1
|
Kalsi P, Gupta N, Goyal G, Sharma H. Decoding the role of extracellular vesicles in pathogenesis of cystic fibrosis. Mol Cell Pediatr 2025; 12:5. [PMID: 40257719 PMCID: PMC12011702 DOI: 10.1186/s40348-025-00190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/05/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Intercellular communication is a critical process that ensures cooperation between distinct cell types and maintains homeostasis. In the past decades, extracellular vesicles (EVs) have been recognized as key components in cell-to-cell communication. These EVs carry multiple factors such as active enzymes, metabolites, nucleic acids and surface molecules that can alter the behavior of recipient cells. Thus, the role of EVs in exacerbating disease pathology by transporting inflammatory mediators, and other molecular signals that contribute to chronic inflammation and immune dysregulation in various diseases including cystic fibrosis (CF) is well documented. MAIN BODY CF is a genetic disorder characterized by chronic inflammation and persistent infections, primarily affecting the respiratory system. This review explores the multifaceted roles of EVs in CF lung disease, focusing on their biogenesis, cargo, and contributions to disease progression. It is well known that CF results from mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, leading to defective ion transport, thick mucus secretion, and a propensity for bacterial infections. However, it has been observed that EVs derived from CF patients carry altered molecular cargo, including proteins, lipids, RNA, and DNA, which can exacerbate these conditions by promoting inflammation, and modulating immune responses. Beyond their pathogenic roles, EVs also hold significant therapeutic potential. Their natural ability to transfer bioactive molecules positions them as promising vectors for delivering therapeutic agents, such as gene therapy constructs and anti-inflammatory compounds. Accordingly, a study has shown that these EVs can act as a carrier molecule for transport of functional CFTR mRNA, helping to restore proper chloride ion channel function by correcting defective CFTR proteins in affected cells. CONCLUSION This review aims to summarize the role of EVs and their molecular cargo in pathogenesis of CF lung disease via modulation of intracellular signaling leading to persistent inflammation and increased disease severity. We also explored the mechanisms of EV biogenesis, cargo selection, and their effects on recipient cells which may provide novel insights into CF pathogenesis and open new avenues for EV-based therapies aimed at improving disease management.
Collapse
Affiliation(s)
- Priya Kalsi
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Nikhil Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Gitanjali Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Himanshu Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India.
| |
Collapse
|
2
|
Larsson N, Claesson J, Lehtipalo S, Behndig A, Mobarrez F, Haney M. Extracellular vesicle release in an experimental ventilator-induced lung injury porcine model. PLoS One 2025; 20:e0320144. [PMID: 40202940 PMCID: PMC11981186 DOI: 10.1371/journal.pone.0320144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/13/2025] [Indexed: 04/11/2025] Open
Abstract
Harmful effects of mechanical ventilation with large tidal volumes, volutrauma, may contribute much to diffuse acute lung injury. Extracellular vesicles have been noted in the context of vital organ injury. We hypothesized that extracellular vesicles from acutely injured lung can be found in both lung and blood. In a two-hit experimental porcine model, we tested if extracellular vesicles could be detected in bronchoalveolar lavage fluid and in plasma over a six-hour period of large tidal volume ventilation after surfactant depletion. After 2 hours of volutrauma, bronchoalveolar lavage fluid showed increased levels of extracellular vesicles containing nucleic acids (stained by SYTO 13) and those positive for both SYTO 13 and HMGB1. No such increase was detected in plasma at any timepoint during the six-hour experiments. This shows that nucleic acid-containing extracellular vesicles appear to be involved in progression of lung injury, possibly indicating cellular damage, but their potential to serve as diagnostic biomarkers of acute lung injury progression, based on plasma sampling, and in the very early phase, is not confirmed by these findings.
Collapse
Affiliation(s)
- Niklas Larsson
- Department of Diagnostics and Intervention, Anesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden
| | - Jonas Claesson
- Department of Diagnostics and Intervention, Anesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden
| | - Stefan Lehtipalo
- Department of Diagnostics and Intervention, Anesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden
| | - Annelie Behndig
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Fariborz Mobarrez
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Michael Haney
- Department of Diagnostics and Intervention, Anesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Cheema NA, Castagna A, Ambrosani F, Argentino G, Friso S, Zurlo M, Beri R, Maule M, Vaia R, Senna G, Caminati M. Extracellular Vesicles in Asthma: Intercellular Cross-Talk in TH2 Inflammation. Cells 2025; 14:542. [PMID: 40214495 PMCID: PMC11989134 DOI: 10.3390/cells14070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Asthma is a complex, multifactorial inflammatory disorder of the airways, characterized by recurrent symptoms and variable airflow obstruction. So far, two main asthma endotypes have been identified, type 2 (T2)-high or T2-low, based on the underlying immunological mechanisms. Recently, extracellular vesicles (EVs), particularly exosomes, have gained increasing attention due to their pivotal role in intercellular communication and distal signaling modulation. In the context of asthma pathobiology, an increasing amount of experimental evidence suggests that EVs secreted by eosinophils, mast cells, dendritic cells, T cells, neutrophils, macrophages, and epithelial cells contribute to disease modulation. This review explores the role of EVs in profiling the molecular signatures of T2-high and T2-low asthma, offering novel perspectives on disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Naila Arif Cheema
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Annalisa Castagna
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Francesca Ambrosani
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Giuseppe Argentino
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Marco Zurlo
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Ruggero Beri
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Matteo Maule
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Rachele Vaia
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Gianenrico Senna
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Marco Caminati
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| |
Collapse
|
4
|
Kasprzyk-Pochopień J, Kamińska A, Mielczarek P, Piekoszewski W, Klimkowska A, Sładek K, Soja J, Adamek D, Stępień E. Comparison of nanoLC-MALDI-MS/MS with nanoLC-TIMS-MS/MS in the proteomic analysis of extracellular vesicles of bronchoalveolar lavage fluid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1173-1187. [PMID: 39835386 DOI: 10.1039/d4ay01599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The study aims to evaluate and compare two advanced proteomic techniques, nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS, in characterizing extracellular vesicles (EVs) from the bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF). Pulmonary diseases, driven by pollutants and infections, often necessitate detailed analysis of BALF to identify diagnostic biomarkers and therapeutic targets. EVs, which include exosomes, microvesicles, and apoptotic bodies, are isolated using filtration and ultracentrifugation, and their morphology, concentration, and size distribution are assessed through transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The proteomic profiles of these EVs are then analyzed using the aforementioned techniques, highlighting their unique and common proteins. The study found that nanoLC-TIMS-MS/MS identified significantly more proteins compared to nanoLC-MALDI-MS/MS. Functional analysis via Gene Ontology revealed pathways related to inflammation and cell signaling, underscoring the role of EVs in disease pathophysiology. The findings suggest that EVs in BALF can serve as valuable biomarkers and therapeutic targets in respiratory diseases, providing a foundation for future research and clinical applications.
Collapse
Affiliation(s)
- Joanna Kasprzyk-Pochopień
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
| | - Agnieszka Kamińska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Krakow, Poland
| | - Wojciech Piekoszewski
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Krzysztof Sładek
- Department of Pulmonology, University Hospital in Krakow, Krakow, Poland
| | - Jerzy Soja
- Department of Pulmonology, University Hospital in Krakow, Krakow, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, Faculty of Medicine Jagiellonian University, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
- Center for Theranostics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Nakatsutsumi K, Choi W, Johnston W, Pool K, Park DJ, Weaver JL, Coimbra R, Eliceiri B, Costantini TW. Lung contusion complicated by pneumonia worsens lung injury via the inflammatory effect of alveolar small extracellular vesicles on macrophages and epithelial cells. J Trauma Acute Care Surg 2025; 98:55-63. [PMID: 39621452 DOI: 10.1097/ta.0000000000004499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Lung contusion (LC) complicated by pneumonia is associated with a higher risk of acute lung injury (ALI) mediated by activation of immune cells and injury to the lung epithelium. Small extracellular vesicles (sEVs) are essential mediators of cellular crosstalk; however, their role in the development of postinjury ALI remains unclear. We hypothesized that LC complicated by pneumonia increases the pro-inflammatory effect of alveolar sEVs on macrophages and the cytotoxicity of alveolar sEVs to pulmonary epithelial cells, worsening the severity of ALI. METHODS Studies in C57BL/6 mice were designed with four groups: sham, LC, Pneumonia (Pneu), and LC + Pneu. Lung contusion was induced by a cortical controlled impactor, while pneumonia was conducted by intratracheal injection of 10 5 cfu Pseudomonas aeruginosa . Bronchoalveolar lavage fluid (BAL) was harvested 24 hours postinfection, and sEVs were purified by centrifugation and size exclusion chromatography. To evaluate the effect of alveolar sEV on cells, sEVs from each group were cocultured with macrophages (RAW 264.7) to assess cytokine release and lung epithelial cells (MLE 12) to assess epithelial cytotoxicity. RESULTS The LC + Pneu group severely injured lungs histologically and increased the susceptibility to the bacteria. The LC + Pneu group showed higher concentrations of proteins, macrophage inflammatory protein 1-alpha (MIP1α), and intercellular adhesion molecule 1 (ICAM-1) in BAL. MIP1α and ICAM-1 expression in the macrophages increased after incubation with sEVs from the LC + Pneu group. Moreover, the sEVs demonstrated higher cytotoxicity to epithelial cells and increased apoptosis in epithelial cells after incubation with sEVs from the LC + Pneu group. CONCLUSION Lung contusion complicated by pneumonia increased the pro-inflammatory effect of alveolar sEVs on macrophages and the cytotoxicity of alveolar sEVs to pulmonary epithelial cells, worsening the severity of ALI. These results demonstrate the potential importance of alveolar sEVs in lung inflammation following a bacterial infection after trauma.
Collapse
Affiliation(s)
- Keita Nakatsutsumi
- From the Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery (K.N., W.C., W.J., K.P., D.P., J.W., B.E., T.C.), UC San Diego School of Medicine, San Diego; Comparative Effectiveness and Clinical Outcomes Research Center (R.C.), Riverside University Health System, Loma Linda University School of Medicine, Riverside, California; and Trauma and Acute Critical Care Center (K.N.), Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ali A, Rasheed HM, Ansari SA, Ansari SA, Alkahtani HM. Network Pharmacology and Molecular Docking Reveal Anti-Asthmatic Potential of Zephyranthes rosea Lindl. in an Ovalbumin-Induced Asthma Model. Pharmaceuticals (Basel) 2024; 17:1558. [PMID: 39598467 PMCID: PMC11597469 DOI: 10.3390/ph17111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Background: This study aimed to evaluate the anti-inflammatory effects of a Zephyranthes rosea in an ovalbumin-induced asthma model. Methods: Allergic asthma was induced in mice via intraperitoneal injection, followed by intranasal ovalbumin challenge. Methanolic extract of Z. rosea bulb was orally administered to asthmatic mice for 14 days. Hematological parameters for bronchoalveolar lavage fluid (BALF) and blood were analyzed. The mRNA expression levels of interleukins and transforming growth factor beta (TGF-β1) in lung tissues were determined using reverse transcriptase-polymerase chain reaction (RT-PCR). Network pharmacology analysis was used to find possible Z. rosea targets. After building a protein-protein interaction network to find hub genes, GO and KEGG enrichment analyses were carried out to determine the potential mechanism. In silico analysis was performed by Molecular Operating Environment. Results: GC-MS analysis of Z. rosea extract detected major classes of phytochemicals. Hematological parameters in blood and BALF from Z. rosea extract-treated animals were significantly reduced in a dose-dependent fashion. Histopathology revealed that Z. rosea bulb had an ameliorative effect on lung tissues. Moreover, treatment with Z. rosea bulb extract significantly restored the normal levels of IL-4, IL-6, IL-1β, IL-10, IL-13, and TGF-β1 in allergic asthmatic mice compared to the diseased group. In silico analysis, particularly of the binding affinities of Z. rosea bulb phytoconstituents for IL6, AKT1, and Src, supported in vivo results. Conclusions: These findings indicated that Z. rosea bulb extract significantly ameliorates cellular and molecular biomarkers of bronchial inflammation and could be a potential candidate for treating allergic asthma.
Collapse
Affiliation(s)
- Amir Ali
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan
| | | | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.)
| | - Shoeb Anwar Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.A.); (H.M.A.)
| |
Collapse
|
7
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
8
|
Bunn KE, Giese-Byrne BG, Pua HH. Th2 cell extracellular vesicles promote eosinophil survival through the cytokine cargo IL-3 and prolong airway eosinophilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.600647. [PMID: 39211207 PMCID: PMC11361019 DOI: 10.1101/2024.07.23.600647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Extracellular vesicles (EVs) mediate intercellular communication during immune responses. EVs are abundant in respiratory biofluids, and the composition of EVs in the lung changes during inflammation. Objective We aimed to quantify the contribution of T cells to airway EVs in allergic lung inflammation and ascertain their function during a type 2 inflammatory response. Methods Genetic membrane tagging was combined with single vesicle flow cytometry to quantify T cell EVs in the airways of mice challenged with ovalbumin or house dust mite. EVs were purified from T helper type 2 (Th2) cell cultures and their functions on eosinophils assessed by flow cytometry and RNA sequencing. Th2 cell EVs were instilled into the lungs of mice to determine effects on lung eosinophilia. Finally, the function of an EV protein cargo was tested using inhibitors and blocking antibodies. Results T cell EVs are increased in the airways of mice with induced allergic inflammation. EVs secreted by Th2 cells inhibit apoptosis and induce activating pathways in eosinophils in vitro. This effect depends on re-stimulation through the T cell receptor. Th2 cell EVs prolong eosinophilia in vivo during allergic airway inflammation. Th2 cell EVs carry a potent form of the cytokine IL-3 on their surfaces, which inhibits apoptosis by activating Jak1/2-dependent pro-survival programs in eosinophils. Conclusion Th2 cell EVs promote eosinophil survival and prolong eosinophilia during allergic airway inflammation. This function depends on the EV cargo IL-3, supporting a role for EVs as vehicles of cytokine-based communication in lung inflammation. Key Messages T cells secrete extracellular vesicles in the airway during allergic lung inflammation.Th2 cell extracellular vesicles inhibit eosinophil apoptosis and prolong airway eosinophilia during allergic lung inflammation.IL-3 carried on Th2 cell EVs is a functional cargo, supporting a role for cytokine-carrying EVs as drivers of type 2 inflammation. Capsule summary This study supports that T cell extracellular vesicles may be important drivers of eosinophilic inflammation through the cytokine cargo IL-3, offering new insights into pro-inflammatory signaling in the allergic lung of patients with asthma.
Collapse
|
9
|
Gou Z, Yang H, Wang R, Wang S, Chen Q, Liu Z, Zhang Y. A new frontier in precision medicine: Exploring the role of extracellular vesicles in chronic obstructive pulmonary disease. Biomed Pharmacother 2024; 174:116443. [PMID: 38513597 DOI: 10.1016/j.biopha.2024.116443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease characterized by progressive respiratory difficulties. It has a high incidence and disability rate worldwide. However, currently there is still a lack of highly effective treatment methods for COPD, only symptom relief is possible. Therefore, there is an urgent need to explore new treatment options. Almost all cells can secrete extracellular vesicles (EVs), which participate in many physiological activities by transporting cargoes and are associated with the pathogenesis of various diseases. Recently, many scholars have extensively studied the relationship between COPD and EVs, which has strongly demonstrated the significant impact of EVs from different sources on the occurrence and development of COPD. Therefore, EVs are a good starting point and new opportunity for the diagnosis and treatment of COPD. In this review, we mainly describe the current mechanisms of EVs in the pathogenesis of COPD, also the relationship between diagnosis, prognosis, and treatment. At the same time, we also introduce some new methods for COPD therapy based on EVs. It is hoped that this article can provide new ideas for future research and contribute to the development of precision medicine.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Hongrun Yang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ruijia Wang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shihan Wang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Qirui Chen
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Dai Z, Lin L, Xu Y, Hu L, Gou S, Xu X. Extracellular vesicle dynamics in COPD: understanding the role of miR-422a, SPP1 and IL-17 A in smoking-related pathology. BMC Pulm Med 2024; 24:173. [PMID: 38609925 PMCID: PMC11010439 DOI: 10.1186/s12890-024-02978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) induced by smoking poses a significant global health challenge. Recent findings highlight the crucial role of extracellular vesicles (EVs) in mediating miRNA regulatory networks across various diseases. This study utilizes the GEO database to uncover distinct expression patterns of miRNAs and mRNAs, offering a comprehensive understanding of the pathogenesis of smoking-induced COPD. This study aims to investigate the mechanisms by which extracellular vesicles (EVs) mediate the molecular network of miR-422a-SPP1 to delay the onset of COPD caused by smoking. METHODS The smoking-related miRNA chip GSE38974-GPL7723 was obtained from the GEO database, and candidate miRs were retrieved from the Vesiclepedia database. Downstream target genes of the candidate miRs were predicted using mRNA chip GSE38974-GPL4133, TargetScan, miRWalk, and RNA22 databases. This prediction was integrated with COPD-related genes from the GeneCards database, downstream target genes predicted by online databases, and key genes identified in the core module of WGCNA analysis to obtain candidate genes. The candidate genes were subjected to KEGG functional enrichment analysis using the "clusterProfiler" package in R language, and a protein interaction network was constructed. In vitro experiments involved overexpressing miRNA or extracting extracellular vesicles from bronchial epithelial cell-derived exosomes, co-culturing them with myofibroblasts to observe changes in the expression levels of the miR-422a-SPP1-IL-17 A regulatory network, and assessing protein levels of fibroblast differentiation-related factors α-SMA and collagen I using Western blot analysis. RESULTS The differential gene analysis of chip GSE38974-GPL7723 and the retrieval results from the Vesiclepedia database identified candidate miRs, specifically miR-422a. Subsequently, an intersection was taken among the prediction results from TargetScan, miRWalk, and RNA22 databases, the COPD-related gene retrieval results from GeneCards database, the WGCNA analysis results of chip GSE38974-GPL4133, and the differential gene analysis results. This intersection, combined with KEGG functional enrichment analysis, and protein-protein interaction analysis, led to the final screening of the target gene SPP1 and its upstream regulatory gene miR-422a. KEGG functional enrichment analysis of mRNAs correlated with SPP1 revealed the IL-17 signaling pathway involved. In vitro experiments demonstrated that miR-422a inhibition targets suppressed the expression of SPP1 in myofibroblasts, inhibiting differentiation phenotype. Bronchial epithelial cells, under cigarette smoke extract (CSE) stress, could compensate for myofibroblast differentiation phenotype by altering the content of miR-422a in their Extracellular Vesicles (EVs). CONCLUSION The differential gene analysis of Chip GSE38974-GPL7723 and the retrieval results from the Vesiclepedia database identified candidate miRs, specifically miR-422a. Further analysis involved the intersection of predictions from TargetScan, miRWalk, and RNA22 databases, gene search on COPD-related genes from the GeneCards database, WGCNA analysis from Chip GSE38974-GPL4133, and differential gene analysis, combined with KEGG functional enrichment analysis and protein interaction analysis. Ultimately, the target gene SPP1 and its upstream regulatory gene miR-422a were selected. KEGG functional enrichment analysis on mRNAs correlated with SPP1 revealed the involvement of the IL-17 signaling pathway. In vitro experiments showed that miR-422a targeted inhibition suppressed the expression of SPP1 in myofibroblast cells, inhibiting differentiation phenotype. Furthermore, bronchial epithelial cells could compensate for myofibroblast differentiation phenotype under cigarette smoke extract (CSE) stress by altering the miR-422a content in their extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Zhihui Dai
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Li Lin
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Yanan Xu
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Lifang Hu
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Shiping Gou
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Xinkai Xu
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China.
| |
Collapse
|
11
|
Qin X, Niu Z, Chen H, Hu Y. Macrophage-derived exosomal HMGB3 regulates silica-induced pulmonary inflammation by promoting M1 macrophage polarization and recruitment. Part Fibre Toxicol 2024; 21:12. [PMID: 38454505 PMCID: PMC10918916 DOI: 10.1186/s12989-024-00568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/10/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Chronic inflammation and fibrosis are characteristics of silicosis, and the inflammatory mediators involved in silicosis have not been fully elucidated. Recently, macrophage-derived exosomes have been reported to be inflammatory modulators, but their role in silicosis has not been explored. The purpose of the present study was to investigate the role of macrophage-derived exosomal high mobility group box 3 (HMGB3) in silica-induced pulmonary inflammation. METHODS The induction of the inflammatory response and the recruitment of monocytes/macrophages were evaluated by immunofluorescence, flow cytometry and transwell assays. The expression of inflammatory cytokines was examined by RT-PCR and ELISA, and the signalling pathways involved were examined by western blot analysis. RESULTS HMGB3 expression was increased in exosomes derived from silica-exposed macrophages. Exosomal HMGB3 significantly upregulated the expression of inflammatory cytokines, activated the STAT3/MAPK (ERK1/2 and p38)/NF-κB pathways in monocytes/macrophages, and promoted the migration of these cells by CCR2. CONCLUSIONS Exosomal HMGB3 is a proinflammatory modulator of silica-induced inflammation that promotes the inflammatory response and recruitment of monocytes/macrophages by regulating the activation of the STAT3/MAPK/NF-κB/CCR2 pathways.
Collapse
Affiliation(s)
- Xiaofeng Qin
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhiyuan Niu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Hui Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Ahmad S, Zhang XL, Ahmad A. Epigenetic regulation of pulmonary inflammation. Semin Cell Dev Biol 2024; 154:346-354. [PMID: 37230854 PMCID: PMC10592630 DOI: 10.1016/j.semcdb.2023.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary disease such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and pulmonary hypertension are the leading cause of deaths. More importantly, lung diseases are on the rise and environmental factors induced epigenetic modifications are major players on this increased prevalence. It has been reported that dysregulation of genes involved in epigenetic regulation such as the histone deacetylase (HDACs) and histone acetyltransferase (HATs) play important role in lung health and pulmonary disease pathogenesis. Inflammation is an essential component of respiratory diseases. Injury and inflammation trigger release of extracellular vesicles that can act as epigenetic modifiers through transfer of epigenetic regulators such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins and lipids, from one cell to another. The immune dysregulations caused by the cargo contents are important contributors of respiratory disease pathogenesis. N6 methylation of RNA is also emerging to be a critical mechanism of epigenetic alteration and upregulation of immune responses to environmental stressors. Epigenetic changes such as DNA methylation are stable and often long term and cause onset of chronic lung conditions. These epigenetic pathways are also being utilized for therapeutic intervention in several lung conditions.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Lu Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
13
|
Li X, Xu J, Lin X, Lin Q, Yu T, Chen L, Chen L, Huang X, Zhang X, Chen G, Xu L. Macrophages-derived exo-miR-4449 induced by Cryptococcus affects HUVEC permeability and promotes pyroptosis in BEAS-2B via the HIC1 pathway. Cytokine 2024; 173:156441. [PMID: 37995394 DOI: 10.1016/j.cyto.2023.156441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Macrophages have recently been discovered to assume a significant role in the progression of cryptococcosis. However, the potential involvement of macrophage-derived exosomes in the pathogenesis of cryptococcosis remains uncertain. In this study, we investigated the changes of microRNAs in macrophage exosomes (exo-miRNAs) in cryptococcal infections and the role of markedly altered exo-miRNAs in the modulation of Human Umbilical Vein Endothelial Cells (HUVEC) permeability and ROS accumulation and pyroptosis in Human Bronchial Epithelioid Cells (BEAS-2B). Techniques such as microarray analysis and real-time quantitative PCR were used to detect different exo-miRNAs and to screen for the most highly expressed exo-miRNAs. Then its mimics were transfected into HUVEC to study its effect on the monolayer permeability of HUVEC. Finally, the relationship between this exo-miRNAs and the ROS accumulation and pyroptosis was verified by bioinformatics analysis. The results showed that five exo-miRNAs were overexpressed and two exo-miRNAs were reduced, among which, exo-miR-4449 was expressed at the highest level. Exo-miR-4449 could be internalized by HUVEC and enhanced its monolayer permeability. Moreover, exo-miR-4449 was found to promote ROS accumulation and pyroptosis in BEAS-2B through HIC1 pathway. Thus, exo-miR-4449 plays an important role in the pathogenesis of cryptococcosis and holds promise as a significant biomarker for treatment.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Junping Xu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xin Lin
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Qiong Lin
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Tianxing Yu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Lifang Chen
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xiaoqing Huang
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xueping Zhang
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Geng Chen
- Nursing Department, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Liyu Xu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| |
Collapse
|
14
|
Zhang H, Deng D, Li S, Ren J, Huang W, Liu D, Wang W. Bronchoalveolar lavage fluid assessment facilitates precision medicine for lung cancer. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0381. [PMID: 38164737 PMCID: PMC10976328 DOI: 10.20892/j.issn.2095-3941.2023.0381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Lung cancer is the most common and fatal malignant disease worldwide and has the highest mortality rate among tumor-related causes of death. Early diagnosis and precision medicine can significantly improve the survival rate and prognosis of lung cancer patients. At present, the clinical diagnosis of lung cancer is challenging due to a lack of effective non-invasive detection methods and biomarkers, and treatment is primarily hindered by drug resistance and high tumor heterogeneity. Liquid biopsy is a method for detecting circulating biomarkers in the blood and other body fluids containing genetic information from primary tumor tissues. Bronchoalveolar lavage fluid (BALF) is a potential liquid biopsy medium that is rich in a variety of bioactive substances and cell components. BALF contains information on the key characteristics of tumors, including the tumor subtype, gene mutation type, and tumor environment, thus BALF may be used as a diagnostic supplement to lung biopsy. In this review, the current research on BALF in the diagnosis, treatment, and prognosis of lung cancer is summarized. The advantages and disadvantages of different components of BALF, including cells, cell-free DNA, extracellular vesicles, and microRNA are introduced. In particular, the great potential of extracellular vesicles in precision diagnosis and detection of drug-resistant for lung cancer is highlighted. In addition, the performance of liquid biopsies with different body fluid sources in lung cancer detection are compared to facilitate more selective studies involving BALF, thereby promoting the application of BALF for precision medicine in lung cancer patients in the future.
Collapse
Affiliation(s)
- Hantao Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610000, China
- West China Biobank, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Dan Deng
- West China Biobank, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Shujun Li
- West China Biobank, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jing Ren
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Wei Huang
- West China Biobank, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
15
|
Zhou H, Peng K, Wang J, Wang Y, Wang JJ, Sun SK, Shi MQ, Chen J, Ji FH, Wang X. Aloe-derived vesicles enable macrophage reprogramming to regulate the inflammatory immune environment. Front Bioeng Biotechnol 2023; 11:1339941. [PMID: 38179130 PMCID: PMC10764618 DOI: 10.3389/fbioe.2023.1339941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction: Bacterial pneumonia poses a significant global public health challenge, where unaddressed pathogens and inflammation can exacerbate acute lung injury and prompt cytokine storms, increasing mortality rates. Alveolar macrophages are pivotal in preserving lung equilibrium. Excessive inflammation can trigger necrosis in these cells, disrupting the delicate interplay between inflammation and tissue repair. Methods: We obtained extracellular vesicle from aloe and tested the biosafety by cell viability and hemolysis assays. Confocal microscopy and flow cytometry were used to detect the uptake and internalization of extracellular vesicle by macrophages and the ability of extracellular vesicle to affect the phenotypic reprogramming of macrophages in vitro. Finally, we conducted a clinical feasibility study employing clinical bronchoalveolar lavage fluid as a representative model to assess the effective repolarization of macrophages influenced by extracellular vesicle. Results: In our study, we discovered the potential of extracellular vesicle nanovesicles derived from aloe in reprograming macrophage phenotypes. Pro-inflammatory macrophages undergo a transition toward an anti-inflammatory immune phenotype through phagocytosing and internalizing these aloe vera-derived extracellular vesicle nanovesicles. This transition results in the release of anti-inflammatory IL-10, effectively curbing inflammation and fostering lung tissue repair. Discussion: These findings firmly establish the immunomodulatory impact of aloe-derived extracellular vesicle nanovesicles on macrophages, proposing their potential as a therapeutic strategy to modulate macrophage immunity in bacterial pneumonia.
Collapse
Affiliation(s)
- Hao Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology and Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Jia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shi-Kun Sun
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mai-Qing Shi
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Chen
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Hai Ji
- Department of Anesthesiology and Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Huang J, Ding M, Lu Y, Xu L, Zhang Y, Han S, Zhu X, Li Y, Chen P. MiR-1246b, a novel miRNA molecule of extracellular vesicles in bronchoalveolar lavage fluid, promotes nodule growth through FGF14 in patients with lung cancer. Cell Death Dis 2023; 14:789. [PMID: 38040694 PMCID: PMC10692082 DOI: 10.1038/s41419-023-06218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 12/03/2023]
Abstract
With the widespread development of chest computed tomography (CT), the detection rate of pulmonary nodules has increased; therefore, the classification of benign vs. malignant nodules has become a common problem in the clinic. MicroRNA, a potential tool, is expected to become a good choice for diagnosing and studying the occurrence and development of diseases through the vector of bronchoalveolar lavage fluid extracellular vesicles (BALF-EVs). In this study, radial endobronchial ultrasound (R-EBUS) was used to locate pulmonary nodules in patients. BALF was obtained, EVs were isolated, and small RNA sequencing was performed to screen differentially expressed miRNAs between benign and malignant pulmonary nodules. The binding targets and underlying mechanisms of the differentially expressed miRNAs were verified by in vitro and in vivo experiments. R-EBUS localization and sampling was used to obtain BALF, and EVs were successfully isolated and characterized. Differentially expressed miRNAs in BALF-EVs of patients with benign vs. malignant pulmonary nodules were screened by high-throughput small RNA sequencing. A new miRNA, miR-1246b, was identified. We found that FGF14 was the binding target of miR-1246b by luciferase assay. Subsequent mechanistic studies showed that miR-1246b inhibited the expression of FGF14 in lung cancer cells, further leading to ERK phosphorylation and epithelial-to-mesenchymal transition (EMT), which ultimately contributed to lung cancer cell proliferation, migration and invasion. In summary, our study demonstrates that the detection of miRNAs in BALF-EVs, a means of liquid biopsy, could assist in distinguishing malignant nodules from benign nodules. miR-1246b, which was extracted from BALF-EVs, targets FGF14 to promote lung cancer cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Jing Huang
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ming Ding
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuan Lu
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lu Xu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yu Zhang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shuhua Han
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaoli Zhu
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yiping Li
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Pingsheng Chen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Lan B, Dong X, Yang Q, Luo Y, Wen H, Chen Z, Chen H. Exosomal MicroRNAs: An Emerging Important Regulator in Acute Lung Injury. ACS OMEGA 2023; 8:35523-35537. [PMID: 37810708 PMCID: PMC10551937 DOI: 10.1021/acsomega.3c04955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Acute lung injury (ALI) is a clinically life-threatening form of respiratory failure with a mortality of 30%-40%. Acute respiratory distress syndrome is the aggravated form of ALI. Exosomes are extracellular lipid vesicles ubiquitous in human biofluids with a diameter of 30-150 nm. They can serve as carriers to convey their internal cargo, particularly microRNA (miRNA), to the target cells involved in cellular communication. In disease states, the quantities of exosomes and the cargo generated by cells are altered. These exosomes subsequently function as autocrine or paracrine signals to nearby or distant cells, regulating various pathogenic processes. Moreover, exosomal miRNAs from multiple stem cells can provide therapeutic value for ALI by regulating different signaling pathways. In addition, changes in exosomal miRNAs of biofluids can serve as biomarkers for the early diagnosis of ALI. This study aimed to review the role of exosomal miRNAs produced by different sources participating in various pathological processes of ALI and explore their potential significance in the treatment and diagnosis.
Collapse
Affiliation(s)
- Bowen Lan
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xuanchi Dong
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Qi Yang
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Traditional Chinese Medicine, The Second
Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haiyun Wen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Zhe Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Hailong Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| |
Collapse
|
18
|
Jeong MH, Son T, Tae YK, Park CH, Lee HS, Chung MJ, Park JY, Castro CM, Weissleder R, Jo JH, Bang S, Im H. Plasmon-Enhanced Single Extracellular Vesicle Analysis for Cholangiocarcinoma Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205148. [PMID: 36698298 PMCID: PMC10015870 DOI: 10.1002/advs.202205148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/01/2023] [Indexed: 05/20/2023]
Abstract
Cholangiocarcinoma (CCA) is a fatal disease often detected late in unresectable stages. Currently, there are no effective diagnostic methods or biomarkers to detect CCA early with high confidence. Analysis of tumor-derived extracellular vesicles (tEVs) harvested from liquid biopsies can provide a new opportunity to achieve this goal. Here, an advanced nanoplasmonic sensing technology is reported, termed FLEX (fluorescence-amplified extracellular vesicle sensing technology), for sensitive and robust single EV analysis. In the FLEX assay, EVs are captured on a plasmonic gold nanowell surface and immunolabeled for cancer-associated biomarkers to identify tEVs. The underlying plasmonic gold nanowell structures then amplify EVs' fluorescence signals, an effective amplification process at the single EV level. The FLEX EV analysis revealed a wide heterogeneity of tEVs and their marker levels. FLEX also detected small tEVs not detected by conventional EV fluorescence imaging due to weak signals. Tumor markers (MUC1, EGFR, and EPCAM) are identified in CCA, and this marker combination is applied to detect tEVs in clinical bile samples. The FLEX assay detected CCA with an area under the curve of 0.93, significantly better than current clinical markers. The sensitive and accurate nanoplasmonic EV sensing technology can aid in early CCA diagnosis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Taehwang Son
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Yoo Keung Tae
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Chan Hee Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hee Seung Lee
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Moon Jae Chung
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeong Youp Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| | - Jung Hyun Jo
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seungmin Bang
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
19
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Extracellular Vesicles as Therapeutic Resources in the Clinical Environment. Int J Mol Sci 2023; 24:2344. [PMID: 36768664 PMCID: PMC9917082 DOI: 10.3390/ijms24032344] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The native role of extracellular vesicles (EVs) in mediating the transfer of biomolecules between cells has raised the possibility to use them as therapeutic vehicles. The development of therapies based on EVs is now expanding rapidly; here we will describe the current knowledge on different key points regarding the use of EVs in a clinical setting. These points are related to cell sources of EVs, isolation, storage, and delivery methods, as well as modifications to the releasing cells for improved production of EVs. Finally, we will depict the application of EVs therapies in clinical trials, considering the impact of the COVID-19 pandemic on the development of these therapies, pointing out that although it is a promising therapy for human diseases, we are still in the initial phase of its application to patients.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
20
|
Mao Y, Patial S, Saini Y. Airway epithelial cell-specific deletion of HMGB1 exaggerates inflammatory responses in mice with muco-obstructive airway disease. Front Immunol 2023; 13:944772. [PMID: 36741411 PMCID: PMC9892197 DOI: 10.3389/fimmu.2022.944772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
High mobility group box 1 (HMGB1), a ubiquitous chromatin-binding protein required for gene transcription regulation, is released into the extracellular microenvironment by various structural and immune cells, where it is known to act as an alarmin. Here, we investigated the role of airway epithelium-specific HMGB1 in the pathogenesis of muco-obstructive lung disease in Scnn1b-transgenic (Tg+) mouse, a model of human cystic fibrosis (CF)-like lung disease. We hypothesized that airway epithelium-derived HMGB1 modulates muco-inflammatory lung responses in the Tg+ mice. The airway epithelium-specific HMGB1-deficient mice were generated and the effects of HMGB1 deletion on immune cell recruitment, airway epithelial cell composition, mucous cell metaplasia, and bacterial clearance were determined. The airway epithelium-specific deletion of HMGB1 in wild-type (WT) mice did not result in any morphological alterations in the airway epithelium. The deficiency of HMGB1 in airway epithelial cells in the Tg+ mice, however, resulted in significantly increased infiltration of macrophages, neutrophils, and eosinophils which was associated with significantly higher levels of inflammatory mediators, including G-CSF, KC, MIP-2, MCP-1, MIP-1α, MIP-1β, IP-10, and TNF-α in the airspaces. Furthermore, as compared to the HMGB1-sufficient Tg+ mice, the airway epithelial cell-specific HMGB1-deficient Tg+ mice exhibited poor resolution of spontaneous bacterial infection. The HMGB1 deficiency in the airway epithelial cells of Tg+ mice did not alter airway epithelial cell-specific responses including epithelial cell proliferation, mucous cell metaplasia, and mucus obstruction. Collectively, our findings provide novel insights into the role of airway epithelial cell-derived HMGB1 in the pathogenesis of CF-like lung disease in Tg+ mice.
Collapse
|
21
|
Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:318. [PMID: 36679199 PMCID: PMC9866119 DOI: 10.3390/polym15020318] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The rapid and non-invasive pulmonary drug delivery (PDD) has attracted great attention compared to the other routes. However, nanoparticle platforms, like liposomes (LPs) and extracellular vesicles (EVs), require extensive reformulation to suit the requirements of PDD. LPs are artificial vesicles composed of lipid bilayers capable of encapsulating hydrophilic and hydrophobic substances, whereas EVs are natural vesicles secreted by cells. Additionally, novel LPs-EVs hybrid vesicles may confer the best of both. The preparation methods of EVs are distinguished from LPs since they rely mainly on extraction and purification, whereas the LPs are synthesized from their basic ingredients. Similarly, drug loading methods into/onto EVs are distinguished whereby they are cell- or non-cell-based, whereas LPs are loaded via passive or active approaches. This review discusses the progress in LPs and EVs as well as hybrid vesicles with a special focus on PDD. It also provides a perspective comparison between LPs and EVs from various aspects (composition, preparation/extraction, drug loading, and large-scale manufacturing) as well as the future prospects for inhaled therapeutics. In addition, it discusses the challenges that may be encountered in scaling up the production and presents our view regarding the clinical translation of the laboratory findings into commercial products.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Latifah Munirah Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Selangor, Shah Alam 40450, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College MAIWP International (UCMI), Kuala Lumpur 68100, Malaysia
| |
Collapse
|
22
|
Ambrożej D, Stelmaszczyk-Emmel A, Czystowska-Kuźmicz M, Feleszko W. "Liquid biopsy" - extracellular vesicles as potential novel players towards precision medicine in asthma. Front Immunol 2022; 13:1025348. [PMID: 36466836 PMCID: PMC9714548 DOI: 10.3389/fimmu.2022.1025348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as vital mediators in intracellular communication in the lung microenvironment. Environmental exposure to various triggers (e.g., viruses, allergens) stimulates the EV-mediated cascade of pro-inflammatory responses that play a key role in the asthma pathomechanism. This complex EV-mediated crosstalk in the asthmatic lung microenvironment occurs between different cell types, including airway epithelial cells and immune cells. The cargo composition of EVs mirrors hereby the type and activation status of the parent cell. Therefore, EVs collected in a noninvasive way (e.g., in nasal lavage, serum) could inform on the disease status as a "liquid biopsy", which is particularly important in the pediatric population. As a heterogeneous disease, asthma with its distinct endotypes and phenotypes requires more investigation to develop novel diagnostics and personalized case management. Filling these knowledge gaps may be facilitated by further EV research. Here, we summarize the contribution of EVs in the lung microenvironment as potential novel players towards precision medicine in the development of asthma. Although rapidly evolving, the EV field is still in its infancy. However, it is expected that a better understanding of the role of EVs in the asthma pathomechanism will open up new horizons for precision medicine diagnostic and therapeutic solutions.
Collapse
Affiliation(s)
- Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Craddock VD, Cook CM, Dhillon NK. Exploring extracellular vesicles as mediators of clinical disease and vehicles for viral therapeutics: Insights from the COVID-19 pandemic. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:172-188. [PMID: 35929616 PMCID: PMC9348627 DOI: 10.20517/evcna.2022.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has challenged researchers to rapidly understand the capabilities of the SARS-CoV-2 virus and investigate potential therapeutics for SARS-CoV-2 infection. COVID-19 has been associated with devastating lung and cardiac injury, profound inflammation, and a heightened coagulopathic state, which may, in part, be driven by cellular crosstalk facilitated by extracellular vesicles (EVs). In recent years, EVs have emerged as important biomarkers of disease, and while extracellular vesicles may contribute to the spread of COVID-19 infection from one cell to the next, they also may be engineered to play a protective or therapeutic role as decoys or "delivery drivers" for therapeutic agents. This review explores these roles and areas for future study.
Collapse
Affiliation(s)
- Vaughn D Craddock
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| | - Christine M Cook
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| | - Navneet K Dhillon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| |
Collapse
|
24
|
Neri T, Celi A, Tinè M, Bernardinello N, Cosio MG, Saetta M, Nieri D, Bazzan E. The Emerging Role of Extracellular Vesicles Detected in Different Biological Fluids in COPD. Int J Mol Sci 2022; 23:ijms23095136. [PMID: 35563528 PMCID: PMC9101666 DOI: 10.3390/ijms23095136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) is characterized by complex cellular and molecular mechanisms, not fully elucidated so far. It involves inflammatory cells (monocytes/macrophages, neutrophils, lymphocytes), cytokines, chemokines and, probably, new players yet to be clearly identified and described. Chronic local and systemic inflammation, lung aging and cellular senescence are key pathological events in COPD development and progression over time. Extracellular vesicles (EVs), released by virtually all cells both as microvesicles and exosomes into different biological fluids, are involved in intercellular communication and, therefore, represent intriguing players in pathobiological mechanisms (including those characterizing aging and chronic diseases); moreover, the role of EVs as biomarkers in different diseases, including COPD, is rapidly gaining recognition. In this review, after recalling the essential steps of COPD pathogenesis, we summarize the current evidence on the roles of EVs collected in different biological mediums as biomarkers in COPD and as potential players in the specific mechanisms leading to disease development. We will also briefly review the data on EV as potential therapeutic targets and potential therapeutic agents.
Collapse
Affiliation(s)
- Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Dario Nieri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
- Correspondence: ; Tel.: +39-049-821-3449
| |
Collapse
|
25
|
Shaba E, Vantaggiato L, Governini L, Haxhiu A, Sebastiani G, Fignani D, Grieco GE, Bergantini L, Bini L, Landi C. Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes 2022; 10:proteomes10020012. [PMID: 35645370 PMCID: PMC9149947 DOI: 10.3390/proteomes10020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
In the era of multi-omic sciences, dogma on singular cause-effect in physio-pathological processes is overcome and system biology approaches have been providing new perspectives to see through. In this context, extracellular vesicles (EVs) are offering a new level of complexity, given their role in cellular communication and their activity as mediators of specific signals to target cells or tissues. Indeed, their heterogeneity in terms of content, function, origin and potentiality contribute to the cross-interaction of almost every molecular process occurring in a complex system. Such features make EVs proper biological systems being, therefore, optimal targets of omic sciences. Currently, most studies focus on dissecting EVs content in order to either characterize it or to explore its role in various pathogenic processes at transcriptomic, proteomic, metabolomic, lipidomic and genomic levels. Despite valuable results being provided by individual omic studies, the categorization of EVs biological data might represent a limit to be overcome. For this reason, a multi-omic integrative approach might contribute to explore EVs function, their tissue-specific origin and their potentiality. This review summarizes the state-of-the-art of EVs omic studies, addressing recent research on the integration of EVs multi-level biological data and challenging developments in EVs origin.
Collapse
Affiliation(s)
- Enxhi Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Alesandro Haxhiu
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
| | - Luca Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Claudia Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| |
Collapse
|
26
|
The Immune Mechanisms of Severe Equine Asthma-Current Understanding and What Is Missing. Animals (Basel) 2022; 12:ani12060744. [PMID: 35327141 PMCID: PMC8944511 DOI: 10.3390/ani12060744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Severe equine asthma is a chronic respiratory disease of adult horses, occurring when genetically susceptible individuals are exposed to environmental aeroallergens. This results in airway inflammation, mucus accumulation and bronchial constriction. Although several studies aimed at evaluating the genetic and immune pathways associated with the disease, the results reported are inconsistent. Furthermore, the complexity and heterogeneity of this disease bears great similarity to what is described for human asthma. Currently available studies identified two chromosome regions (ECA13 and ECA15) and several genes associated with the disease. The inflammatory response appears to be mediated by T helper cells (Th1, Th2, Th17) and neutrophilic inflammation significantly contributes to the persistence of airway inflammatory status. This review evaluates the reported findings pertaining to the genetical and immunological background of severe equine asthma and reflects on their implications in the pathophysiology of the disease whilst discussing further areas of research interest aiming at advancing treatment and prognosis of affected individuals.
Collapse
|
27
|
Yang T, Wang J, Zhao J, Liu Y. Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 2022; 49:37. [PMID: 35088880 PMCID: PMC8815412 DOI: 10.3892/ijmm.2022.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and life‑threatening lung disease. However, the pathogenesis and molecular mechanisms of this condition remain unclear. Extracellular vesicles (EVs) are structures derived from the plasma membrane, with a diameter ranging from 30 nm to 5 µm, that play an important role in cell‑to‑cell communications in lung disease, particularly between epithelial cells and the pulmonary microenvironment. In particular, exosomes are a type of EV that can deliver cargo molecules, including endogenous proteins, lipids and nucleic acids, such as microRNAs (miRNAs/miRs). These cargo molecules are encapsulated in lipid bilayers through target cell internalization, receptor‑ligand interactions or lipid membrane fusion. miRNAs are single‑stranded RNA molecules that regulate cell differentiation, proliferation and apoptosis by degrading target mRNAs or inhibiting translation to modulate gene expression. The aim of the present review was to discuss the current knowledge available on exosome biogenesis, composition and isolation methods. The role of miRNAs in the pathogenesis of PF was also reviewed. In addition, emerging diagnostic and therapeutic properties of exosomes and exosomal miRNAs in PF were described, in order to highlight the potential applications of exosomal miRNAs in PF.
Collapse
Affiliation(s)
- Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- The First Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiaying Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
28
|
Kitsiouli E, Tenopoulou M, Papadopoulos S, Lekka ME. Phospholipases A2 as biomarkers in ARDS. Biomed J 2021; 44:663-670. [PMID: 34478892 PMCID: PMC8847824 DOI: 10.1016/j.bj.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a multifactorial life-threatening lung injury, characterized by diffuse lung inflammation and increased alveolocapillary barrier permeability. The different stages of ARDS have distinctive biochemical and clinical profiles. Despite the progress of our understanding on ARDS pathobiology, the mechanisms underlying its pathogenesis are still obscure. Herein, we review the existing literature about the implications of phospholipases 2 (PLA2s), a large family of enzymes that catalyze the hydrolysis of fatty acids at the sn-2 position of glycerophospholipids, in ARDS-related pathology. We emphasize on the versatile way of participation of different PLA2s isoforms in the distinct ARDS subgroup phenotypes by either potentiating lung inflammation and damage or by preserving the normal lung. Current research supports that PLA2s are associated with the progression and the outcome of ARDS. We herein discuss the transcellular communication of PLA2s through secreted extracellular vesicles and suggest it as a new mechanism of PLA2s involvement in ARDS. Thus, the elucidation of the spatiotemporal features of PLA2s expression may give new insights and provide valuable information about the risk of an individual to develop ARDS or advance to more severe stages, and potentially identify PLA2 isoforms as biomarkers and target for pharmacological intervention.
Collapse
Affiliation(s)
- Eirini Kitsiouli
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Margarita Tenopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Stylianos Papadopoulos
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Marilena E Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
29
|
Hur JY, Lee KY. Characteristics and Clinical Application of Extracellular Vesicle-Derived DNA. Cancers (Basel) 2021; 13:3827. [PMID: 34359729 PMCID: PMC8345206 DOI: 10.3390/cancers13153827] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) carry RNA, proteins, lipids, and diverse biomolecules for intercellular communication. Recent studies have reported that EVs contain double-stranded DNA (dsDNA) and oncogenic mutant DNA. The advantage of EV-derived DNA (EV DNA) over cell-free DNA (cfDNA) is the stability achieved through the encapsulation in the lipid bilayer of EVs, which protects EV DNA from degradation by external factors. The existence of DNA and its stability make EVs a useful source of biomarkers. However, fundamental research on EV DNA remains limited, and many aspects of EV DNA are poorly understood. This review examines the known characteristics of EV DNA, biogenesis of DNA-containing EVs, methylation, and next-generation sequencing (NGS) analysis using EV DNA for biomarker detection. On the basis of this knowledge, this review explores how EV DNA can be incorporated into diagnosis and prognosis in clinical settings, as well as gene transfer of EV DNA and its therapeutic potential.
Collapse
Affiliation(s)
- Jae Young Hur
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea;
- Department of Pathology, Konkuk University Medical Center, Seoul 05030, Korea
| | - Kye Young Lee
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Korea;
- Department of Pulmonary Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| |
Collapse
|