1
|
Kimura AH, Dahmer D, Isawa LA, da Silva ABO, Souza LMDS, Takata PH, Scandorieiro S, Deonas AN, Germiniani-Cardozo J, Vespero EC, Perugini MRE, Lincopan N, Garcia Lonni AAS, Nakazato G, Kobayashi RKT. Hydrogel Containing Biogenic Silver Nanoparticles and Origanum vulgare Essential Oil for Burn Wounds: Antimicrobial Efficacy Using Ex Vivo and In Vivo Methods Against Multidrug-Resistant Microorganisms. Pharmaceutics 2025; 17:503. [PMID: 40284498 PMCID: PMC12030619 DOI: 10.3390/pharmaceutics17040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Wounds from burns are susceptible to infections, allowing multidrug-resistant microorganisms to complicate treatments and patient recovery. This highlights the development of new strategies to control these microorganisms. This work evaluated the antibacterial activity of hydrogels containing biogenic silver nanoparticles (bio-AgNP) and Origanum vulgare essential oil (OEO) against multidrug-resistant bacteria. Methods: The formulations were subjected to organoleptic, pharmacotechnical, and stability characterization and antimicrobial activity assessment by time-kill tests and alternative methods, an ex vivo model using porcine skin, and an in vivo model using Galleria mellonella. Results: All hydrogels maintained their stability after the thermal stress. The hydrogel containing bio-AgNP + OEO 1% (HAgNP + OEO1) presented bactericidal effectiveness, within 2 h, against both Gram-positive and Gram-negative multidrug-resistant bacteria in the time-kill test. For alternative testing, HAgNP + OEO1 was compared with 1% silver sulfadiazine (SS) and the base formulation. In the ex vivo test, both HAgNP + OEO1 and SS treatments showed a similar reduction in superficial washing of the burn for S. aureus 999, while for P. aeruginosa, the reduction was more expressive for SS treatment. In the burn tissue, HAgNP + OEO1 treatment was more effective against S. aureus 999, while for P. aeruginosa 1461, both formulations were similarly effective. In the Galleria mellonella test, survival rates after 48 h were 84% for the control group (base) and 50% for both HAgNP + OEO1 and SS treatment groups. Conclusions: This study demonstrates that the hydrogel combining antimicrobials is effective against multidrug-resistant microorganisms, offering a promising alternative for the treatment of infected burns.
Collapse
Affiliation(s)
- Angela Hitomi Kimura
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.H.K.); (L.A.I.); (A.B.O.d.S.); (L.M.d.S.S.); (P.H.T.); (G.N.)
| | - Débora Dahmer
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina 86057-970, Brazil; (D.D.); (A.N.D.); (J.G.-C.)
| | - Luana Ayumi Isawa
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.H.K.); (L.A.I.); (A.B.O.d.S.); (L.M.d.S.S.); (P.H.T.); (G.N.)
| | - Ana Beatriz Olivetti da Silva
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.H.K.); (L.A.I.); (A.B.O.d.S.); (L.M.d.S.S.); (P.H.T.); (G.N.)
| | - Lucas Marcelino dos Santos Souza
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.H.K.); (L.A.I.); (A.B.O.d.S.); (L.M.d.S.S.); (P.H.T.); (G.N.)
| | - Pedro Henrique Takata
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.H.K.); (L.A.I.); (A.B.O.d.S.); (L.M.d.S.S.); (P.H.T.); (G.N.)
| | - Sara Scandorieiro
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil; (S.S.); (A.A.S.G.L.)
| | - Anastácia Nikolaos Deonas
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina 86057-970, Brazil; (D.D.); (A.N.D.); (J.G.-C.)
| | - Jennifer Germiniani-Cardozo
- Department of Biochemistry and Biotechnology, State University of Londrina, Londrina 86057-970, Brazil; (D.D.); (A.N.D.); (J.G.-C.)
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil; (E.C.V.); (M.R.E.P.)
| | - Marcia Regina Eches Perugini
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil; (E.C.V.); (M.R.E.P.)
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
| | - Audrey Alesandra Stinghen Garcia Lonni
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, University Hospital of Londrina, Londrina 86038-350, Brazil; (S.S.); (A.A.S.G.L.)
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.H.K.); (L.A.I.); (A.B.O.d.S.); (L.M.d.S.S.); (P.H.T.); (G.N.)
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.H.K.); (L.A.I.); (A.B.O.d.S.); (L.M.d.S.S.); (P.H.T.); (G.N.)
| |
Collapse
|
2
|
Chagas VL, Silva LDS, Sousa CEMD, Silva RG, Carvalho LRDS, Silva ISS, Bazán JMN, Tofanello A, Garcia W, Teixeira CS, Carvalho EM, Martins SMDSB, Correia MTDS, Nascimento da Silva LC. Development and characterization of alginate and chitosan hybrid films for dual administration of neomycin and lidocaine. Int J Biol Macromol 2025; 309:142632. [PMID: 40158592 DOI: 10.1016/j.ijbiomac.2025.142632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Wound care is frequently hindered by infections, which prevent recovery and adversely affect patients' quality of life. A prevalent example is the presence of bacteria such as Staphylococcus aureus, which can lead to severe inflammation. This study developed and characterized hybrid films composed of alginate and chitosan, incorporating the antimicrobial agent neomycin and the local anesthetic lidocaine, to be applied as a dressing for wound treatment. The research employed an experimental design to identify the optimal formulation, evaluating aspects such as uniformity, cracking, and consistency of the films. After determining the ideal formulation, the films were evaluated: roughness, moisture absorption, swelling, and thickness. Additionally, advanced analytical techniques such as electron microscopy and spectroscopy were employed to provide a comprehensive characterization of the films. The results indicated that the films maintained good chemical stability after incorporating the drugs, effectively absorbed liquids, and exhibited suitable thickness. Biocompatibility was confirmed through hemolysis and antimicrobial activity tests. The films containing both neomycin and lidocaine exhibited good efficacy against S. aureus, highlighting the enhanced bacterial inhibition when both drugs were present. These hybrid films show promise as dressings, possessing antimicrobial, anesthetic, and biocompatible properties, along with the ability to absorb liquids.
Collapse
Affiliation(s)
- Vitor Lopes Chagas
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, 50670-910, PE, Brazil; Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís, 65075-120, MA, Brazil
| | - Lucas Dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís, 65075-120, MA, Brazil
| | | | - Raphael Guedes Silva
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís, 65075-120, MA, Brazil
| | | | | | | | - Aryane Tofanello
- Center for Advanced Graphene, Nanomaterials and Nanotechnology Research (MackGraphe), Universidade Presbiteriana Mackenzie, SP, Brazil; Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, SP, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, SP, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Li BY, Lin TY, Lai YJ, Chiu TH, Yeh YC. Engineering Multiresponsive Alginate/PNIPAM/Carbon Nanotube Nanocomposite Hydrogels as On-Demand Drug Delivery Platforms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407420. [PMID: 39955748 DOI: 10.1002/smll.202407420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Second near-infrared (NIR-II) responsive hydrogels have shown significant potential in biomedical applications due to their excellent remote actuation property and the high tissue penetrations of the NIR-II light. Nevertheless, hydrogels with a single NIR-II light response may not meet the diverse requirements and complex conditions of clinical applications. Here, a novel multi-responsive nanocomposite hydrogel with enhanced suitability for controlled drug release is developed. This nanocomposite hydrogel is constructed by combining alginate dialdehyde (ADA), polyethyleneimine (PEI), poly(N-isopropylacrylamide) (PNIPAM), and phenylboronic acid-modified polyethyleneimine (PBA-PEI) functionalized multi-walled carbon nanotubes (PP-CNT) through the formation of dynamic covalent bonds (i.e., imine bonds and boronate ester bonds), forming ADA/PEI/PNIPAM/PP-CNT (APN/PP-CNT) hydrogel. PNIPAM is incorporated into the hydrogel network to facilitate drug release triggered by its aggregation when subjected to the high temperatures produced by NIR-II light irradiation. The dynamic covalent bonds and CNT in the network provide the APN/PP-CNT nanocomposite hydrogels with responsiveness to multiple stimuli, including pH, hydrogen peroxide, temperature, and NIR-II light. The APN/PP-CNT nanocomposite hydrogel performs effective NIR-II light responsiveness in both in vitro and in vivo drug release, highlighting its potential as a promising drug delivery platform.
Collapse
Affiliation(s)
- Bo-Yan Li
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tung-Yi Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung branch, and Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yi-Jhen Lai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
4
|
Chen P, Sebastian EA, Karna SLR, Leung KP. Development of a Stringent Ex Vivo-Burned Porcine Skin Wound Model to Screen Topical Antimicrobial Agents. Antibiotics (Basel) 2024; 13:1159. [PMID: 39766550 PMCID: PMC11672622 DOI: 10.3390/antibiotics13121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Due to rising antibiotic-resistant microorganisms, there is a pressing need to screen approved drugs for repurposing and to develop new antibiotics for controlling infections. Current in vitro and ex vivo models have mostly been unsuccessful in establishing in vivo relevance. In this study, we developed a stringent ex vivo-burned porcine skin model with high in vivo relevance to screen topical antimicrobials. Methods: A 3 cm-diameter thermal injury was created on non-sterilized porcine skin using a pressure-monitored and temperature-controlled burn device. Commensals were determined pre- and post-burn. The burn wound was inoculated with a target pathogen, and efficacies of Silvadene, Flammacerium, Sulfamylon, and Mupirocin were determined. The in vivo relevance of this platform was evaluated by comparing the ex vivo treatment effects to available in vivo treatment outcomes (from our laboratory and published reports) against selective burn pathogens. Results: Approximately 1% of the commensals survived the skin burn, and these commensals in the burn wounds affected the treatment outcomes in the ex vivo screening platform. When tested against six pathogens, both Silvadene and Flammacerium treatment exhibited ~1-3 log reduction in viable counts. Sulfamylon and Mupirocin exhibited higher efficacy than both Silvadene and Flammacerium against Pseudomonas and Staphylococcus, respectively. The ex vivo treatment outcomes of Silvadene and Flammacerium against Pseudomonas were highly comparable to the outcomes of the in vivo (rats). Conclusions: The ex vivo model developed in our lab is a stringent and effective platform for antimicrobial activity screening. The outcome obtained from this ex vivo model is highly relevant to in vivo.
Collapse
Affiliation(s)
| | | | | | - Kai P. Leung
- Combat Wound Care Group, CRT 4, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA; (P.C.); (E.A.S.); (S.L.R.K.)
| |
Collapse
|
5
|
Nifontova G, Safaryan S, Khristidis Y, Smirnova O, Vosough M, Shpichka A, Timashev P. Advancing wound healing by hydrogel-based dressings loaded with cell-conditioned medium: a systematic review. Stem Cell Res Ther 2024; 15:371. [PMID: 39420416 PMCID: PMC11488269 DOI: 10.1186/s13287-024-03976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Wound healing represents a complex biological process, critically important in clinical practice due to its direct implication in a patient's recovery and quality of life. Conservative wound management frequently falls short in providing an ideal environment for the optimal tissue regeneration, often resulting in extended healing periods and elevated risk of infection and other complications. The emerging biomaterials, particularly hydrogels, have shown substantial promise in addressing these challenges by offering properties such as biocompatibility, biodegradability, and the ability to cure wound environment. Recent advancements have highlighted the therapeutic potential of integrating cell-derived conditioned medium (CM) into hydrogel matrices. Cell-derived CM represents a rich array of bioactive molecules, demonstrating significant efficacy in modulating cellular activities crucial for wound healing, including cellular proliferation, migration, and angiogenesis. METHODS The methodology of this review adheres to the standards set by the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The review includes a selection of studies published within the last five years, focusing on in vivo experiments involving various types of skin injuries treated with topically applied hydrogels loaded with CM (H-CM). The search strategy refers to the PICO framework and includes the assessment of study quality by CAMARADES tool. RESULTS The systematic review represents a detailed evaluation of H-CM dressings wound healing efficiency based on the experimental results of cell-based assays and animal wound models. The study targets to reveal wound healing capacity of H-CM dressings, and provides a comparative data analysis, limitations of methods and discussions of H-CM role in advancing the wound healing therapy. CONCLUSIONS The data presented demonstrate that H-CM is a promising material for advanced wound healing and regenerative medicine. These dressings possess proved in vitro/in vivo efficacy that highlights their strong clinical potential and paves the way to further investigations of H-CM formulations within clinical trials.
Collapse
Affiliation(s)
- Galina Nifontova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Sofia Safaryan
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, 1665666311, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| |
Collapse
|
6
|
Sun Q, Tao S, Bovone G, Han G, Deshmukh D, Tibbitt MW, Ren Q, Bertsch P, Siqueira G, Fischer P. Versatile Mechanically Tunable Hydrogels for Therapeutic Delivery Applications. Adv Healthc Mater 2024; 13:e2304287. [PMID: 38488218 DOI: 10.1002/adhm.202304287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/02/2024]
Abstract
Hydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine-tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid-like wound-healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid-like elastic hydrogel. The liquid hydrogels possess low viscosity and shear-thinning properties at 25 °C, which allows facile injection at room temperature, while they become viscoelastic gels at body temperature. In contrast, the covalently cross-linked solid-like hydrogels exhibit enhanced viscoelasticity. The liquid hydrogels are biocompatible and are able to delay the in vitro release and maintain the bioactivity of model drugs. The antimicrobial agent loaded solid-like hydrogels are effective against typical wound-associated pathogens. This work presents a simple method of tuning hydrogel mechanical strength to easily adapt to applications in different soft tissues and broaden the potential of renewable bio-nanoparticles in hybrid biomaterials with controlled drug release capabilities.
Collapse
Affiliation(s)
- Qiyao Sun
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Siyuan Tao
- Laboratory for Biointerfaces, Empa, St. Gallen, 9014, Switzerland
| | - Giovanni Bovone
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Garam Han
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Dhananjay Deshmukh
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
- Institute for Mechanical Systems, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, St. Gallen, 9014, Switzerland
| | - Pascal Bertsch
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, EMPA, Dübendorf, 8600, Switzerland
| | - Peter Fischer
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
7
|
Brar NK, Dhariwal A, Åmdal HA, Junges R, Salvadori G, Baker JL, Edlund A, Petersen FC. Exploring ex vivo biofilm dynamics: consequences of low ampicillin concentrations on the human oral microbiome. NPJ Biofilms Microbiomes 2024; 10:37. [PMID: 38565843 PMCID: PMC10987642 DOI: 10.1038/s41522-024-00507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Prolonged exposure to antibiotics at low concentration can promote processes associated with bacterial biofilm formation, virulence and antibiotic resistance. This can be of high relevance in microbial communities like the oral microbiome, where commensals and pathogens share a common habitat and where the total abundance of antibiotic resistance genes surpasses the abundance in the gut. Here, we used an ex vivo model of human oral biofilms to investigate the impact of ampicillin on biofilm viability. The ecological impact on the microbiome and resistome was investigated using shotgun metagenomics. The results showed that low concentrations promoted significant shifts in microbial taxonomic profile and could enhance biofilm viability by up to 1 to 2-log. For the resistome, low concentrations had no significant impact on antibiotic resistance gene (ARG) diversity, while ARG abundance decreased by up to 84%. A positive correlation was observed between reduced microbial diversity and reduced ARG abundance. The WHO priority pathogens Streptococcus pneumoniae and Staphylococcus aureus were identified in some of the samples, but their abundance was not significantly altered by ampicillin. Most of the antibiotic resistance genes that increased in abundance in the ampicillin group were associated with streptococci, including Streptococcus mitis, a well-known potential donor of ARGs to S. pneumoniae. Overall, the results highlight the potential of using the model to further our understanding of ecological and evolutionary forces driving antimicrobial resistance in oral microbiomes.
Collapse
Affiliation(s)
- N K Brar
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - A Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - H A Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - R Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - G Salvadori
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - J L Baker
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, USA
| | - A Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, USA
| | - F C Petersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Sanjarnia P, Picchio ML, Polegre Solis AN, Schuhladen K, Fliss PM, Politakos N, Metterhausen L, Calderón M, Osorio-Blanco ER. Bringing innovative wound care polymer materials to the market: Challenges, developments, and new trends. Adv Drug Deliv Rev 2024; 207:115217. [PMID: 38423362 DOI: 10.1016/j.addr.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
The development of innovative products for treating acute and chronic wounds has become a significant topic in healthcare, resulting in numerous products and innovations over time. The growing number of patients with comorbidities and chronic diseases, which may significantly alter, delay, or inhibit normal wound healing, has introduced considerable new challenges into the wound management scenario. Researchers in academia have quickly identified promising solutions, and many advanced wound healing materials have recently been designed; however, their successful translation to the market remains highly complex and unlikely without the contribution of industry experts. This review article condenses the main aspects of wound healing applications that will serve as a practical guide for researchers working in academia and industry devoted to designing, evaluating, validating, and translating polymer wound care materials to the market. The article highlights the current challenges in wound management, describes the state-of-the-art products already on the market and trending polymer materials, describes the regulation pathways for approval, discusses current wound healing models, and offers a perspective on new technologies that could soon reach consumers. We envision that this comprehensive review will significantly contribute to highlighting the importance of networking and exchanges between academia and healthcare companies. Only through the joint of these two actors, where innovation, manufacturing, regulatory insights, and financial resources act in harmony, can wound care products be developed efficiently to reach patients quickly and affordably.
Collapse
Affiliation(s)
- Pegah Sanjarnia
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Matías L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Agustin N Polegre Solis
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Katharina Schuhladen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Patricia M Fliss
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Nikolaos Politakos
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Lutz Metterhausen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ernesto R Osorio-Blanco
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany.
| |
Collapse
|
9
|
Vila Nova BG, Silva LDS, Andrade MDS, de Santana AVS, da Silva LCT, Sá GC, Zafred IF, Moreira PHDA, Monteiro CA, da Silva LCN, Abreu AG. The essential oil of Melaleuca alternifolia incorporated into hydrogel induces antimicrobial and anti-inflammatory effects on infected wounds by Staphylococcus aureus. Biomed Pharmacother 2024; 173:116389. [PMID: 38461682 DOI: 10.1016/j.biopha.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cristina Andrade Monteiro
- Laboratory of Research and Study in Microbiology, Federal Institute of Education, Science and Technology of the Maranhão (IFMA), São Luís, MA, Brazil
| | | | - Afonso Gomes Abreu
- Microbial Pathogenicity Laboratory, CEUMA University, São Luís, MA, Brazil.
| |
Collapse
|
10
|
Vaidyanathan L, Lokeswari TS. Anti-bacterial and anti-inflammatory properties of Vernonia arborea accelerate the healing of infected wounds in adult Zebrafish. BMC Complement Med Ther 2024; 24:95. [PMID: 38373996 PMCID: PMC10875872 DOI: 10.1186/s12906-024-04383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Management of wounds and healing under impaired conditions are the major challenges faced globally by healthcare workers. Phytocompounds which are anti-microbial and capable of modulating inflammation contribute to overall wound healing and regain of the lost structure and function especially in wounds impaired with polymicrobial infection. METHODS An acute cutaneous impaired wound model using adult zebrafish was validated to simulate mammalian wound pathophysiology. This model was used to evaluate phytofractions of Vernonia arborea in the present study, for reduction of infection; myeloperoxidase (MPO) as a marker of infection; neutrophil infiltration and resolution; kinetics of inflammatory cytokines; and wound repair kinetics (viz., nitrite levels and iNoS expression; reepithelisation). RESULTS Four fractions which were active in-vitro against five selected wound microbes were shown to reduce ex-vivo microbial bioburden upto 96% in the infected wound tissue. The reduction in CFU correlated with the neutrophil kinetics and MPO enzyme levels in the treated, wound infected zebrafish. Expression of pro-inflammatory cytokines (IL-6 and TNF-α) was downregulated while upregulating anti-inflammatory cytokine (IL-10), and nitric oxide signalling with fourfold increase in iNOS expression. The adult zebrafish wound model could well serve as a standard tool for assessing phytoextracts such as V. arborea for wound healing with anti-microbial properties.
Collapse
Affiliation(s)
- Lalitha Vaidyanathan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
| | - T Sivaswamy Lokeswari
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Bakcek Akcelik O, Ayhan H, Ali Aksoy O, Alp Goksel B, Caliskan E, Ceylan A, Ozgenc Cinar O. Development of a pig model of spontaneous pressure injury: A randomized self-controlled study. J Tissue Viability 2024:S0965-206X(24)00004-4. [PMID: 38369386 DOI: 10.1016/j.jtv.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Ozgu Bakcek Akcelik
- Yuksek Ihtisas University, Vocational School of Health Services, Department of Medical Services and Techniques, Operating Room Services Program, Turkiye.
| | - Hatice Ayhan
- University of Health Sciences, Gulhane Faculty of Nursing, Ankara, Turkiye.
| | - Okan Ali Aksoy
- University of Health Sciences, Gulhane Instıtute of Health Science, Animal Breeding and Research Center, Ankara, Turkiye.
| | - Berk Alp Goksel
- University of Health Sciences, Gulhane Instıtute of Health Science, Animal Breeding and Research Center, Ankara, Turkiye.
| | - Ercan Caliskan
- University of Health Sciences, Gulhane Training and Research Hospital, Department of Dermatology, Ankara, Turkiye.
| | - Ahmet Ceylan
- Ankara University, Faculty of Veterinary Medicine, Department of Histology-Embryology Dıskapı, Ankara, Turkiye.
| | - Ozge Ozgenc Cinar
- Ankara University, Faculty of Veterinary Medicine, Department of Histology-Embryology Dıskapı, Ankara, Turkiye.
| |
Collapse
|
12
|
Abdel-Gawad R, Osman R, Awad GAS, Mortada N. Wound healing potential of silver nanoparticles embedded in optimized bio-inspired hybridized chitosan soft and dry hydrogel. Carbohydr Polym 2024; 324:121526. [PMID: 37985104 DOI: 10.1016/j.carbpol.2023.121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Interactive wound dressings combining healing and antimicrobial potentials, besides ensuring patient compliance with a recognized wound care service gained considerable interest recently. Both hydrogel spray dried microparticles (HMP) and soft hydrogel (G) were prepared. The bio-inspired combinatory platform included natural bio-macromolecules namely: chitosan (CS) and collagen (COL) with wound healing enhancement and connective tissue building capabilities cross linked with the natural genipin (GN) to build a three dimensional structured matrix. The optimized plain hydrogel obtained by a box behnken design (BBD) program (G) scored maximum swelling and porosity. The network was hosted with green synthesized cefotaxime sodium (cef.Na) AgNPs reduced by the anabolic folic acid (FA). Both hydrogels exhibited good antimicrobial activity against gram +ve and -ve bacteria. The wound healing activity, evaluated in injured rats, showed >98 % and complete wound closure after two and three weeks respectively. Oxidative stress minimization was proved by the estimation of biochemical markers malondialdehyde (MDA) and superoxide dismutase (SOD) levels at the wound site.
Collapse
Affiliation(s)
- Roxane Abdel-Gawad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt.
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Nahed Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| |
Collapse
|
13
|
Wächter J, Vestweber PK, Planz V, Windbergs M. Unravelling host-pathogen interactions by biofilm infected human wound models. Biofilm 2023; 6:100164. [PMID: 38025836 PMCID: PMC10656240 DOI: 10.1016/j.bioflm.2023.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Approximately 80 % of persistent wound infections are affected by the presence of bacterial biofilms, resulting in a severe clinical challenge associated with prolonged healing periods, increased morbidity, and high healthcare costs. Unfortunately, in vitro models for wound infection research almost exclusively focus on early infection stages with planktonic bacteria. In this study, we present a new approach to emulate biofilm-infected human wounds by three-dimensional human in vitro systems. For this purpose, a matured biofilm consisting of the clinical key wound pathogen Pseudomonas aeruginosa was pre-cultivated on electrospun scaffolds allowing for non-destructive transfer of the matured biofilm to human in vitro wound models. We infected tissue-engineered human in vitro skin models as well as ex vivo human skin explants with the biofilm and analyzed structural tissue characteristics, biofilm growth behavior, and biofilm-tissue interactions. The structural development of biofilms in close proximity to the tissue, resulting in high bacterial burden and in vivo-like morphology, confirmed a manifest wound infection on all tested wound models, validating their applicability for general investigations of biofilm growth and structure. The extent of bacterial colonization of the wound bed, as well as the subsequent changes in molecular composition of skin tissue, were inherently linked to the characteristics of the underlying wound models including their viability and origin. Notably, the immune response observed in viable ex vivo and in vitro models was consistent with previous in vivo reports. While ex vivo models offered greater complexity and closer similarity to the in vivo conditions, in vitro models consistently demonstrated higher reproducibility. As a consequence, when focusing on direct biofilm-skin interactions, the viability of the wound models as well as their advantages and limitations should be aligned to the particular research question of future studies. Altogether, the novel model allows for a systematic investigation of host-pathogen interactions of bacterial biofilms and human wound tissue, also paving the way for development and predictive testing of novel therapeutics to combat biofilm-infected wounds.
Collapse
Affiliation(s)
| | | | - Viktoria Planz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Evani SJ, Chen P, Karna SR, D'Arpa P, Leung KP. Cerium Nitrate Stiffens In Vitro Skin Models and Reduces Pseudomonas aeruginosa Pathogenicity and Penetration Through Skin Models. Adv Wound Care (New Rochelle) 2023; 12:546-559. [PMID: 36394961 PMCID: PMC10387153 DOI: 10.1089/wound.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Cerium nitrate (CeN) plus silver sulfadiazine (SSD) cream has been used for 40-plus years to manage burns. CeN produces a hardened eschar believed to resist bacterial colonization/infection. To evaluate this potential mechanism, we treated in vitro skin models or Pseudomonas aeruginosa with CeN and measured mechanical properties of the models and bacterial virulence, respectively. Approach: We treated three-dimensional-collagen matrix and ex-vivo-burned porcine skin with CeN and evaluated stiffness and P. aeruginosa penetration. In addition, we treated P. aeruginosa with CeN and evaluated the bacteria's motility, skin model penetration, susceptibility to be phagocytized by the human monocytic cell line THP-1, and ability to stimulate this cell line to produce cytokines. Results: CeN treatment of skin models stiffened them and made them resistant to P. aeruginosa penetration. Inversely, CeN treatment of P. aeruginosa reduced their motility, penetration through skin models (ex-vivo-burned porcine skin), and ability to stimulate cytokine production (tumor necrosis factor-α [TNF-α] and interleukin 8 [IL-8]) by THP-1 cells. In addition, CeN-treated Pseudomonas was more readily phagocytized by THP-1 cells. Finally, P. aeruginosa inoculated on CeN-treated ex-vivo-burned porcine skin was more susceptible to killing by a silver dressing. Innovation: In vitro skin models offer a platform for screening drugs that interfere with bacterial penetration into wounded tissue. Conclusion: CeN treatment reduced P. aeruginosa virulence, altered the mechanical properties of ex-vivo-burned porcine skin and collagen matrix, retarded penetration of P. aeruginosa through the skin models, and resulted in increased vulnerability of P. aeruginosa to killing by antimicrobial wound dressings. These data support the use of CeN in burn management.
Collapse
Affiliation(s)
- Shankar J. Evani
- Combat Wound Care Group, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Ping Chen
- Combat Wound Care Group, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - S.L. Rajasekhar Karna
- Combat Wound Care Group, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Peter D'Arpa
- Combat Wound Care Group, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Kai P. Leung
- Combat Wound Care Group, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| |
Collapse
|
15
|
Tong K, Wei J, Liu Z, Yang X, Hu Y. The early infection characterization of septic arthritis by Staphylococcus aureus after anterior cruciate ligament reconstruction in a novel rat model. J Orthop Surg Res 2023; 18:522. [PMID: 37481547 PMCID: PMC10362564 DOI: 10.1186/s13018-023-03969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/01/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The present study aimed to explore the time of maximum bacterial load and main colonization knee site in bacterial infection process based on a novel rat model of septic arthritis (SA) after anterior cruciate ligament reconstruction (ACLR). METHODS Ninety-five Wistar rats with unilateral ACLR, random enrolled into control surgery (CS) group; joint inject (JI) group; presoaking (PS) group, were injected with 30 μl sterile saline or 30 μl × 107 colony forming units/ml Staphylococcus aureus via the knee joint or graft with presoaked Staphylococcus aureus during ACLR, respectively. At 1, 4, 7, 11, and 14 days postoperatively, samples were harvested to evaluate progress of knee joint infection by postoperative body weight, body temperature, knee temperature, knee width, scales of tissue damage, serum inflammatory markers, microbiological counting, microcomputed tomography (Micro-CT), digital radiography, magnetic resonance imaging (MRI) examination, and scanning electron microscopy (SEM). RESULTS No systemic infection was observed in all rats. Comparing with serum inflammatory markers, tissue scores of inflammatory reactions, bacterial counts in the CS group, these data were significantly elevated in the JI group and PS group. The bone mass around the bone tunnel was lower and the soft tissue of knee showed more obvious swelling on MRI in the infection groups than that in the CS group at 7 and 14 days postoperatively. Staphylococcus aureus clusters on the surface of screw and graft were observed in the infection group. The whole colony forming units of Staphylococcus aureus maintained a continuous upward trend peaking 7 and 11 days followed by a balanced curve in the infection groups. Bone and soft tissue were found to have more bacterial counts than graft and screws. CONCLUSION This animal model effectively mimics the acute knee infection after ACLR. We found that the bacterial colonization exhibited the peak of acute infection between 7 and 11 days postoperatively, with the major bacteria loads found in the bone, soft tissue.
Collapse
Affiliation(s)
- Kai Tong
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Jian Wei
- Department of Joint Orthopedics, Liuzhou People's Hospital, Liuzhou, China
| | - Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| | - Yong Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
16
|
Du C, Fikhman DA, Persaud D, Monroe MBB. Dual Burst and Sustained Release of p-Coumaric Acid from Shape Memory Polymer Foams for Polymicrobial Infection Prevention in Trauma-Related Hemorrhagic Wounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24228-24243. [PMID: 37186803 DOI: 10.1021/acsami.3c04392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hemorrhage is the primary cause of trauma-related death. Of patients that survive, polymicrobial infection occurs in 39% of traumatic wounds within a week of injury. Moreover, traumatic wounds are susceptible to hospital-acquired and drug-resistant bacterial infections. Thus, hemostatic dressings with antimicrobial properties could reduce morbidity and mortality to enhance traumatic wound healing. To that end, p-coumaric acid (PCA) was incorporated into hemostatic shape memory polymer foams by two mechanisms (chemical and physical) to produce dual PCA (DPCA) foams. DPCA foams demonstrated excellent antimicrobial and antibiofilm properties against native Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis; co-cultures of E. coli and S. aureus; and drug-resistant S. aureus and S. epidermidis at short (1 h) and long (7 days) time points. Resistance against biofilm formation on the sample surfaces was also observed. In ex vivo experiments in a porcine skin wound model, DPCA foams exhibited similarly high antimicrobial properties as those observed in vitro, indicating that PCA was released from the DPCA foam to successfully inhibit bacterial growth. DPCA foams consistently showed improved antimicrobial properties relative to those of clinical control foams containing silver nanoparticles (AgNPs) against single and mixed species bacteria, single and mixed species biofilms, and bacteria in the ex vivo wound model. This system could allow for physically incorporated PCA to first be released into traumatic wounds directly after application for instant wound disinfection. Then, more tightly tethered PCA can be continuously released into the wound for up to 7 days to kill additional bacteria and protect against biofilms.
Collapse
Affiliation(s)
- Changling Du
- Department of Biomedical and Chemical Engineering, Bioinspired Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - David Anthony Fikhman
- Department of Biomedical and Chemical Engineering, Bioinspired Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Devanand Persaud
- Department of Biomedical and Chemical Engineering, Bioinspired Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Mary Beth Browning Monroe
- Department of Biomedical and Chemical Engineering, Bioinspired Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
17
|
Lorenz K, Preem L, Sagor K, Putrinš M, Tenson T, Kogermann K. Development of In Vitro and Ex Vivo Biofilm Models for the Assessment of Antibacterial Fibrous Electrospun Wound Dressings. Mol Pharm 2023; 20:1230-1246. [PMID: 36669095 PMCID: PMC9907351 DOI: 10.1021/acs.molpharmaceut.2c00902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023]
Abstract
Increasing evidence suggests that the chronicity of wounds is associated with the presence of bacterial biofilms. Therefore, novel wound care products are being developed, which can inhibit biofilm formation and/or treat already formed biofilms. A lack of standardized assays for the analysis of such novel antibacterial drug delivery systems enhances the need for appropriate tools and models for their characterization. Herein, we demonstrate that optimized and biorelevant in vitro and ex vivo wound infection and biofilm models offer a convenient approach for the testing of novel antibacterial wound dressings for their antibacterial and antibiofilm properties, allowing one to obtain qualitative and quantitative results. The in vitro model was developed using an electrospun (ES) thermally crosslinked gelatin-glucose (GEL-Glu) matrix and an ex vivo wound infection model using pig ear skin. Wound pathogens were used for colonization and biofilm development on the GEL-Glu matrix or pig skin with superficial burn wounds. The in vitro model allowed us to obtain more reproducible results compared with the ex vivo model, whereas the ex vivo model had the advantage that several pathogens preferred to form a biofilm on pig skin compared with the GEL-Glu matrix. The in vitro model functioned poorly for Staphylococcus epidermidis biofilm formation, but it worked well for Escherichia coli and Staphylococcus aureus, which were able to use the GEL-Glu matrix as a nutrient source and not only as a surface for biofilm growth. On the other hand, all tested pathogens were equally able to produce a biofilm on the surface of pig skin. The developed biofilm models enabled us to compare different ES dressings [pristine and chloramphenicol-loaded polycaprolactone (PCL) and PCL-poly(ethylene oxide) (PEO) (PCL/PEO) dressings] and understand their biofilm inhibition and treatment properties on various pathogens. Furthermore, we show that biofilms were formed on the wound surface as well as on a wound dressing, indicating that the demonstrated methods mimic well the in vivo situation. Colony forming unit (CFU) counting and live biofilm matrix as well as bacterial DNA staining together with microscopic imaging were performed for biofilm quantification and visualization, respectively. The results showed that both wound biofilm models (in vitro and ex vivo) enabled the evaluation of the desired antibiofilm properties, thus facilitating the design and development of more effective wound care products and screening of various formulations and active substances.
Collapse
Affiliation(s)
- Kairi Lorenz
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Liis Preem
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Kadi Sagor
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Marta Putrinš
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Karin Kogermann
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
18
|
A Bioluminescence-Based Ex Vivo Burn Wound Model for Real-Time Assessment of Novel Phage-Inspired Enzybiotics. Pharmaceutics 2022; 14:pharmaceutics14122553. [PMID: 36559047 PMCID: PMC9781546 DOI: 10.3390/pharmaceutics14122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The silent pandemic of antibiotic resistance is thriving, prompting the urgent need for the development of new antibacterial drugs. However, within the preclinical pipeline, in vitro screening conditions can differ significantly from the final in vivo settings. To bridge the gap between in vitro and in vivo assays, we developed a pig-skin-based bioluminescent ex vivo burn wound infection model, enabling real-time assessment of antibacterials in a longitudinal, non-destructive manner. We provide a proof-of-concept for A. baumannii NCTC13423, a multidrug-resistant clinical isolate, which was equipped with the luxCDABE operon as a reporter using a Tn7-based tagging system. This bioluminescence model provided a linear correlation between the number of bacteria and a broad dynamic range (104 to 109 CFU). This longitudinal model was subsequently validated using a fast-acting enzybiotic, 1D10. Since this model combines a realistic, clinically relevant yet strictly controlled environment with real-time measurement of bacterial burden, we put forward this ex vivo model as a valuable tool to assess the preclinical potential of novel phage-inspired enzybiotics.
Collapse
|
19
|
Cheong JZA, Liu A, Rust CJ, Tran CL, Hassan SE, Kalan LR, Gibson ALF. Robbing Peter to Pay Paul: Chlorhexidine gluconate demonstrates short-term efficacy and long-term cytotoxicity. Wound Repair Regen 2022; 30:573-584. [PMID: 36638156 PMCID: PMC9542784 DOI: 10.1111/wrr.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Wound cleansing agents are routine in wound care and preoperative preparation. Antiseptic activity intends to prevent contaminating microbes from establishing an infection while also raising concerns of cytotoxicity and delayed wound healing. We evaluated the cytotoxicity of five clinically used wound cleaning agents (saline, povidone iodine, Dove® and Dial® soaps, and chlorhexidine gluconate [CHG]) using both an ex vivo and in vivo human skin xenograft mouse model, in contrast to classical in vitro models that lack the structural and compositional heterogeneity of human skin. We further established an ex vivo wound contamination model inoculated with ~100 cells of Pseudomonas aeruginosa or Staphylococcus aureus to evaluate antimicrobial efficacy. Scanning electron microscopy and confocal microscopy were used to evaluate phenotypic and spatial characteristics of bacterial cells in wound tissue. CHG significantly reduced metabolic activity of the skin explants, while all treatments except saline affected local cellular viability. CHG cytotoxicity persisted and progressed over 14 days, impairing wound healing in vivo. Within the contamination model, CHG treatment resulted in a significant reduction of P. aeruginosa wound surface counts at 24 h post-treatment. However, this effect was transient and serial application of CHG had no effect on both P. aeruginosa or S. aureus microbial growth. Microscopy revealed that viable cells of P. aeruginosa reside deep within wound tissue post-CHG application, likely serving as a reservoir to re-populate the tissue to a high bioburden. We reveal concerning cytotoxicity and limited antimicrobial activity of CHG in human skin using clinically relevant models, with the ability to resolve spatial localization and temporal dynamics of tissue viability and microbial growth.
Collapse
Affiliation(s)
- J. Z. Alex Cheong
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Aiping Liu
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Clayton J. Rust
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Collin L. Tran
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sameeha E. Hassan
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medicine, Division of Infectious DiseaseUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| | - Angela L. F. Gibson
- Department of SurgeryUniversity of Wisconsin–Madison, School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
20
|
Melnikov N, Kobel P, Detinis T, Segni AD, Leichtmann-Bardoogo Y, Haik J, Maoz BM. An automated high-throughput platform for experimental study of burn injuries - in vitro and ex vivo. Burns 2022:S0305-4179(22)00228-5. [DOI: 10.1016/j.burns.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
|
21
|
Pan F, Giovannini G, Zhang S, Altenried S, Zuber F, Chen Q, Boesel LF, Ren Q. pH-responsive silica nanoparticles for the treatment of skin wound infections. Acta Biomater 2022; 145:172-184. [PMID: 35417797 DOI: 10.1016/j.actbio.2022.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
Abstract
Chronic wounds are not only a burden for patients but also challenging for clinic treatment due to biofilm formation. Here, we utilized the phenomenon that chronic wounds possess an elevated local pH of 8.9 and developed pH-sensitive silica nanoparticles (SiNPs) to achieve a targeted drug release on alkaline wounds and optimized drug utility. Chlorhexidine (CHX), a disinfectant and antiseptic, was loaded into SiNPs as the model drug. The loaded CHX displayed a release 4 - 5 fold higher at pH 8.0 and 8.5 than at pH 6.5, 7.0 and 7.4. CHX-SiNPs furthermore exhibited a distinctive antibacterial activity at pH 8.0 and 8.5 against both Gram-negative and -positive bacterial pathogens, while no cytotoxicity was found according to cell viability analysis. The CHX-SiNPs were further formulated into alginate hydrogels to allow ease of use. The antibacterial efficacy of CHX-SiNPs was then studied with artificial wounds on ex vivo human skin. Treatment with CHX-SiNPs enabled nearly a 4-lg reduction of the viable bacterial cells, and the alginate formulated CHX-SiNPs led to almost a 3-lg reduction compared to the negative controls. The obtained results demonstrated that CHX-SiNPs are capable of efficient pH-triggered drug release, leading to high antibacterial efficacy. Moreover, CHX-SiNPs enlighten clinic potential towards the treatment of chronic wound infections. STATEMENT OF SIGNIFICANCE: A platform for controlled drug release at a relatively high pH value i.e., over 8, was established by tuning the physical structures of silica nanoparticles (SiNPs). Incorporation of chlorhexidine, an antimicrobial agent, into the fabricated SiNPs allowed a distinctive inhibition of bacterial growth at alkaline pHs, but not at acidic pHs. The efficacy of the SiNPs loaded with chlorhexidine in treating wound infections was further validated by utilizing ex vivo human skin samples. The presented work demonstrates clinic potential of employing alkaline pH as a non-invasive stimulus to achieve on-demand delivery of antimicrobials through SiNPs, showcasing a valuable approach to treating bacterial infections on chronic wounds.
Collapse
|
22
|
Histological assessment, anti-quorum sensing, and anti-biofilm activities of Dioon spinulosum extract: in vitro and in vivo approach. Sci Rep 2022; 12:180. [PMID: 34996996 PMCID: PMC8742103 DOI: 10.1038/s41598-021-03953-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium causing several health problems and having many virulence factors like biofilm formation on different surfaces. There is a significant need to develop new antimicrobials due to the spreading resistance to the commonly used antibiotics, partly attributed to biofilm formation. Consequently, this study aimed to investigate the anti-biofilm and anti-quorum sensing activities of Dioon spinulosum, Dyer Ex Eichler extract (DSE), against Pseudomonas aeruginosa clinical isolates. DSE exhibited a reduction in the biofilm formation by P. aeruginosa isolates both in vitro and in vivo rat models. It also resulted in a decrease in cell surface hydrophobicity and exopolysaccharide quantity of P. aeruginosa isolates. Both bright field and scanning electron microscopes provided evidence for the inhibiting ability of DSE on biofilm formation. Moreover, it reduced violacein production by Chromobacterium violaceum (ATCC 12,472). It decreased the relative expression of 4 quorum sensing genes (lasI, lasR, rhlI, rhlR) and the biofilm gene (ndvB) using qRT-PCR. Furthermore, DSE presented a cytotoxic activity with IC50 of 4.36 ± 0.52 µg/ml against human skin fibroblast cell lines. For the first time, this study reports that DSE is a promising resource of anti-biofilm and anti-quorum sensing agents.
Collapse
|
23
|
Thomas RE, Thomas BC. Reducing Biofilm Infections in Burn Patients' Wounds and Biofilms on Surfaces in Hospitals, Medical Facilities and Medical Equipment to Improve Burn Care: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13195. [PMID: 34948803 PMCID: PMC8702030 DOI: 10.3390/ijerph182413195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Biofilms in burns are major problems: bacterial communities rapidly develop antibiotic resistance, and 60% of burn mortality is attributed to biofilms. Key pathogens are Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and multidrug-resistant Acinetobacter baumanii. Purpose: identify current and novel interventions to reduce biofilms on patients' burns and hospital surfaces and equipment. Medline and Embase were searched without date or language limits, and 31 possible interventions were prioritised: phages, nano-silver, AgSD-NLs@Cur, Acticoat and Mepilex silver, acetic acid, graphene-metal combinations, CuCo2SO4 nanoparticles, Chlorhexidene acetate nanoemulsion, a hydrogel with moxifloxacin, carbomer, Chitosan and Boswellia, LED light therapy with nano-emodin or antimicrobial blue light + Carvacrol to release reactive oxygen species, mannosidase + trypsin, NCK-10 (a napthalene compound with a decyl chain), antimicrobial peptide PV3 (includes two snake venoms), and polypeptides P03 and PL2. Most interventions aimed to penetrate cell membranes and reported significant reductions in biofilms in cfu/mL or biofilm mass or antibiotic minimal inhibitory concentrations or bacterial expression of virulence or quorum sensing genes. Scanning electron microscopy identified important changes in bacterial surfaces. Patients with biofilms need isolating and treating before full admission to hospital. Cleaning and disinfecting needs to include identifying biofilms on keyboards, tablets, cell phones, medical equipment (especially endoscopes), sinks, drains, and kitchens.
Collapse
Affiliation(s)
- Roger E. Thomas
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
24
|
Rancan F, Jurisch J, Günday C, Türeli E, Blume-Peytavi U, Vogt A, Schaudinn C, Günday-Türeli N. Screening of Surfactants for Improved Delivery of Antimicrobials and Poly-Lactic- co-Glycolic Acid Particles in Wound Tissue. Pharmaceutics 2021; 13:1093. [PMID: 34371785 PMCID: PMC8308990 DOI: 10.3390/pharmaceutics13071093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/14/2023] Open
Abstract
Topical wound management is often a challenge due to the poor penetration of antimicrobials in wound tissue and across the biofilm matrix where bacteria are embedded. Surfactants have been used for decades to improve the stability of formulations, increase drug solubility, and enhance penetration. In this study, we screened different detergents with respect to their cytotoxicity and their ability to improve the penetration of poly-lactic-co-glycolic acid (PLGA) particles in wound tissue. Among the tested surfactants, Kolliphor SLS and Tween 80 increased the penetration of PLGA particles and had a limited cytotoxicity. Then, these surfactants were used to formulate PLGA particles loaded with the poorly water-soluble antibiotic ciprofloxacin. The antimicrobial efficacy of the formulations was tested in a wound infection model based on human ex vivo skin. We found that even though PLGA particles had the same antimicrobial efficiency than the particle-free drug formulation, thanks to their solubilizing and anti-biofilm properties, the surfactants remarkably improved the antimicrobial activity of ciprofloxacin with respect to the drug formulation in water. We conclude that the use of Tween 80 in antimicrobial formulations might be a safe and efficient option to improve the topical antimicrobial management of chronic wound infections.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Jana Jurisch
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Cemre Günday
- MyBiotech, 66802 Überherrn, Germany; (C.G.); (E.T.); (N.G.-T.)
| | - Emre Türeli
- MyBiotech, 66802 Überherrn, Germany; (C.G.); (E.T.); (N.G.-T.)
| | - Ulrike Blume-Peytavi
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Annika Vogt
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy (Zentrum für Biologische Gefahren und Spezielle Pathogene 4), Robert Koch Institute, 13353 Berlin, Germany;
| | | |
Collapse
|
25
|
Hao D, Nourbakhsh M. Recent Advances in Experimental Burn Models. BIOLOGY 2021; 10:526. [PMID: 34204763 PMCID: PMC8231482 DOI: 10.3390/biology10060526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Experimental burn models are essential tools for simulating human burn injuries and exploring the consequences of burns or new treatment strategies. Unlike clinical studies, experimental models allow a direct comparison of different aspects of burns under controlled conditions and thereby provide relevant information on the molecular mechanisms of tissue damage and wound healing, as well as potential therapeutic targets. While most comparative burn studies are performed in animal models, a few human or humanized models have been successfully employed to study local events at the injury site. However, the consensus between animal and human studies regarding the cellular and molecular nature of systemic inflammatory response syndrome (SIRS), scarring, and neovascularization is limited. The many interspecies differences prohibit the outcomes of animal model studies from being fully translated into the human system. Thus, the development of more targeted, individualized treatments for burn injuries remains a major challenge in this field. This review focuses on the latest progress in experimental burn models achieved since 2016, and summarizes the outcomes regarding potential methodological improvements, assessments of molecular responses to injury, and therapeutic advances.
Collapse
Affiliation(s)
| | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|