandUSA
| | - Akbulut Dilara
- Laboratory of Pathology, Center for Cancer ResearchNCI, NIHBethesdaMarylandUSA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer ResearchNCI, NIHBethesdaMarylandUSA
| | | | - Clay Deming
- Microbial Genomics SectionNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Julia A. Segre
- Microbial Genomics SectionNational Human Genome Research Institute, NIHBethesdaMarylandUSA
| | - Alison Han
- Hospital Epidemiology ServiceClinical Center, NIHBethesdaMarylandUSA
| | - Jennifer Cuellar‐Rodriguez
- Transplant Infectious Diseases, Laboratory of Clinical Immunology and Microbiology, Division of Intramural ResearchNIAID, NIHBethesdaMarylandUSA
| |
Collapse
|
4
|
Chimplee S, Mitsuwan W, Zulkifli M, Eawsakul K, Ongtanasup T, Sangkanu S, Mahboob T, Oliveira SM, Wiart C, Ramamoorthy S, Pereira MDL, Saravanabhavan SS, Wilairatana P, Nissapatorn V. Comparative efficacy of Knema retusa extract delivery via PEG- b-PCL, niosome, and their combination against Acanthamoeba triangularis genotype T4: characterization, inhibition, anti-adhesion, and cytotoxic activity. PeerJ 2024; 12:e18452. [PMID: 39559326 PMCID: PMC11572385 DOI: 10.7717/peerj.18452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Background Acanthamoeba spp. is a waterborne, opportunistic protozoan that can cause amebic keratitis and granulomatous amebic encephalitis. Knema retusa is a native tree in Malaysia, and its extracts possess a broad range of biological activities. Niosomes are non-ionic surfactant-based vesicle formations and suggest a future targeted drug delivery system. Copolymer micelle (poly(ethylene glycol)-block-poly(ɛ-caprolactone); PEG-b-PCL) is also a key constituent of niosome and supports high stability and drug efficacy. To establish Knema retusa extract (KRe) loading in diverse nanocarriers via niosome, PEG-b-PCL micelle, and their combination and to study the effect of all types of nanoparticles (NPs) on Acanthamoeba viability, adherent ability, elimination of adherence, and cytotoxicity. Methods In this study, we characterized niosomes, PEG-b-PCL, and their combination loaded with KRe and tested the effect of these NPs on Acanthamoeba triangularis stages. KRe-loaded PEG-b-PCL, KRe-loaded niosome, and KRe-loaded PEG-b-PCL plus niosome were synthesized and characterized regarding particle size and charge, yield, encapsulation efficiency (EE), and drug loading content (DLC). The effect of these KRe-loaded NPs on trophozoite and cystic forms of A. triangularis was assessed through assays of minimal inhibitory concentration (MIC), using trypan blue exclusion to determine the viability. The effect of KRe-loaded NPs was also determined on A. triangularis trophozoite for 24-72 h. Additionally, the anti-adhesion activity of the KRe-loaded niosome on trophozoites was also performed on a 96-well plate. Cytotoxicity activity of KRe-loaded NPs was assessed on VERO and HaCaT cells using MTT assay. Results KRe-loaded niosome demonstrated a higher yielded (87.93 ± 6.03%) at 286 nm UV-Vis detection and exhibited a larger size (199.3 ± 29.98 nm) and DLC (19.63 ± 1.84%) compared to KRe-loaded PEG-b-PCL (45.2 ± 10.07 nm and 2.15 ± 0.25%). The EE (%) of KRe-loaded niosome was 63.67 ± 4.04, which was significantly lower than that of the combination of PEG-b-PCL and niosome (79.67 ± 2.08). However, the particle charge of these NPs was similar (-28.2 ± 3.68 mV and -28.5 ± 4.88, respectively). Additionally, KRe-loaded niosome and KRe-loaded PEG-b-PCL plus niosome exhibited a lower MIC at 24 h (0.25 mg/mL), inhibiting 90-100% of Acanthamoeba trophozoites which lasted 72 h. KRe-loaded niosome affected adherence by around 40-60% at 0.125-0.25 mg/mL and removed Acanthamoeba adhesion on the surface by about 90% at 0.5 mg/mL. Cell viability of VERO and HaCaT cells treated with 0.125 mg/mL of KRe-loaded niosome and KRe-loaded PEG-b-PCL plus niosome exceeded 80%. Conclusion Indeed, niosome and niosome plus PEG-b-PCL were suitable nanocarrier-loaded KRe, and they had a greater nanoparticle property to test with high activities against A. triangularis on the reduction of adherence ability and demonstration of its low toxicity to VERO and HaCaT cells.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- School of Languages and General Education, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence in Innovation of Essential Oil, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Masyitah Zulkifli
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Komgrit Eawsakul
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Tassanee Ongtanasup
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Tooba Mahboob
- Department of Pharmaceutical Biology, UCSI University, Kuala Lumpur, Malaysia
| | - Sonia M.R. Oliveira
- Faculty of Dental Medicine, Catholic University, Viseu, Portugal
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, University Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Siva Ramamoorthy
- School of Bio Sciences & Technology, Vellore Institute of Technology (VIT), Velllore, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Shanmuga Sundar Saravanabhavan
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Missions Research Foundation (DU), Chennai Campus, Paiyanoor, Chennai, India
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
5
|
Rasti S, Taghipour T, Delavari M, Hooshyar H, Moosavi GA, Arbabi M. Morphological Characterization and Genotyping of Acanthamoeba Isolates From Oral and Nasal Samples of Cancer Patients in Kashan, Iran. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:4071707. [PMID: 39569149 PMCID: PMC11578656 DOI: 10.1155/2024/4071707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Background: Acanthamoeba species are recognized as the most prevalent free-living amoebae (FLA). They can cause granulomatous amebic encephalitis (GAE) and pulmonary and ocular infections. The present study aimed to isolate and identify Acanthamoeba genotypes in cancer patients referred to Kashan's hospitals in Central Iran. Methods: This cross-sectional study was conducted with oral and nasal swab samples collected from a hundred cancer patients referred to Kashan's Beheshti and Yasrebi hospitals during 2019-2020. The samples were cultured in 1.5% non-nutrient agar (NNA) with heat-killed Escherichia coli and examined for "FLA." A polymerase chain reaction (PCR) assay amplifying the 18S rRNA gene was performed, and Acanthamoeba-positive isolates were subjected to nucleotide sequencing to identify their genotypes. Results: The prevalence of Acanthamoeba infection was 51% in the oral cavity and 38% in the nasal samples of cancer patients. The most frequent Acanthamoeba cysts were (51.3%) wrinkled polygonal and sized 9.55-11.5 μm (Group II). Acanthamoeba genotypes T4, T11, and T5 were identified in the oral cavity samples, whereas T4 and T11 were detected in the nasal samples. Conclusion: The prevalence of Acanthamoeba infection in oral and nasal cancer patients was higher in Kashan, Iran, compared to other countries. Due to the high rate of oral Acanthamoeba contamination, oral sampling is recommended for better detection of this protozoan. Since T4 is the predominant genotype that can cause serious diseases in high-risk groups, increasing physicians' awareness of infections associated with Acanthamoeba and preventive and control measures are strongly suggested.
Collapse
Affiliation(s)
- Sima Rasti
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
- Department of Parasitology & Mycology, School of Medicine, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Tayebeh Taghipour
- Department of Parasitology & Mycology, School of Medicine, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Mahdi Delavari
- Department of Parasitology & Mycology, School of Medicine, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Hossein Hooshyar
- Department of Parasitology & Mycology, School of Medicine, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Gholam Abbas Moosavi
- Department of Statistics and Public Health, School of Health, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Mohsen Arbabi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
- Department of Parasitology & Mycology, School of Medicine, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| |
Collapse
|
6
|
Hamid MWA, Bin Abd Majid R, Victor Ernest VFK, Mohamed Shakrin NNS, Mohamad Hamzah F, Haque M. A Narrative Review of Acanthamoeba Isolates in Malaysia: Challenges in Infection Management and Natural Therapeutic Advancements. Cureus 2024; 16:e72851. [PMID: 39493340 PMCID: PMC11530292 DOI: 10.7759/cureus.72851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Acanthamoeba, a free-living amoeba (FLA) found in diverse ecosystems, poses significant health risks globally, particularly in Malaysia. It causes severe infectious diseases, e.g., Acanthamoeba keratitis (AK), primarily affecting individuals who wear contact lenses, along with granulomatous amoebic encephalitis (GAE), a rare but often life-threatening condition among immunocompromised individuals. AK has become increasingly prevalent in Malaysia and is linked to widespread environmental contamination and improper contact lens hygiene. Recent studies highlight Acanthamoeba's capacity to serve as a "Trojan horse" for amoeba-resistant bacteria (ARBs), contributing to hospital-associated infections (HAIs). These symbiotic relationships and the resilience of Acanthamoeba cysts make treatment challenging. Current diagnostic methods in Malaysia rely on microscopy and culture, though molecular procedures like polymerase chain reaction (PCR) are employed for more precise detection. Treatment options remain limited due to the amoeba's cyst resistance to conventional therapies. However, recent advancements in natural therapeutics, including using plant extracts such as betulinic acid from Pericampylus glaucus and chlorogenic acid from Lonicera japonica, have shown promising in vitro results. Additionally, nanotechnology applications, mainly using gold and silver nanoparticles to enhance drug efficacy, are emerging as potential solutions. Further, in vivo studies and clinical trials must validate these findings. This review highlights the requirement for continuous research, public health strategies, and interdisciplinary collaboration to address the growing threat of Acanthamoeba infections in Malaysia while exploring the country's rich biodiversity for innovative therapeutic solutions.
Collapse
Affiliation(s)
| | - Roslaini Bin Abd Majid
- Medical Parasitology and Entomology, National Defence University of Malaysia, Kuala Lumpur, MYS
| | | | | | - Firdaus Mohamad Hamzah
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
7
|
Mahdavi F, Fatemi M, Mohammad Rahimi H, Niyyati M, Yadegar A, Mirjalali H. Identification of Candida albicans and non-MRSA Staphylococcus aureus in free-living amoebae isolated from the hospital wards; an alarm for distribution of nosocomial infections via FLA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3749-3759. [PMID: 38415666 DOI: 10.1080/09603123.2024.2323131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Free-living amoebae (FLA) are isolated from the hospital environments and known as Trojan horses for medical essential microorganisms. This study aimed to investigate the prevalence and the presence of FLA and two critical agents of nosocomial infections, in the hospital wards. Sixty samples were collected from four communities and cultured onto non-nutrient agar (NNA). After total DNA extraction, FLA were characterized using PCR and sequencing. The presence of Candida albicans and Staphylococcus aureus was evaluated using real-time and conventional PCR, respectively. Acanthamoeba sp. was characterized in 30 (50%) samples. Two (6.6%) and one (3.3%) samples were positive for Vahlkampfiidae and Vermamoeba vermiformis, respectively . S. aureus was detected in 13 (43.3%) of samples, while none of them were positive for methicillin-resistant gene. C. albicans DNA was detected in one (3.3%) FLA-positive sample. The isolation of FLA from hospital suggests an essential role these eukaryotes in the inter-ward circulation of nosocomial infections.
Collapse
Affiliation(s)
- Fatemeh Mahdavi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziye Fatemi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Borges SDL, de Macedo EDS, da Silva FAV, Ataíde BJDA, Mendes NDSF, Passos ADCF, de Moraes SAS, Herculano AM, Oliveira KRHM, Bahia CP, Dolabella SS, Batista EDJO. Experimental Granulomatous Amebic Encephalitis Caused by Acanthamoeba castellanii. Trop Med Infect Dis 2024; 9:145. [PMID: 39058187 PMCID: PMC11281140 DOI: 10.3390/tropicalmed9070145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acanthamoeba genus can affect humans with diseases such as granulomatous amebic encephalitis (GAE), a highly lethal neuroinfection. Several aspects of the disease still need to be elucidated. Animal models of GAE have advanced our knowledge of the disease. This work tested Wistar rats (Rattus norvegicus albinus) as an animal model of GAE. For this, 32 animals were infected with 1 × 106A. castellanii trophozoites of the T4 genotype. Ameba recovery tests were carried out using agar plates, vascular extravasation assays, behavioral tests, and histopathological technique with H/E staining. Data were subjected to linear regression analysis, one-way ANOVA, and Tukey's test, performed in the GraphPad Prism® 8.0 program, with a significance level of p < 0.05. The results revealed the efficiency of the model. Amebae were recovered from the liver, lungs, and brain of infected animals, and there were significant encephalic vascular extravasations and behavioral changes in these animals, but not in the control animals. However, not all infected animals showed positive histopathology for the analyzed organs. Nervous tissues were the least affected, demonstrating the role of the BBB in the defense of the CNS. Supported by the demonstrated evidence, we confirm the difficulties and the feasibilities of using rats as an animal model of GAE.
Collapse
Affiliation(s)
- Samuel da Luz Borges
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
- Laboratório de Biologia, Campus Castanhal, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Castanhal 68740-970, Brazil
| | - Eberson da Silva de Macedo
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| | - Felipe Alexandre Vinagre da Silva
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| | - Brenda Jaqueline de Azevedo Ataíde
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Nívia de Souza Franco Mendes
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Adelaide da Conceição Fonseca Passos
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Suellen Alessandra Soares de Moraes
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Karen Renata Herculano Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil; (B.J.d.A.A.); (N.d.S.F.M.); (A.d.C.F.P.); (S.A.S.d.M.); (A.M.H.); (K.R.H.M.O.)
| | - Carlomagno Pacheco Bahia
- Laboratório de Neuroplasticidade, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66055-240, Brazil;
| | - Silvio Santana Dolabella
- Laboratório de Entomologia e Parasitologia Tropical, Universidade Federal de Sergipe, Aracajú 49060-108, Brazil;
| | - Evander de Jesus Oliveira Batista
- Laboratório de Protozoologia, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém 66055-240, Brazil; (E.d.S.d.M.); (F.A.V.d.S.); (E.d.J.O.B.)
| |
Collapse
|
9
|
Pezeshki A, Tajic S, Farahmandian P, Haniloo A, Mahmmodzadeh A, Niyyati M, Behniafar H. Phylogenetic analysis of Acanthamoeba isolated from soil samples and nasal cavities of patients with malignancy: a public health concern in the northwest of Iran. Trans R Soc Trop Med Hyg 2024; 118:367-375. [PMID: 38240056 DOI: 10.1093/trstmh/trad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/28/2023] [Accepted: 12/22/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The genus Acanthamoeba is reported from various environmental sources and can cause multiple complications, including chronic amoebic aeratitis and amoebic granulomatous encephalitis. This study investigated the presence and genotyping of Acanthamoeba in the soil of parks and patients with malignancies referred to health centers in Zanjan city, Iran. METHODS In this cross-sectional study, 200 soil samples were collected from amusement parks in Zanjan city from September 2017 to May 2018. Samples were cultured on 1.5% non-nutrient agar, and the Acanthamoeba genus was identified using the morphological method. PCR was performed on all positive environmental samples, and six microscopically positive clinical samples belonged to our previous study. DNA sequencing of 18S rRNA was performed to analyze the genetic pattern of some PCR-positive isolates. RESULTS Microscopic results showed that 96 (48%) soil samples were positive. PCR confirmed all positive cases of clinical samples and 84 soil samples. Out of the PCR-positive samples, 20 soil samples and five clinical samples were sequenced successfully. All soil isolates belonged to the T4 genotype, and three and two clinical samples belonged to T4 and T5 genotypes, respectively. CONCLUSION : The presence of Acanthamoeba in both the environment and clinical samples of Zanjan city suggests paying greater attention to the infections caused by it.
Collapse
Affiliation(s)
- Ali Pezeshki
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Shadi Tajic
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Parvin Farahmandian
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Ali Haniloo
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Abbas Mahmmodzadeh
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, 1701706 Tehran, Iran
| | - Hamed Behniafar
- Department of Medical Parasitology, Sarab Faculty of Medical Sciences, 54731 Sarab, East Azerbaijan, Iran
| |
Collapse
|
10
|
Chen L, Han W, Jing W, Feng M, Zhou Q, Cheng X. Novel anti- Acanthamoeba effects elicited by a repurposed poly (ADP-ribose) polymerase inhibitor AZ9482. Front Cell Infect Microbiol 2024; 14:1414135. [PMID: 38863831 PMCID: PMC11165085 DOI: 10.3389/fcimb.2024.1414135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Acanthamoeba infection is a serious public health concern, necessitating the development of effective and safe anti-Acanthamoeba chemotherapies. Poly (ADP-ribose) polymerases (PARPs) govern a colossal amount of biological processes, such as DNA damage repair, protein degradation and apoptosis. Multiple PARP-targeted compounds have been approved for cancer treatment. However, repurposing of PARP inhibitors to treat Acanthamoeba is poorly understood. Methods In the present study, we attempted to fill these knowledge gaps by performing anti-Acanthamoeba efficacy assays, cell biology experiments, bioinformatics, and transcriptomic analyses. Results Using a homology model of Acanthamoeba poly (ADP-ribose) polymerases (PARPs), molecular docking of approved drugs revealed three potential inhibitory compounds: olaparib, venadaparib and AZ9482. In particular, venadaparib exhibited superior docking scores (-13.71) and favorable predicted binding free energy (-89.28 kcal/mol), followed by AZ9482, which showed a docking score of -13.20 and a binding free energy of -92.13 kcal/mol. Notably, the positively charged cyclopropylamine in venadaparib established a salt bridge (through E535) and a hydrogen bond (via N531) within the binding pocket. For comparison, AZ9482 was well stacked by the surrounding aromatic residues including H625, Y652, Y659 and Y670. In an assessment of trophozoites viability, AZ9482 exhibited a dose-and time-dependent anti-trophozoite effect by suppressing Acanthamoeba PARP activity, unlike olaparib and venadaparib. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay revealed AZ9482 induced trophozoite necrotic cell death rather than apoptosis. Transcriptomics analyses conducted on Acanthamoeba trophozoites treated with AZ9482 demonstrated an atlas of differentially regulated proteins and genes, and found that AZ9482 rapidly upregulates a multitude of DNA damage repair pathways in trophozoites, and intriguingly downregulates several virulent genes. Analyzing gene expression related to DNA damage repair pathway and the rate of apurinic/apyrimidinic (AP) sites indicated DNA damage efficacy and repair modulation in Acanthamoeba trophozoites following AZ9482 treatment. Discussion Collectively, these findings highlight AZ9482, as a structurally unique PARP inhibitor, provides a promising prototype for advancing anti-Acanthamoeba drug research.
Collapse
Affiliation(s)
- Lijun Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Han
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, China
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Cardoso IR, de Lima CS, dos Reis RB, Pinto ACA, Pissinatti T, Kugelmeier T, Neto SFDC, da Silva FA, Santos HLC. Occurrence of Free-Living Amoebae in Non-Human Primate Gut. Trop Med Infect Dis 2024; 9:108. [PMID: 38787041 PMCID: PMC11125615 DOI: 10.3390/tropicalmed9050108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 05/25/2024] Open
Abstract
The gut microbiome reflects health and predicts possible disease in hosts. A holistic view of this community is needed, focusing on identifying species and dissecting how species interact with their host and each other, regardless of whether their presence is beneficial, inconsequential, or detrimental. The distribution of gut-associated eukaryotes within and across non-human primates is likely driven by host behavior and ecology. To ascertain the existence of free-living amoebae (FLA) in the gut of wild and captive non-human primates, 101 stool samples were collected and submitted to culture-dependent microscopy examination and DNA sequencing. Free-living amoebae were detected in 45.4% (46/101) of fecal samples analyzed, and their morphological characteristics matched those of Acanthamoeba spp., Vermamoeba spp., heterolobosean amoeboflagellates and fan-shaped amoebae of the family Vannellidae. Sequence analysis of the PCR products revealed that the suspected amoebae are highly homologous (99% identity and 100% query coverage) with Acanthamoeba T4 genotype and Vermamoeba vermiformis amoebae. The results showed a great diversity of amoebae in the non-human primate's microbiome, which may pose a potential risk to the health of NHPs. To our knowledge, this is the first report of free-living amoebae in non-human primates that are naturally infected. However, it is unknown whether gut-borne amoebae exploit a viable ecological niche or are simply transient residents in the gut.
Collapse
Affiliation(s)
- Igor Rodrigues Cardoso
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| | - Clezia Siqueira de Lima
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
- Instituto de Saúde de Nova Friburgo, da Universidade Federal Fluminense, Nova Friburgo 28625-650, Brazil
| | - Rhagner Bonono dos Reis
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| | - Ana Cristina Araujo Pinto
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Thalita Pissinatti
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Tatiana Kugelmeier
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | | | - Fabio Alves da Silva
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Helena Lúcia Carneiro Santos
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| |
Collapse
|
12
|
Menezes SA, Tasca T. Extracellular vesicles in parasitic diseases - from pathogenesis to future diagnostic tools. Microbes Infect 2024; 26:105310. [PMID: 38316376 DOI: 10.1016/j.micinf.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Parasitic diseases are still a major public health problem especially among individuals of low socioeconomic status in underdeveloped countries. In recent years it has been demonstrated that parasites can release extracellular vesicles that participate in the host-parasite communication, immune evasion, and in governing processes associated with host infection. Extracellular vesicles are membrane-bound structures released into the extracellular space that can carry several types of biomolecules, including proteins, lipids, nucleic acids, and metabolites, which directly impact the target cells. Extracellular vesicles have attracted wide attention due to their relevance in host-parasite communication and for their potential value in applications such as in the diagnostic biomarker discovery. This review of the literature aimed to join the current knowledge on the role of extracellular vesicles in host-parasite interaction and summarize its molecular content, providing information for the acquisition of new tools that can be used in the diagnosis of parasitic diseases. These findings shed light to the potential of extracellular vesicle cargo derived from protozoan parasites as novel diagnostic tools.
Collapse
Affiliation(s)
- Saulo Almeida Menezes
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| | - Tiana Tasca
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| |
Collapse
|
13
|
Sierra-López F, Castelan-Ramírez I, Hernández-Martínez D, Salazar-Villatoro L, Segura-Cobos D, Flores-Maldonado C, Hernández-Ramírez VI, Villamar-Duque TE, Méndez-Cruz AR, Talamás-Rohana P, Omaña-Molina M. Extracellular Vesicles Secreted by Acanthamoeba culbertsoni Have COX and Proteolytic Activity and Induce Hemolysis. Microorganisms 2023; 11:2762. [PMID: 38004773 PMCID: PMC10673465 DOI: 10.3390/microorganisms11112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Several species of Acanthamoeba genus are potential pathogens and etiological agents of several diseases. The pathogenic mechanisms carried out by these amoebae in different target tissues have been documented, evidencing the relevant role of contact-dependent mechanisms. With the purpose of describing the pathogenic processes carried out by these protozoans more precisely, we considered it important to determine the emission of extracellular vesicles (EVs) as part of the contact-independent pathogenicity mechanisms of A. culbertsoni, a highly pathogenic strain. Through transmission electronic microscopy (TEM) and nanoparticle tracking analysis (NTA), EVs were characterized. EVs showed lipid membrane and a size between 60 and 855 nm. The secretion of large vesicles was corroborated by confocal and TEM microscopy. The SDS-PAGE of EVs showed proteins of 45 to 200 kDa. Antigenic recognition was determined by Western Blot, and the internalization of EVs by trophozoites was observed through Dil-labeled EVs. In addition, some EVs biological characteristics were determined, such as proteolytic, hemolytic and COX activity. Furthermore, we highlighted the presence of leishmanolysin in trophozites and EVs. These results suggest that EVs are part of a contact-independent mechanism, which, together with contact-dependent ones, allow for a better understanding of the pathogenicity carried out by Acanthamoeba culbertsoni.
Collapse
Affiliation(s)
- Francisco Sierra-López
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Ismael Castelan-Ramírez
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Dolores Hernández-Martínez
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Lizbeth Salazar-Villatoro
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - David Segura-Cobos
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Catalina Flores-Maldonado
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico;
| | - Verónica Ivonne Hernández-Ramírez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - Tomás Ernesto Villamar-Duque
- General Biotery, Faculty of Superior Studies Iztacala, Biology, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico;
| | - Adolfo René Méndez-Cruz
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Patricia Talamás-Rohana
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - Maritza Omaña-Molina
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| |
Collapse
|
14
|
Pourabbasi Ardekan A, Niyyati M, Saberi R, Zanjirani Farahani L, Fatemi M. Isolation and genotyping of Acanthamoeba species and Vahlkampfiidae in the harsh environmental conditions in the centre of Iran. JOURNAL OF WATER AND HEALTH 2023; 21:1572-1579. [PMID: 37902210 PMCID: wh_2023_203 DOI: 10.2166/wh.2023.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Different species of free-living amoeba (FLA) have been abundantly isolated in harsh environmental conditions such as hot springs and brackish water. The present study aimed to isolate, genotype, and evaluate the pathogenicity of FLAs in Qom Roud, a large river, in the centre of Iran. About 500 mL of water samples (n = 30) were collected from each sampling site and were investigated for the presence of FLAs using morphological and molecular characters. Genotype identification was performed using DNA sequencing and a phylogenetic tree was constructed with the MEGA X software. The pathogenic potential of all positive isolates was evaluated using the tolerance ability test. Morphological and molecular analysis indicated that 14 (46.66%) and two (6.66%) water samples were positive for Acanthamoeba species and Vahlkampfiidae, respectively. According to sequence analysis, Acanthamoeba isolates related to the T4 genotype and Vahlkampfiidae sequences were similar to Naegleria philippinensis. In the next step, thermo- and osmotolerance tests indicated four Acanthamoeba strains are extremely pathogenic. Our data showed the presence of potentially pathogenic Acanthamoeba T4 genotype and N. philippinensis in the super harsh Qom Roud. Contamination of water with virulent T4 genotype of Acanthamoeba may pose risk factors for contact lens users, children, and immunocompromised people.
Collapse
Affiliation(s)
- Azam Pourabbasi Ardekan
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saberi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Leyli Zanjirani Farahani
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziye Fatemi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Łanocha-Arendarczyk N, Kot K, Baranowska-Bosiacka I, Kupnicka P, Przydalska D, Łanocha A, Chlubek D, Wojciechowska-Koszko I, Kosik-Bogacka DI. Macroelement and Microelement Levels in the Urine in Experimental Acanthamoebiasis. Pathogens 2023; 12:1039. [PMID: 37623999 PMCID: PMC10458488 DOI: 10.3390/pathogens12081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Free-living amoebas can impact the excretion of macroelements and microelements in urine. The aim of the present study was to examine the concentrations of macroelements, including calcium (Ca), phosphorus (P), sodium (Na), potassium (K), and magnesium (Mg), as well as microelements such as manganese (Mn), zinc (Zn), copper (Cu), iron (Fe), and chromium (Cr), in the urine during acanthamoebiasis while considering the host's immunological status. This is the first study to show an increase in urinary excretion of Ca, Mn, Cu, Fe, Na, and Cr, along with a decreased excretion of K, in immunocompetent mice 16 days post Acanthamoeba sp. infection. In the final phase of infection (24 dpi), there was a further decrease in urinary K excretion and a lower level of P in Acanthamoeba sp. infected immunocompetent hosts. During acanthamoebiasis in immunosuppressed hosts, increased excretion of Zn, Fe, and Cr was observed at the beginning of the infection, and increased Na excretion only at 16 days post Acanthamoeba sp. infection. Additionally, host immunosuppression affected the concentration of Fe, Cr, Zn, Cu, Mn, and Ca in urine.
Collapse
Affiliation(s)
- Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Dagmara Przydalska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Iwona Wojciechowska-Koszko
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Danuta Izabela Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
16
|
Karimi A, Kheirandish F, Javadi Mamaghani A, Taghipour N, Mousavi SF, Aghajani A, Zebardast N, Faraji M, Fallahi S. Identification and genotyping of Acanthamoeba spp. in the water resources of western Iran. Parasite Epidemiol Control 2023; 22:e00308. [PMID: 37638113 PMCID: PMC10450349 DOI: 10.1016/j.parepi.2023.e00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 08/29/2023] Open
Abstract
Background Acanthamoeba spp. is opportunistic amoeba that resides in water, soil, and air. Some pathogenic genotypes of the genus of Acanthamoeba can cause granulomatous amoebic encephalitis (GAE) in people with a defective immune system. The parasite can also cause Acanthamoeba keratitis (AK) among contact lens users. This study was conducted to isolate and identify the Acanthamoeba genotypes in water resources in Lorestan province, western Iran. Methods Collected 72 water samples from surface and groundwater (springs and aqueducts) in Lorestan province. Samples were filtered and cultured in non-nutrient 1.5% agar medium covered with Escherichia coli (E. coli) at 25 °C. DNA extraction was done and the PCR reaction was performed to detect the Acanthamoeba spp. The positive PCR products were sequenced to determine the genotypes of Acanthamoeba. Results Out of 72 examined water samples, 23.61% were positive for Acanthamoeba sp. by PCR. From PCR-positive samples, 8 (47.05%) samples were T4 genotypes and others were other Acanthamoeba genotypes (T1-T23). Therefore, approximately half of the genotypes belong to the pathogenic T4 genotype. Conclusions The water examined samples in western provinces of Iran have the potential risk factor for public health. Therefore, the efforts of healthcare providers are needed to identify, train, and prevention from human infections.
Collapse
Affiliation(s)
- Azadeh Karimi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farnaz Kheirandish
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amirreza Javadi Mamaghani
- Hepatitis Research Center, Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Syedeh Fatemeh Mousavi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Aghajani
- Department of Medical Parasitology and Mycology, faculty of medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nozhat Zebardast
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Majid Faraji
- MSc in Parasitology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirzad Fallahi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
17
|
Wang Y, Jiang L, Zhao Y, Ju X, Wang L, Jin L, Fine RD, Li M. Biological characteristics and pathogenicity of Acanthamoeba. Front Microbiol 2023; 14:1147077. [PMID: 37089530 PMCID: PMC10113681 DOI: 10.3389/fmicb.2023.1147077] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Acanthamoeba is an opportunistic protozoa, which exists widely in nature and is mainly distributed in soil and water. Acanthamoeba usually exists in two forms, trophozoites and cysts. The trophozoite stage is one of growth and reproduction while the cyst stage is characterized by cellular quiescence, commonly resulting in human infection, and the lack of effective monotherapy after initial infection leads to chronic disease. Acanthamoeba can infect several human body tissues such as the skin, cornea, conjunctiva, respiratory tract, and reproductive tract, especially when the tissue barriers are damaged. Furthermore, serious infections can cause Acanthamoeba keratitis, granulomatous amoebic encephalitis, skin, and lung infections. With an increasing number of Acanthamoeba infections in recent years, the pathogenicity of Acanthamoeba is becoming more relevant to mainstream clinical care. This review article will describe the etiological characteristics of Acanthamoeba infection in detail from the aspects of biological characteristic, classification, disease, and pathogenic mechanism in order to provide scientific basis for the diagnosis, treatment, and prevention of Acanthamoeba infection.
Collapse
Affiliation(s)
- Yuehua Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Linzhe Jiang
- General Surgery, Jilin People’s Hospital, Jilin City, China
| | - Yitong Zhao
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Xiaohong Ju
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Le Wang
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Liang Jin
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Ryan D. Fine
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York City, NY, United States
| | - Mingguang Li
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
- *Correspondence: Mingguang Li,
| |
Collapse
|
18
|
Taghipour T, Rasti S, Saba M, Delavari M, Moosavi GA, Hooshyar H, Eslamirad Z. Molecular detection and genotype identification of Acanthamoeba species from bronchoalveolar lavage of patients with pulmonary symptoms suspected of cancer. J Parasit Dis 2022; 46:1028-1035. [PMID: 36457768 PMCID: PMC9606164 DOI: 10.1007/s12639-022-01524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022] Open
Abstract
Acanthamoeba spp. are the most common free-living amoeba worldwide, inducing life-threatening diseases such as Granulomatous Amoebic Encephalitis, pulmonary infection, and amoebic keratitis. This study aimed to identify the FLA and Acanthamoeba genotypes in patients with pulmonary symptoms suspected of cancer in Kashan's hospitals, Kashan, Iran. This cross-sectional study was conducted on 97 bronchoalveolar lavage samples of patients with respiratory symptoms suspected of lung cancer, who were admitted to the Shahid Beheshti Hospital of Kashan from 2019 to 2020. The samples were cultured onto 1.5% non-nutrient agar enriched with killed Escherichia coli and examined for the presence of FLA. Following amoeba isolation and DNA extraction, Acanthamoeba spp. were determined by Polymerase Chain Reaction using JDP1 and JDP2 primers, which amplified a 490 bp fragment from the 18 S rDNA gene. Eighteen Acanthamoeba isolates were sequenced, and the genotypes were identified. The prevalence of FLA and Acanthamoeba and the relationship between symptoms and demographic variables were analyzed with SPSS Software version 16. The prevalence rates of FLA and Acanthamoeba in the BAL samples was 86.6% and 73.2%, respectively. All Acanthamoeba isolates belonged to the T4 genotype. The most symptoms among Acanthamoeba-positive patients were dyspnea and cough; however, their difference was not statistically significant. The findings indicated the high prevalence of FLA and Acanthamoeba in BAL in the population suspected of cancer in Kashan. Since the T4 genotype is a pathogenic genotype of Acanthamoeba, training health and improving sanitation levels would help to prevent infection.
Collapse
Affiliation(s)
- Tayebeh Taghipour
- Department of Parasitology and Mycology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sima Rasti
- Department of Parasitology and Mycology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadali Saba
- Department of Internal Medicine, Faculty of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Delavari
- Department of Parasitology and Mycology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholam Abbas Moosavi
- Department of Statistics and Public Health, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Hooshyar
- Department of Parasitology and Mycology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Eslamirad
- Department of Parasitology and Mycology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
19
|
Rayamajhee B, Willcox MDP, Henriquez FL, Petsoglou C, Subedi D, Carnt N. Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol 2022; 38:975-990. [PMID: 36109313 DOI: 10.1016/j.pt.2022.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
The opportunistic protist Acanthamoeba, which interacts with other microbes such as bacteria, fungi, and viruses, shows significant similarity in cellular and functional aspects to human macrophages. Intracellular survival of microbes in this microbivorous amoebal host may be a crucial step for initiation of infection in higher eukaryotic cells. Therefore, Acanthamoeba-microbe adaptations are considered an evolutionary model of macrophage-pathogen interactions. This paper reviews Acanthamoeba as an emerging human pathogen and different ecological interactions between Acanthamoeba and microbes that may serve as environmental training grounds and a genetic melting pot for the evolution, persistence, and transmission of potential human pathogens.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| | - Mark D P Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Blantyre, South Lanarkshire, G72 0LH, UK
| | - Constantinos Petsoglou
- Sydney and Sydney Eye Hospital, Southeastern Sydney Local Health District, Sydney, Australia; Save Sight Institute, University of Sydney, Sydney, Australia
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
20
|
Saberi R, Nakhaei M, Fakhar M, Zarrinfar H, Sharifpour A, Hezarjaribi HZ. Molecular identification and genotyping of Acanthamoeba spp., in bronchoalveolar lavage fluid from immunocompetent patients with chronic respiratory disorders (CRD). Parasitol Res 2022; 121:3013-3017. [PMID: 35930044 PMCID: PMC9362591 DOI: 10.1007/s00436-022-07609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/24/2022] [Indexed: 10/26/2022]
Abstract
This study aimed to investigate the presence and genotyping of Acanthamoeba spp., in the bronchoalveolar lavage fluid (BALF) of immunocompetent patients with chronic respiratory disorders (CRD). In this study, 211 BALF samples were collected from patients with CRD during the COVID-19 pandemic who were candidates for fiberoptic bronchoscopy (FOB) at Imam Khomeini Hospital, Sari, Mazandaran Province, northern Iran and investigated for Acanthamoeba spp., by PCR. A total of 211 FBAL samples were examined; 5 (5/211; 2.36%) were positive by using the PCR test for Acanthamoeba spp. According to sequence analysis, three strains belonged to the T4 genotype and one strain to the T2 genotype. Our data demonstrate that the presence of Acanthamoeba (T4 and T2) in BALF specimens of patients with respiratory infections. However, it is important to note that these findings may be merely accidental. Our findings suggest further investigation to fully understand the role of Acanthamoeba spp. in the pathogenesis of lung infections.
Collapse
Affiliation(s)
- Reza Saberi
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| | - Maryam Nakhaei
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran.
| | - Hossein Zarrinfar
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Sharifpour
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran.,Pulmonary and Critical Care Division, Imam Khomeini Hospital, Iranian National Registry Center for Lophomoniasis (INRCL), Mazandaran University of Medical Sciences, Sari, Iran
| | - Hajar Ziaei Hezarjaribi
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, School of Medicine, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| |
Collapse
|
21
|
Neurotrophic Factors in Experimental Cerebral Acanthamoebiasis. Int J Mol Sci 2022; 23:ijms23094931. [PMID: 35563321 PMCID: PMC9103668 DOI: 10.3390/ijms23094931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
To date, no studies have addressed the role of neurotrophins (NTs) in Acanthamoeba spp. infections in the brain. Thus, to clarify the role of NTs in the cerebral cortex and hippocampus during experimental acanthamoebiasis in relation to the host immune status, the purpose of this study was to determine whether Acanthamoeba spp. may affect the concentration of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) in brain structures. Our results suggest that at the beginning of infection in immunocompetent hosts, BDNF and NT-3 may reflect an endogenous attempt at neuroprotection against Acanthamoeba spp. infection. We also observed a pro-inflammatory effect of NGF during acanthamoebiasis in immunosuppressed hosts. This may provide important information for understanding the development of cerebral acanthamoebiasis related to the immunological status of the host. However, the pathogenesis of brain acanthamoebiasis is still poorly understood and documented and, therefore, requires further research.
Collapse
|
22
|
Seas C, Legua P. Meningoencephalitis Due to Free-Living Amoebas in the Tropics. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121 DOI: 10.12688/f1000research.126227.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of the agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results obtained provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
24
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121.3 DOI: 10.12688/f1000research.126227.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
25
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121 DOI: 10.12688/f1000research.126227.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
26
|
Motavallihaghi S, Khodadadi I, Goudarzi F, Afshar S, Shahbazi AE, Maghsood AH. The role of Acanthamoeba castellanii (T4 genotype) antioxidant enzymes in parasite survival under H 2O 2-induced oxidative stress. Parasitol Int 2021; 87:102523. [PMID: 34929407 DOI: 10.1016/j.parint.2021.102523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023]
Abstract
Acanthamoeba castellanii (A. castellanii) is an important opportunistic parasite. Induction of oxidative stress by the host immune system is one of the most important defense strategies against parasites. Hence, parasites partly deal with oxidative stress by different mechanisms. Identifying resistance mechanisms of A. castellanii parasites against oxidative stress is important to achieve a new therapeutic approach. Thus, this study aimed to understand the resistance mechanisms of A. castellanii, against oxidative stress. Trophozoites of A. castellanii were treated with different concentrations of H2O2. The half maximal inhibitory concentration (IC50) of H2O2 was determined using the MTT assay. The induction of oxidative stress was confirmed by flow cytometer. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. The gene expression levels of CAT and SOD were measured by qRT-PCR. Furthermore, 3-amino-1:2:4-triazole (3-AT) and potassium cyanide (KCN) were used as specific inhibitors of CAT and SOD, respectively. Cell cycle assay and the apoptosis were evaluated by flow cytometer. The activities of SOD, CAT, GR, and GPx, showed an increase in oxidative stress. The cell cycle analysis revealed that most of the cellular population was in G0 and G1 phases. The apoptosis increased in oxidative stress conditions. Moreover, the apoptosis significantly increased after the specific inhibition of CAT and SOD under oxidative stress. The gene expression levels of CAT and SOD significantly increased under oxidative stress. A. castellanii can resist the host immune system through various mechanisms, including evoking its antioxidant enzymes. Therefore, by reducing or inhibiting the activity of the parasite's antioxidant enzymes such as SOD and CAT, it is possible to cope with A. castellanii.
Collapse
Affiliation(s)
- Seyedmousa Motavallihaghi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saied Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Ehsan Shahbazi
- School of Nursing and Midwifery, Saveh University of Medical Sciences, Saveh, Iran
| | - Amir Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
27
|
Successful management of post-COVID-19 acanthamoebic encephalitis. Int J Infect Dis 2021; 110:226-228. [PMID: 34302963 PMCID: PMC8295052 DOI: 10.1016/j.ijid.2021.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Acanthamoebic encephalitis is a rare and highly fatal disease that has no standard management protocol. Coronavirus disease 2019 (COVID-19) causes immune dysfunction and may predispose patients to this infection. The present study describes successful management of acanthamoebic encephalitis in a young male who recently recovered from COVID-19 using a combination of medical and surgical approaches. A combination of miltefosine with other agents with trophicidal and cysticidal activities should be used in the regimen. Surgical excision of the abscess should be undertaken whenever feasible.
Collapse
|
28
|
Kot K, Łanocha-Arendarczyk N, Ptak M, Łanocha A, Kalisińska E, Kosik-Bogacka D. Pathomechanisms in the Kidneys in Selected Protozoan Parasitic Infections. Int J Mol Sci 2021; 22:4209. [PMID: 33921746 PMCID: PMC8073708 DOI: 10.3390/ijms22084209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis, malaria, toxoplasmosis, and acanthamoebiasis are protozoan parasitic infections. They remain important contributors to the development of kidney disease, which is associated with increased patients' morbidity and mortality. Kidney injury mechanisms are not fully understood in protozoan parasitic diseases, bringing major difficulties to specific therapeutic interventions. The aim of this review is to present the biochemical and molecular mechanisms in kidneys infected with Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Acanthamoeba spp. We present available mechanisms of an immune response, oxidative stress, apoptosis process, hypoxia, biomarkers of renal injury in the serum or urine, and the histopathological changes of kidneys infected with the selected parasites. Pathomechanisms of Leishmania spp. and Plasmodium spp. infections have been deeply investigated, while Toxoplasma gondii and Acanthamoeba spp. infections in the kidneys are not well known yet. Deeper knowledge of kidney involvement in leishmaniasis and malaria by presenting their mechanisms provides insight into how to create novel and effective treatments. Additionally, the presented work shows gaps in the pathophysiology of renal toxoplasmosis and acanthamoebiasis, which need further research.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Michał Ptak
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Elżbieta Kalisińska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.); (E.K.)
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|