1
|
Chen Y, Jiang F, Zeng Y, Zhang M. The role of retinal pigment epithelial senescence and the potential of senotherapeutics in age-related macular degeneration. Surv Ophthalmol 2025:S0039-6257(25)00053-0. [PMID: 40089029 DOI: 10.1016/j.survophthal.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment in the aging population. Evidence showing the presence of cellular senescence in retinal pigment epithelium (RPE) of patients with AMD is growing. Senescent RPE play a pivotal role in its pathogenesis. The senescent RPE suffers from structural and functional alterations and disruption of the surrounding microenvironment due to the development of the senescence-associated secretory phenotype, which contributes to metabolic dysfunctions and inflammatory responses in the retina. Senotherapeutics, including senolytics, senomorphics and others, are novel treatments targeting senescent cells and are promising treatments for AMD. As senotherapeutic targets are being developed, it is promising that the burden of AMD could be decreased.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Feipeng Jiang
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Yue Zeng
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| | - Meixia Zhang
- Department of Ophthalmology and Laboratory of Macular Disease, West China Hospital, Sichuan University, China.
| |
Collapse
|
2
|
Khalatyan AS, Shishparenok AN, Avetisov KS, Gladilina YA, Blinova VG, Zhdanov DD. Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration. Biomedicines 2024; 12:1893. [PMID: 39200358 PMCID: PMC11351114 DOI: 10.3390/biomedicines12081893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Age plays a primary role in the development of age-related macular degeneration (AMD). Telomere length (TL) is one of the most relevant biomarkers of aging. In our study, we aimed to determine the association of TL with T lymphocytes, B lymphocytes, NK cells or monocytes with different forms of AMD. METHODS Our study included 62 patients with AMD: geographic atrophy (GA), neovascular AMD (NVAMD) with and without macular atrophy and 22 healthy controls. Each leukocyte subtype was isolated from peripheral blood by immunomagnetic separation, and the DNA was purified. The TL in the genomic DNA was determined using qPCR by amplifying the telomere region with specific oligonucleotide primers and normalizing to the control gene. Statistical analysis was performed using R version 4.5.1. RESULTS We observed a statistically significant increase in TL in the T cells between the control and NVAMD groups but not for the GA group. The B cells and monocytes showed a significant decrease in TL in all AMD groups. The TL in the NK cells did not decrease in any of the AMD groups. CONCLUSIONS The TL in the monocytes had the strongest association with AMD. It reflects a person's "telomeric status" and may become a diagnostic hallmark of these degenerative processes.
Collapse
Affiliation(s)
- Anait S. Khalatyan
- Krasnov Research Institute of Eye Diseases, 11A, B, Rossolimo Str., Moscow 119021, Russia;
| | - Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Konstantin S. Avetisov
- Krasnov Research Institute of Eye Diseases, 11A, B, Rossolimo Str., Moscow 119021, Russia;
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| |
Collapse
|
3
|
Kumar A, Nagasaka Y, Jayananthan V, Zidan A, Heisler-Taylor T, Ambati J, Tamiya S, Kerur N. Therapeutic targeting of telomerase ameliorates experimental choroidal neovascularization. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167156. [PMID: 38582267 PMCID: PMC11497592 DOI: 10.1016/j.bbadis.2024.167156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Choroidal neovascularization (CNV) is the principal driver of blindness in neovascular age-related macular degeneration (nvAMD). Increased activity of telomerase, has been associated with endothelial cell proliferation, survival, migration, and invasion in the context of tumor angiogenesis. Expanding on this knowledge, we investigated the role of telomerase in the development of CNV in mouse model. We observed increased gene expression and activity of telomerase in mouse CNV. Genetic deficiency of the telomerase components, telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc) suppressed laser-induced CNV in mice. Similarly, a small molecule inhibitor of TERT (BIBR 1532), and antisense oligonucleotides (ASOs) targeting Tert and Terc reduced CNV growth. Bone marrow chimera studies suggested that telomerase activity in non-bone marrow-derived cells is crucial for the development of CNV. Comparison of BIBR 1532 with VEGF neutralizing therapeutic strategy in mouse revealed a comparable level of angiosuppressive activity. However, when BIBR and anti-VEGF antibodies were administered as a combination at sub-therapeutic doses, a statistically significant suppression of CNV was observed. These findings underscore the potential benefits of combining sub-therapeutic doses of BIBR and anti-VEGF antibodies for developing newer therapeutic strategies for NV-AMD. Telomerase inhibition with BIBR 1532 suppressed induction of multiple cytokines and growth factors critical for neovascularization. In conclusion, our study identifies telomerase as a promising therapeutic target for treating neovascular disease of the eye and thus provides a proof of principle for further exploration of telomerase inhibition as a novel treatment strategy for nvAMD.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Vinodhini Jayananthan
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Asmaa Zidan
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tyler Heisler-Taylor
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shigeo Tamiya
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nagaraj Kerur
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
4
|
Katoueezadeh M, Maleki P, Torabizadeh SA, Farsinejad A, Khalilabadi RM, Valandani HM, Nurain IO, Ashoub MH, Fatemi A. Combinatorial targeting of telomerase and DNA-PK induces synergistic apoptotic effects against Pre-B acute lymphoblastic leukemia cells. Mol Biol Rep 2024; 51:163. [PMID: 38252348 DOI: 10.1007/s11033-023-09087-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Due to the high demand for novel approaches for leukemia-targeted therapy, this study investigates the impact of DNA-PK inhibitor NU7441 on the sensitivity of pre-B ALL cells to the telomerase inhibitor MST-312. METHODS The study involved NALM-6 cells treated with MST-312 and NU7441, assessing their viability and metabolic activity using trypan blue and MTT assays. The study also evaluated apoptosis, gene expression changes, and DNA damage using flow cytometry, qRT-PCR, and micronucleus assays. The binding energy of MST-312 in the active site of telomerase was calculated using molecular docking. RESULTS The study's findings revealed a synergistic decline in both cell viability and metabolic activity in NALM-6 cells when exposed to the combined treatment of MST-312 and NU7441, and this decrease occurred without any adverse effects on healthy PBMC cells. Furthermore, the combination treatment exhibited a significantly higher induction of apoptosis than treatment with MST-312 alone, as observed through flow cytometry assay. qRT-PCR analysis revealed that this enhanced apoptosis was associated with a notable downregulation of Bcl-2 expression and an upregulation of Bax gene expression. Moreover, the combination therapy decreased expression levels of hTERT and c-Myc genes. The micronucleus assay indicated that the combination treatment increased DNA damage in NALM-6 cells. Also, a good conformation between MST-312 and the active site of telomerase was revealed by docking data. CONCLUSIONS The study suggests that simultaneous inhibition of telomerase and DNA-PK in pre-B ALL presents a novel targeted therapy approach.
Collapse
Affiliation(s)
- Maryam Katoueezadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Maleki
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Atekeh Torabizadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hajar Mardani Valandani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ismaila Olanrewaju Nurain
- Postdoctoral Research Fellow, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
5
|
Palamarchuk AI, Kovalenko EI, Streltsova MA. Multiple Actions of Telomerase Reverse Transcriptase in Cell Death Regulation. Biomedicines 2023; 11:biomedicines11041091. [PMID: 37189709 DOI: 10.3390/biomedicines11041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
6
|
Familial 4p Interstitial Deletion Provides New Insights and Candidate Genes Underlying This Rare Condition. Genes (Basel) 2023; 14:genes14030635. [PMID: 36980907 PMCID: PMC10048360 DOI: 10.3390/genes14030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chromosome 4p deletions can lead to two distinct phenotypic outcomes: Wolf-–Hirschhorn syndrome (a terminal deletion at 4p16.3) and less frequently reported proximal interstitial deletions (4p11-p16). Proximal 4p interstitial deletions can result in mild to moderate intellectual disability, facial dysmorphisms, and a tall thin body habitus. To date, only 35 cases of proximal 4p interstitial deletions have been reported, and only two of these cases have been familial. The critical region for this syndrome has been narrowed down to 4p15.33-15.2, but the underlying causative genes remain unclear. In this study, we report the case of a 3-year-old female with failure to thrive, developmental and motor delays, and morphological features. The mother also had a 4p15.2-p14 deletion, and the proband was found to have a 13.4-Mb 4p15.2-p14 deletion by chromosome microarray analysis. The deleted region encompasses 16 genes, five of which have a high likelihood of contributing to the phenotype: PPARGC1A, DHX15, RBPJ, STIM2, and PCDH7. These findings suggest that multiple genes are involved in this rare proximal 4p interstitial deletion syndrome. This case highlights the need for healthcare providers to be aware of proximal 4p interstitial deletions and the potential phenotypic manifestations.
Collapse
|
7
|
Vilkeviciute A, Gedvilaite G, Banevicius M, Kriauciuniene L, Zaliuniene D, Dobiliene O, Liutkeviciene R. Relative Leukocyte Telomere Length and Genetic Variants in Telomere-Related Genes and Serum Levels Role in Age-Related Macular Degeneration. Cells 2022; 11:cells11233847. [PMID: 36497103 PMCID: PMC9740443 DOI: 10.3390/cells11233847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Telomere shortening is well known to be associated with ageing. Age is the most decisive risk factor for age-related macular degeneration (AMD) development. The older the individual, the higher the AMD risk. For this reason, we aimed to find any associations between telomere length, distribution of genetic variants in telomere-related genes (TERT, TERT-CLPTM1, TRF1, TRF2, and TNKS2), and serum TERF-1 and TERF2 levels on AMD development. METHODS Our study enrolled 342 patients with AMD and 177 healthy controls. Samples of DNA from peripheral blood leukocytes were extracted by DNA salting-out method. The genotyping of TERT rs2736098, rs401681 in TERT-CLPTM1 locus, TRF1 rs1545827, rs10107605, TNKS2 rs10509637, rs10509639, and TRF2 rs251796 and relative leukocyte telomere length (T/S) measurement were carried out using the real-time polymerase chain reaction method. Serum TERF-1 and TERF2 levels were measured by enzymatic immunoassay (ELISA). RESULTS We found longer telomeres in early AMD patients compared to the control group. Additionally, we revealed that minor allele C at TRF1 rs10107605 was associated with decreases the odds of both early and exudative AMD. Each minor allele G at TRF2 rs251796 and TRF1 rs1545827 C/T genotype and C/T+T/T genotypes, compared to the C/C genotype, increases the odds of having shorter telomeres. Furthermore, we found elevated TERF1 serum levels in the early AMD group compared to the control group. CONCLUSIONS In conclusion, these results suggest that relative leukocyte telomere length and genetic variants of TRF1 and TRF2 play a role in AMD development. Additionally, TERF1 is likely to be associated with early AMD.
Collapse
Affiliation(s)
- Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Correspondence:
| | - Mantas Banevicius
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Olivija Dobiliene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
8
|
Lang J, Gao L, Wu J, Meng J, Gao X, Ma H, Yan D. Resveratrol Attenuated Manganese-Induced Learning and Memory Impairments in Mice Through PGC-1Alpha-Mediated Autophagy and Microglial M1/M2 Polarization. Neurochem Res 2022; 47:3414-3427. [DOI: 10.1007/s11064-022-03695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
|
9
|
Chen Y, Zhang B, Yu L, Zhang J, Zhao Y, Yao L, Yan H, Tian W. A novel nanoparticle system targeting damaged mitochondria for the treatment of Parkinson's disease. BIOMATERIALS ADVANCES 2022; 138:212876. [PMID: 35913233 DOI: 10.1016/j.bioadv.2022.212876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial damage is one of the primary causes of neuronal cell death in Parkinson's disease (PD). In PD patients, the mitochondrial damage can be repaired or irreversible. Therefore, mitochondrial damage repair becomes a promising strategy for PD treatment. In this research, hyaluronic acid nanoparticles (HA-NPs) of different molecular weights are used to protect the mitochondria and salvage the mild and limited damage in mitochondria. The HA-NPs with 2190 k Dalton (kDa) HA can improve the mitochondrial function of SH-SY5Y cells and PTEN induced putative kinase 1 (PINK1) knockout mouse embryo fibroblast (MEF) cells. In cases of irreversible damage, NPs with ubiquitin specific peptidase 30 (USP30) siRNA are used to promote mitophagy. Meanwhile, by adding PINK1 antibodies, the NPs can selectively target the irreversibly damaged mitochondria, preventing the excessive clearance of healthy mitochondria.
Collapse
Affiliation(s)
- Yue Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Bosong Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Lina Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Jinyu Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Yufang Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150080, China
| | - Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China.
| |
Collapse
|
10
|
Koller A, Brandl C, Lamina C, Zimmermann ME, Summerer M, Stark KJ, Würzner R, Heid IM, Kronenberg F. Relative Telomere Length Is Associated With Age-Related Macular Degeneration in Women. Invest Ophthalmol Vis Sci 2022; 63:30. [PMID: 35612837 PMCID: PMC9150829 DOI: 10.1167/iovs.63.5.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose Relative telomere length (RTL) is a biomarker for physiological aging. Premature shortening of telomeres is associated with oxidative stress, which is one possible pathway that might contribute to age-related macular degeneration (AMD). We therefore aimed to investigate the association between RTL and AMD in a well-characterized group of elderly individuals. Methods We measured RTL in participants of the AugUR study using a multiplex quantitative PCR-based assay determining the ratio between the telomere product and a single-copy gene product (T/S ratio). AMD was assessed by manual grading of color fundus images using the Three Continent AMD Consortium Severity Scale. Results Among the 2262 individuals 70 to 95 years old (627 with AMD and 1635 without AMD), RTL was significantly shorter in individuals with AMD compared to AMD-free participants. In age- and sex-adjusted logistic regression analyses, we observed an 8% higher odds for AMD per 0.1 unit shorter RTL (odds ratio [OR] = 1.08; 95% confidence interval [CI], 1.02-1.14; P = 0.005). The estimates remained stable when adjusted for smoking, high-density lipoprotein cholesterol, cardiovascular disease, diabetes, and hypertension. Interestingly, this association was only present in women (OR = 1.14; 95% CI, 1.06-1.23; P < 0.001), but not in men (OR = 1.01; 95% CI, 0.93-1.10; P = 0.76). A significant sex-by-RTL interaction on AMD was detected (P = 0.043). Conclusions Our results show an association of RTL with AMD that was restricted to women. This is in line with altered reactive oxygen species levels and higher telomerase activity in women and provides an indication for a sex-differential pathway for oxidative stress and AMD.
Collapse
Affiliation(s)
- Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Caroline Brandl
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Monika Summerer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus J. Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Wang CY, Wang J, Cao J, Xu J, Wu RM, Xu XL. Activating PGC-1α-mediated signaling cascades in the aorta contributes to the amelioration of vascular senescence and atherosclerosis by 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154017. [PMID: 35276590 DOI: 10.1016/j.phymed.2022.154017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside (TSG), the main active polyphenolic component of Polygonum multiflorum, possesses many pharmacological activities. Its anti-aging effect influences a variety of tissues with diverse mechanisms. However, the effectiveness and exact mechanisms of TSG against vascular senescence in atherosclerosis remain unclear. The present study is aimed to investigate the effects of TSG against vascular senescence in atherosclerosis both in vivo and in vitro, and the possible underlying mechanisms focusing on aortic peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated signaling cascades which have never been studied. METHODS In vivo, 12-mo-old male LDLr-/- mice were randomly separated into control, high-fat diet (HFD), and TSG -treatment groups. At the end of the 12 weeks, the blood samples and aorta tissues of mice were collected for further analysis. In vitro, to mimic the condition of endothelial senescence in hyperlipidemic mice, human aortic endothelial cells (HAECs) were incubated with oxidized low-density lipoprotein (ox-LDL) to induce senescence. RESULTS TSG administration improved lipid profiles, ameliorated HFD-exacerbated vascular senescence and atherosclerosis. The protective effect of TSG via inhibiting telomere malfunction, oxidative stress, and mitochondrial damage was found both in vivo and in vitro. Notably, TSG administration increased aortic PGC-1α mRNA and protein expression along with the regulation of its targeted genes TERT, NRF1, TFAM, Mn-SOD, and catalase. Further, by using PGC-1α siRNA in ox-LDL-treated HAECs, it is proved that TSG reduced endothelial senescence, telomere malfunction, oxidative stress, and mitochondrial damage at least partly through activating the PGC-1α pathway. CONCLUSIONS These results provide new evidence for TSG in the treatment of atherosclerosis and the activation of aortic PGC-1α is involved in its beneficial effects.
Collapse
Affiliation(s)
- Chun Yan Wang
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Jie Wang
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Ji Cao
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Jin Xu
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Ruo Man Wu
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Xiao Le Xu
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China.
| |
Collapse
|
12
|
Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022; 12:1. [PMID: 34980273 PMCID: PMC8725349 DOI: 10.1186/s13578-021-00736-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology and Neurobiology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Chang
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan.
| |
Collapse
|