1
|
Wu C, Xu H, Wu Z, Huang H, Ge Q, Xu J, Chen J, Wang P, Yuan W, Jin H, Tong P. Subchondral injection of human umbilical cord mesenchymal stem cells ameliorates knee osteoarthritis by inhibiting osteoblast apoptosis and TGF-beta activity. Stem Cell Res Ther 2025; 16:235. [PMID: 40346614 PMCID: PMC12065343 DOI: 10.1186/s13287-025-04366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative disease caused by multiple pathological mechanisms wherein subchondral bone malfunction plays a substantial role. Recently, subchondral (SC) injection of orthobiologics has been attracting growing interest albeit the mainstream delivery method of mesenchymal stem cells (MSCs) is through intra-articular (IA). This study investigates the effect of SC injection of human umbilical cord mesenchymal stem cells (UCMSCs) on OA and its possible therapeutic mechanism compared to IA injection. METHODS Male Sprague-Dawley rats with anterior cruciate ligament transection (ACLT) received saline or UCMSC injections via SC or IA. Consecutive injections once a week for three weeks and withdrawal for another four weeks, followed by Radiographical scanning, histopathological, immunohistochemical, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) staining. Cell counting Kit-8 (CCK-8) assay, alkaline phosphatase (ALP), alizarin red staining (ARS), TUNEL, flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were employed in TNFα-induced MC3T3-E1 cells to illustrate the exact pathogenesis mechanism. RESULTS IA and SC UCMSC injections preserved cartilage, synovium, and subchondral bone parameters like trabecular bone volume fraction (BV/TV). SC injection uniquely improved Trabecular separation (Tb.Sp) and Trabecular number (Tb.N). SC and IA injections of UCMSCs demonstrated equivalent efficacy in promoting osteoblastic bone formation and attenuating aberrant angiogenesis of subchondral bone. In addition, we demonstrated that osteoblast apoptosis and Smad2-dependent TGF-beta (TGF-β) are crucial and interactive subchondral bone pathological features in OA. In vivo and vitro studies further revealed that UCMSCs inhibited excessive TGF-β/pSmad2 signaling to regulate aberrant vascularization, osteoblast apoptosis and differentiation imbalance, ultimately maintaining osteochondral homeostasis. CONCLUSIONS The efficacy of UCMSCs for treating OA rats via SC injection was equivalent to that of IA; and even superior to IA in terms of subchondral bone phenotype via regulating apoptosis and TGF-β/pSmad2 signaling in osteoblasts, suggesting SC injection of UCMSCs as a potential and promising cell therapy for OA treatment.
Collapse
Affiliation(s)
- Congzi Wu
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), No.208 East Huancheng Road, Gongshu District, Hangzhou, Zhejiang, 310003, PR China
| | - HuiHui Xu
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China
| | - Zhen Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, Tongde Hospital of Zhejiang Province, No.234 Gucui Road, Xihu District, Hangzhou, Zhejiang,, 310012, PR China
| | - Haipeng Huang
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
| | - Qinwen Ge
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China
| | - Jianbo Xu
- The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, No.199 Shixinnan Road, Xiaoshan District, Hangzhou, Zhejiang, 311200, PR China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China.
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.548 Binwen Road, Binwen District, Hangzhou, Zhejiang, 310053, PR China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China.
| |
Collapse
|
2
|
Migliorini F, Pilone M, Ascani J, Schäfer L, Jeyaraman M, Maffulli N. Management of knee osteoarthritis using bone marrow aspirate concentrate: a systematic review. Br Med Bull 2025; 153:ldae016. [PMID: 39506910 DOI: 10.1093/bmb/ldae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/20/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Knee osteoarthritis (OA) is a common degenerative joint condition and a major cause of disability in the general population. SOURCE OF DATA Recent published literature identified from PubMed, EMBASE, Google Scholar, and Scopus. AREAS OF AGREEMENT Orthobiological therapies try to regenerate articular cartilage and stop the progression of the degenerative lesion. Intra-articular injections of biological derivates have been increasingly used in the last decade. AREAS OF CONTROVERSY The indications for the use of bone marrow aspirate concentrate (BMAC) are still unclear. GROWING POINTS We systematically reviewed the current literature on BMAC in the management of knee OA, giving an update on the current indications for the selection of the ideal patient and the preparations and efficacy of BMAC compared to other biological alternatives. AREAS TIMELY FOR DEVELOPING RESEARCH BMAC is a valuable source of mesenchymal stem cells, offering potential benefits in attenuating the inflammatory pathway associated with knee OA. Intra-articular injection of BMAC has shown effectiveness in clinical trials improving functional outcomes of knee OA patients. The superiority of BMAC over other orthobiological treatments cannot be assessed because of conflicting results.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Via Lorenz Böhler 5, 39100, Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale di San Pio V, 00165 Rome, Italy
| | - Marco Pilone
- Residency Program in Orthopedics and Traumatology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Jacopo Ascani
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University "La Sapienza" of Rome, Via di Grottarossa 1035, 00189 Roma, Italy
| | - Luise Schäfer
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Via Lorenz Böhler 5, 39100, Bolzano, Italy
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Poonamallee High Rd, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University "La Sapienza" of Rome, Via di Grottarossa 1035, 00189 Roma, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, United Kingdom
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, E1 4DG London, UK
| |
Collapse
|
3
|
Li Z, Yu J, An P, Zhang W, Tian K. Current understanding of articular cartilage lesions in femoroacetabular impingement syndrome. J Orthop Surg Res 2024; 19:886. [PMID: 39734214 DOI: 10.1186/s13018-024-05322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
The concept of femoroacetabular impingement syndrome (FAIS) has received much attention over the past 20 years. Currently, it is believed that FAIS can lead to intra-articular pathologies such as labral tears and articular cartilage lesions, resulting in clinical symptoms and subsequent poor clinical outcomes. FAIS-related articular cartilage lesions are common but unique, and their natural course always leads to early osteoarthritis of the hip. However, despite these cartilage lesions having gradually gained considerable attention, limited consensus has been reached on key aspects, such as diagnosis, mechanisms, classification, and management strategies, which limits clinical and research advances. Hence, an intensive comprehensive overview based on the existing evidence is necessary. The purpose of this review was to introduce the general consensus, controversial issues, and recent advances in FAIS-related articular cartilage lesions.
Collapse
Affiliation(s)
- Zhi Li
- Department of Joint and Sports Medicine, The First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Shahekou District, Dalian, 116021, China
- Dalian Medical University, Dalian, 116044, China
| | - Jiangwei Yu
- Department of Joint and Sports Medicine, The First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Shahekou District, Dalian, 116021, China
- Dalian Medical University, Dalian, 116044, China
| | - Peitong An
- Department of Joint and Sports Medicine, The First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Shahekou District, Dalian, 116021, China
- Dalian Medical University, Dalian, 116044, China
| | - Weiguo Zhang
- Department of Joint and Sports Medicine, The First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Shahekou District, Dalian, 116021, China.
| | - Kang Tian
- Department of Joint and Sports Medicine, The First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Shahekou District, Dalian, 116021, China.
| |
Collapse
|
4
|
Roseti L, Cavallo C, Desando G, D’Alessandro M, Grigolo B. Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side. Pharmaceutics 2024; 16:1622. [PMID: 39771600 PMCID: PMC11677864 DOI: 10.3390/pharmaceutics16121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. Objectives: This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Conclusions: Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments.
Collapse
Affiliation(s)
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.); (G.D.); (M.D.); (B.G.)
| | | | | | | |
Collapse
|
5
|
Subramanyam K, Poornima S, Kumar S, Hasan Q. Short-Term Clinical Results of Single-Injection Autologous Bone Marrow Aspirate Concentrate (BMAC) as a Therapeutic Option/Tool in Knee Osteoarthritis. BIOLOGICS 2024; 4:218-231. [DOI: 10.3390/biologics4020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Purpose: Knee osteoarthritis (KOA) is a very common cartilage disorder affecting millions of people globally and is characterized by pain, stiffness, swelling, loss of articular cartilage, and osteophyte formation, resulting in disability. The presently available treatments for KOA are palliative. Hence, there is a need to explore a non-surgical treatment portfolio. Bone marrow aspirate concentrate (BMAC) is one of the predominant attention-drawing managements/treatments for KOA in recent times due to its potential advantages of disease-modifying and regeneration capacities. Principle: This study aimed to evaluate the role of single-injection autologous BMAC as a therapeutic option in the treatment of KOA and evaluate the functional and clinical outcomes of KOA patients. In this study, 132 patients with KOA (Kellgren and Lawrence (KL) grade II and III) were included as per the inclusion criteria. Autologous bone marrow was aspirated and separated, and concentrated bone marrow aspirate was administered into the knee joint of the affected individual. Results: At the end of the 12th month (end of the follow-up period), 95% of patients showed complete pain relief and improvement in joint function, which shows that the results were promising and encouraging. Unpaired t-test results also indicated that the two-tailed p-value is less than 0.0001, and the difference is extremely statistically significant. No adverse effects were observed in the study patients. Conclusions: BMAC therapy has potential, with satisfactory, efficient, and durable results in KL grades II and III in KOA patients. This can be a safe alternative therapy in the treatment of KOA, especially in the early grades of OA. In summary, to the best of our knowledge, this is the first study from India that evaluated BMAC efficacy both subjectively and objectively in KOA (KL-II and KL-III) patients.
Collapse
Affiliation(s)
- Krishna Subramanyam
- Department of Orthopaedics, Kamineni Hospitals, LB Nagar, Hyderabad 500074, India
- Department of Orthopaedics, Yashoda Hospitals, Malakpet, Hyderabad 500036, India
| | - Subhadra Poornima
- Department of Genetics and Molecular Medicine, Kamineni Academy of Medical Sciences and Research Centre, LB. Nagar, Hyderabad 500074, India
- Department of Genetics and Molecular Medicine, Kamineni Life Sciences, Moula Ali, Hyderabad 500047, India
| | - Satish Kumar
- Department of Orthopaedics, Yashoda Hospitals, Malakpet, Hyderabad 500036, India
| | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Academy of Medical Sciences and Research Centre, LB. Nagar, Hyderabad 500074, India
| |
Collapse
|
6
|
Wei S, Li M, Wang Q, Zhao Y, Du F, Chen Y, Deng S, Shen J, Wu K, Yang J, Sun Y, Gu L, Li X, Li W, Chen M, Ling X, Yu L, Xiao Z, Dong L, Wu X. Mesenchymal Stromal Cells: New Generation Treatment of Inflammatory Bowel Disease. J Inflamm Res 2024; 17:3307-3334. [PMID: 38800593 PMCID: PMC11128225 DOI: 10.2147/jir.s458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Qin Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| |
Collapse
|
7
|
Athanasiadou D, Meshry N, Monteiro NG, Ervolino-Silva AC, Chan RL, McCulloch CA, Okamoto R, Carneiro KMM. DNA hydrogels for bone regeneration. Proc Natl Acad Sci U S A 2023; 120:e2220565120. [PMID: 37071684 PMCID: PMC10151614 DOI: 10.1073/pnas.2220565120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
DNA-based biomaterials have been proposed for tissue engineering approaches due to their predictable assembly into complex morphologies and ease of functionalization. For bone tissue regeneration, the ability to bind Ca2+ and promote hydroxyapatite (HAP) growth along the DNA backbone combined with their degradation and release of extracellular phosphate, a known promoter of osteogenic differentiation, make DNA-based biomaterials unlike other currently used materials. However, their use as biodegradable scaffolds for bone repair remains scarce. Here, we describe the design and synthesis of DNA hydrogels, gels composed of DNA that swell in water, their interactions in vitro with the osteogenic cell lines MC3T3-E1 and mouse calvarial osteoblast, and their promotion of new bone formation in rat calvarial wounds. We found that DNA hydrogels can be readily synthesized at room temperature, and they promote HAP growth in vitro, as characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. Osteogenic cells remain viable when seeded on DNA hydrogels in vitro, as characterized by fluorescence microscopy. In vivo, DNA hydrogels promote the formation of new bone in rat calvarial critical size defects, as characterized by micro-computed tomography and histology. This study uses DNA hydrogels as a potential therapeutic biomaterial for regenerating lost bone.
Collapse
Affiliation(s)
| | - Nadeen Meshry
- Faculty of Dentistry, University of Toronto, Toronto, OntarioM5G 1G6, Canada
| | - Naara G. Monteiro
- Department of Basic Sciences, Universidade Estadual Paulista Júlio de Mesquita Filho, School of Dentistry at Araçatuba, Araçatuba, SP16018-805, Brazil
| | - Ana C. Ervolino-Silva
- Department of Basic Sciences, Universidade Estadual Paulista Júlio de Mesquita Filho, School of Dentistry at Araçatuba, Araçatuba, SP16018-805, Brazil
| | - Ryan Lee Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, OntarioM5S 3E2, Canada
| | | | - Roberta Okamoto
- Department of Basic Sciences, Universidade Estadual Paulista Júlio de Mesquita Filho, School of Dentistry at Araçatuba, Araçatuba, SP16018-805, Brazil
| | - Karina M. M. Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, OntarioM5G 1G6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, OntarioM5S 3E2, Canada
| |
Collapse
|
8
|
Pasculli RM, Kenyon CD, Berrigan WA, Mautner K, Hammond K, Jayaram P. Mesenchymal stem cells for subchondral bone marrow lesions: From bench to bedside. Bone Rep 2022; 17:101630. [PMID: 36310763 PMCID: PMC9615138 DOI: 10.1016/j.bonr.2022.101630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
Subchondral bone marrow lesions (BMLs) are areas of disease within subchondral bone that appear as T1 hypointense and T2 hyperintense ill-defined areas of bone marrow on magnetic resonance imaging. The most common bone marrow lesions include subchondral lesions related to osteoarthritis, osteochondral defects, and avascular necrosis. Emerging therapies include autologous biologic therapeutics, in particular mesenchymal stem cells (MSCs), to maintain and improve cartilage health; MSCs have become a potential treatment option for BMLs given the unmet need for disease modification. Active areas in the preclinical research of bone marrow lesions include the paracrine function of MSCs in pathways of angiogenesis and inflammation, and the use of bioactive scaffolds to optimize the environment for implanted MSCs by facilitating chondrogenesis and higher bone volumes. A review of the clinical data demonstrates improvements in pain and functional outcomes when patients with knee osteoarthritis were treated with MSCs, suggesting that BM-MSCs can be a safe and effective treatment for patients with painful knee osteoarthritis with or without bone marrow lesions. Preliminary data examining MSCs in osteochondral defects suggest they can be beneficial as a subchondral injection alone, or as a surgical augmentation. In patients with hip avascular necrosis, those with earlier stage disease have improved outcomes when core decompression is augmented with MSCs, whereas patients in later stages post-collapse have equivalent outcomes with or without MSC treatment. While the evidence for the use of MSCs in conditions with associated bone marrow lesions seems promising, there remains a need for continued investigation into this treatment as a viable treatment option. Common BMLs include osteoarthritis, osteochondral defects, and avascular necrosis. Patients with knee osteoarthritis treated with MSCs show improved pain and function. MSCs used as subchondral injection or surgical augmentation in osteochondral defects Improved outcomes of early hip avascular necrosis after core decompression with MSCs Additional preclinical and clinical evidence of MSCs as treatment for BMLs is needed.
Collapse
|
9
|
Silva S, Andriolo L, Boffa A, Di Martino A, Reale D, Vara G, Miceli M, Cavallo C, Grigolo B, Zaffagnini S, Filardo G. Prospective double-blind randomised controlled trial protocol comparing bone marrow aspirate concentrate intra-articular injection combined with subchondral injection versus intra-articular injection alone for the treatment of symptomatic knee osteoarthritis. BMJ Open 2022; 12:e062632. [PMID: 36468635 PMCID: PMC9462121 DOI: 10.1136/bmjopen-2022-062632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Subchondral and intra-articular injections of bone marrow aspirate concentrate (BMAC) showed promising results for knee osteoarthritis (OA) patients. To date, there is no evidence to demonstrate whether the combination of these treatments provides higher benefits than the intra-articular injection alone. METHODS AND ANALYSIS Eighty-six patients with symptomatic knee OA (aged between 40 and 70 years) are randomised to BMAC intra-articular injection combined with subchondral BMAC injection or BMAC intra-articular injection alone in a ratio of 1:1. The primary outcome is the total Western Ontario and McMaster Universities Osteoarthritis Index, the secondary outcomes are the International Knee Documentation Committee Subjective and Objective Knee Evaluation Form, the Tegner activity scale, the EuroQol-Visual Analogue Scale, and the health questionnaire European Quality of Life Five Dimension score. Additional CT and MRI evaluations are performed at the baseline assessment and at the final 12-month follow-up. The hypothesis is that the combined injections provide higher knee pain and function improvement compared with BMAC intra-articular injection alone. The primary analysis follows an intention to treat principle. ETHICS AND DISSEMINATION The study protocol has been approved by the Emilia Wide Area Ethical Committee of the Emilia-Romagna Region (CE-AVEC), Bologna, Italy. Written informed consent is obtained from all the participants. Findings of this study will be disseminated through peer-reviewed publications and conference presentations. PROTOCOL VERSION Version 1 (14 May 2018). TRIAL REGISTRATION NUMBER NCT03876795.
Collapse
Affiliation(s)
- Simone Silva
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Andriolo
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Angelo Boffa
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Di Martino
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Reale
- Ortopedia e Traumatologia, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulio Vara
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carola Cavallo
- Laboratory RAMSES, Research & Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Brunella Grigolo
- Laboratory RAMSES, Research & Innovation Technology Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Zaffagnini
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
10
|
Hart DA, Nakamura N. Creating an Optimal In Vivo Environment to Enhance Outcomes Using Cell Therapy to Repair/Regenerate Injured Tissues of the Musculoskeletal System. Biomedicines 2022; 10:1570. [PMID: 35884875 PMCID: PMC9313221 DOI: 10.3390/biomedicines10071570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Following most injuries to a musculoskeletal tissue which function in unique mechanical environments, an inflammatory response occurs to facilitate endogenous repair. This is a process that usually yields functionally inferior scar tissue. In the case of such injuries occurring in adults, the injury environment no longer expresses the anabolic processes that contributed to growth and maturation. An injury can also contribute to the development of a degenerative process, such as osteoarthritis. Over the past several years, researchers have attempted to use cellular therapies to enhance the repair and regeneration of injured tissues, including Platelet-rich Plasma and mesenchymal stem/medicinal signaling cells (MSC) from a variety of tissue sources, either as free MSC or incorporated into tissue engineered constructs, to facilitate regeneration of such damaged tissues. The use of free MSC can sometimes affect pain symptoms associated with conditions such as OA, but regeneration of damaged tissues has been challenging, particularly as some of these tissues have very complex structures. Therefore, implanting MSC or engineered constructs into an inflammatory environment in an adult may compromise the potential of the cells to facilitate regeneration, and neutralizing the inflammatory environment and enhancing the anabolic environment may be required for MSC-based interventions to fulfill their potential. Thus, success may depend on first eliminating negative influences (e.g., inflammation) in an environment, and secondly, implanting optimally cultured MSC or tissue engineered constructs into an anabolic environment to achieve the best outcomes. Furthermore, such interventions should be considered early rather than later on in a disease process, at a time when sufficient endogenous cells remain to serve as a template for repair and regeneration. This review discusses how the interface between inflammation and cell-based regeneration of damaged tissues may be at odds, and outlines approaches to improve outcomes. In addition, other variables that could contribute to the success of cell therapies are discussed. Thus, there may be a need to adopt a Precision Medicine approach to optimize tissue repair and regeneration following injury to these important tissues.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Norimasa Nakamura
- Institute of Medical Science in Sport, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan;
| |
Collapse
|
11
|
Lehoczky G, Trofin RE, Vallmajo-Martin Q, Chawla S, Pelttari K, Mumme M, Haug M, Egloff C, Jakob M, Ehrbar M, Martin I, Barbero A. In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. Int J Mol Sci 2022; 23:ijms23136900. [PMID: 35805907 PMCID: PMC9267018 DOI: 10.3390/ijms23136900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 02/05/2023] Open
Abstract
Nasal chondrocytes (NCs) have a higher and more reproducible chondrogenic capacity than articular chondrocytes, and the engineered cartilage tissue they generate in vitro has been demonstrated to be safe in clinical applications. Here, we aimed at determining the feasibility for a single-stage application of NCs for cartilage regeneration under minimally invasive settings. In particular, we assessed whether NCs isolated using a short collagenase digestion protocol retain their potential to proliferate and chondro-differentiate within an injectable, swiftly cross-linked and matrix-metalloproteinase (MMP)-degradable polyethylene glycol (PEG) gel enriched with human platelet lysate (hPL). NC-hPL-PEG gels were additionally tested for their capacity to generate cartilage tissue in vivo and to integrate into cartilage/bone compartments of human osteochondral plugs upon ectopic subcutaneous implantation into nude mice. NCs isolated with a rapid protocol and embedded in PEG gels with hPL at low cell density were capable of efficiently proliferating and of generating tissue rich in glycosaminoglycans and collagen II. NC-hPL-PEG gels developed into hyaline-like cartilage tissues upon ectopic in vivo implantation and integrated with surrounding native cartilage and bone tissues. The delivery of NCs in PEG gels containing hPL is a feasible strategy for cartilage repair and now requires further validation in orthotopic in vivo models.
Collapse
Affiliation(s)
- Gyözö Lehoczky
- Department of Orthopaedic Surgery and Traumatology, University Hospital of Basel, 4031 Basel, Switzerland; (G.L.); (M.M.); (C.E.)
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| | - Raluca Elena Trofin
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| | - Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Q.V.-M.); (M.E.)
| | - Shikha Chawla
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| | - Karoliina Pelttari
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| | - Marcus Mumme
- Department of Orthopaedic Surgery and Traumatology, University Hospital of Basel, 4031 Basel, Switzerland; (G.L.); (M.M.); (C.E.)
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
- Department of Orthopaedic Surgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
| | - Martin Haug
- Department of Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, University Hospital of Basel, 4031 Basel, Switzerland;
| | - Christian Egloff
- Department of Orthopaedic Surgery and Traumatology, University Hospital of Basel, 4031 Basel, Switzerland; (G.L.); (M.M.); (C.E.)
| | | | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Q.V.-M.); (M.E.)
| | - Ivan Martin
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
- Correspondence: ; Tel.: +41-61-2652384; Fax: +41-61-2653990
| | - Andrea Barbero
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| |
Collapse
|
12
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Gardner JE, Williams CW, Bowers RL. Subchondral versus intra-articular orthobiologic injections for the treatment of knee osteoarthritis: a review. Regen Med 2022; 17:389-400. [PMID: 35410486 DOI: 10.2217/rme-2021-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent perspectives suggest that osteoarthritis (OA) is a disease involving not only the articular cartilage but also the osteochondral unit, including the synovium, supportive cartilage and subchondral bone. Current conservative treatments for OA are symptomatic and do not prevent progression or reverse the disease process. Compelling data show that intra-articular orthobiologic injections, such as platelet-rich plasma and mesenchymal stromal cells, are effective in providing relief of OA symptoms. However, recent data suggest that injections of orthobiologics into the subchondral bone may be superior to intra-articular injections for the management of OA. This review highlights the rationale and current evidence for intra-articular and subchondral bone injections of orthobiologics for the treatment of OA.
Collapse
Affiliation(s)
- James E Gardner
- Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Christopher W Williams
- Department of Physical Medicine & Rehabilitation, Emory University, Atlanta, GA 30322, USA.,Interventional Orthopedics of Atlanta, Atlanta, GA 30305, USA
| | - Robert L Bowers
- Department of Orthopaedics, Emory University, Atlanta, GA 30322, USA.,Department of Physical Medicine & Rehabilitation, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Hernigou J, Verdonk P, Homma Y, Verdonk R, Goodman SB, Hernigou P. Nonoperative and Operative Bone and Cartilage Regeneration and Orthopaedic Biologics of the Hip: An Orthoregeneration Network (ON) Foundation Hip Review. Arthroscopy 2022; 38:643-656. [PMID: 34506886 DOI: 10.1016/j.arthro.2021.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/12/2021] [Indexed: 02/02/2023]
Abstract
Orthoregeneration is defined as a solution for orthopaedic conditions that harnesses the benefits of biology to improve healing, reduce pain, improve function, and, optimally, provide an environment for tissue regeneration. Options include drugs, surgical intervention, scaffolds, biologics as a product of cells, and physical and electromagnetic stimuli. The goal of regenerative medicine is to enhance the healing of tissue after musculoskeletal injuries as both isolated treatment and adjunct to surgical management, using novel therapies to improve recovery and outcomes. Various orthopaedic biologics (orthobiologics) have been investigated for the treatment of pathology involving the hip, including osteonecrosis (aseptic necrosis) involving bone marrow, bone, and cartilage, and chondral injuries involving articular cartilage, synovium, and bone marrow. Promising and established treatment modalities for osteonecrosis include nonweightbearing; pharmacological treatments including low molecular-weight heparin, prostacyclin, statins, bisphosphonates, and denosumab, a receptor activator of nuclear factor-kB ligand inhibitor; extracorporeal shock wave therapy; pulsed electromagnetic fields; core decompression surgery; cellular therapies including bone marrow aspirate comprising mesenchymal stromal cells (MSCs aka mesenchymal stem cells) and bone marrow autologous concentrate, with or without expanded or cultured cells, and possible addition of bone morphogenetic protein-2, vascular endothelial growth factor, and basic fibroblast growth factor; and arterial perfusion of MSCs that may be combined with addition of carriers or scaffolds including autologous MSCs cultured with beta-tricalcium phosphate ceramics associated with a free vascularized fibula. Promising and established treatment modalities for chondral lesions include autologous platelet-rich plasma; hyaluronic acid; MSCs (in expanded or nonexpanded form) derived from bone marrow or other sources such as fat, placenta, umbilical cord blood, synovial membrane, and cartilage; microfracture or microfracture augmented with membrane containing MSCs, collagen, HA, or synthetic polymer; mosaicplasty; 1-stage autologous cartilage translation (ACT) or 2-stage ACT using 3-dimensional spheroids; and autologous cartilage grafting; chondral flap repair, or flap fixation with fibrin glue. Hip pain is catastrophic in young patients, and promising therapies offer an alternative to premature arthroplasty. This may address both physical and psychological components of pain; the goal is to avoid or postpone an artificial joint. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
| | | | - Yasuhiro Homma
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - René Verdonk
- Department of Orthopaedics & Trauma, ULB University Clinic Erasme, Brussels, Belgium
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University Medical Center Outpatient Center, Stanford, California, U.S.A
| | | |
Collapse
|
15
|
Jeyaraman M, Bingi SK, Muthu S, Jeyaraman N, Packkyarathinam RP, Ranjan R, Sharma S, Jha SK, Khanna M, Rajendran SNS, Rajendran RL, Gangadaran P. Impact of the Process Variables on the Yield of Mesenchymal Stromal Cells from Bone Marrow Aspirate Concentrate. Bioengineering (Basel) 2022; 9:57. [PMID: 35200410 PMCID: PMC8869489 DOI: 10.3390/bioengineering9020057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Human bone marrow (BM) has been highlighted as a promising source of mesenchymal stromal cells (MSCs) containing various growth factors and cytokines that can be potentially utilized in regenerative procedures involving cartilage and bone. However, the proportion of MSCs in the nucleated cell population of BM is only around 0.001% to 0.01% thereby making the harvesting and processing technique crucial for obtaining optimal results upon its use in various regenerative processes. Although several studies in the literature have given encouraging results on the utility of BM aspiration concentrate (BMAC) in various regenerative procedures, there is a lack of consensus concerning the harvesting variables such as choice of anesthetic agent to be used, site of harvest, size of the syringe to be used, anticoagulant of choice, and processing variables such as centrifugation time, and speed. In this review article, we aim to discuss the variables in the harvesting and processing technique of BMAC and their impact on the yield of MSCs in the final concentrate obtained from them.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
| | - Shiva Kumar Bingi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, India
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, India
| | | | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India;
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226401, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
16
|
Hernigou P, Scarlat MM. Ankle and foot surgery: from arthrodesis to arthroplasty, three dimensional printing, sensors, artificial intelligence, machine learning technology, digital twins, and cell therapy. INTERNATIONAL ORTHOPAEDICS 2021; 45:2173-2176. [PMID: 34448029 PMCID: PMC8390078 DOI: 10.1007/s00264-021-05191-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|