1
|
Zhang G, Wei H, Zhao A, Yan X, Zhang X, Gan J, Guo M, Wang J, Zhang F, Jiang Y, Liu X, Yang Z, Jiang X. Mitochondrial DNA leakage: underlying mechanisms and therapeutic implications in neurological disorders. J Neuroinflammation 2025; 22:34. [PMID: 39920753 PMCID: PMC11806845 DOI: 10.1186/s12974-025-03363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Mitochondrial dysfunction is a pivotal instigator of neuroinflammation, with mitochondrial DNA (mtDNA) leakage as a critical intermediary. This review delineates the intricate pathways leading to mtDNA release, which include membrane permeabilization, vesicular trafficking, disruption of homeostatic regulation, and abnormalities in mitochondrial dynamics. The escaped mtDNA activates cytosolic DNA sensors, especially cyclic gmp-amp synthase (cGAS) signalling and inflammasome, initiating neuroinflammatory cascades via pathways, exacerbating a spectrum of neurological pathologies. The therapeutic promise of targeting mtDNA leakage is discussed in detail, underscoring the necessity for a multifaceted strategy that encompasses the preservation of mtDNA homeostasis, prevention of membrane leakage, reestablishment of mitochondrial dynamics, and inhibition the activation of cytosolic DNA sensors. Advancing our understanding of the complex interplay between mtDNA leakage and neuroinflammation is imperative for developing precision therapeutic interventions for neurological disorders.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Fayan Zhang
- Heart Disease Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yifang Jiang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinxing Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
2
|
Gore R, Esmail T, Pflepsen K, Marron Fernandez de Velasco E, Kitto KF, Riedl MS, Karlen A, McIvor RS, Honda CN, Fairbanks CA, Vulchanova L. AAV-mediated gene transfer to colon-innervating primary afferent neurons. FRONTIERS IN PAIN RESEARCH 2023; 4:1225246. [PMID: 37599864 PMCID: PMC10436501 DOI: 10.3389/fpain.2023.1225246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Investigation of neural circuits underlying visceral pain is hampered by the difficulty in achieving selective manipulations of individual circuit components. In this study, we adapted a dual AAV approach, used for projection-specific transgene expression in the CNS, to explore the potential for targeted delivery of transgenes to primary afferent neurons innervating visceral organs. Focusing on the extrinsic sensory innervation of the mouse colon, we first characterized the extent of dual transduction following intrathecal delivery of one AAV9 vector and intracolonic delivery of a second AAV9 vector. We found that if the two AAV9 vectors were delivered one week apart, dorsal root ganglion (DRG) neuron transduction by the second vector was greatly diminished. Following delivery of the two viruses on the same day, we observed colocalization of the transgenes in DRG neurons, indicating dual transduction. Next, we delivered intrathecally an AAV9 vector encoding the inhibitory chemogenetic actuator hM4D(Gi) in a Cre-recombinase dependent manner, and on the same day injected an AAV9 vector carrying Cre-recombinase in the colon. DRG expression of hM4D(Gi) was demonstrated at the mRNA and protein level. However, we were unable to demonstrate selective inhibition of visceral nociception following hM4D(Gi) activation. Taken together, these results establish a foundation for development of strategies for targeted transduction of primary afferent neurons for neuromodulation of peripheral neural circuits.
Collapse
Affiliation(s)
- Reshma Gore
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Tina Esmail
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelsey Pflepsen
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | | | - Kelley F. Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Maureen S. Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Andrea Karlen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - R. Scott McIvor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Christopher N. Honda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn A. Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Lee JM, Yeo SG, Jung SY, Jung J, Kim SS, Yoo MC, Rim HS, Min HK, Kim SH, Park DC. Expression and Role of Toll-like Receptors in Facial Nerve Regeneration after Facial Nerve Injury. Int J Mol Sci 2023; 24:11245. [PMID: 37511005 PMCID: PMC10379409 DOI: 10.3390/ijms241411245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Facial nerve palsy directly impacts the quality of life, with patients with facial nerve palsy showing increased rates of depression and limitations in social activities. Although facial nerve palsy is not life-threatening, it can devastate the emotional and social lives of affected individuals. Hence, improving the prognosis of patients with this condition is of vital importance. The prognosis of patients with facial nerve palsy is determined by the cause of the disease, the degree of damage, and the treatment provided. The facial nerve can be easily damaged by middle ear and temporal bone surgery, trauma or infection, and tumors of the peripheral facial nerve or tumors surrounding the nerve secondary to systemic disease. In addition, idiopathic, acquired immunodeficiency syndrome and autoimmune diseases may damage the facial nerve. The treatment used for facial paralysis depends on the cause. Treatment of facial nerve amputation injury varies depending on the degree of facial nerve damage, comorbidities, and duration of injury. Recently, interest has increased in Toll-like receptors (TLRs) related to innate immune responses, as these receptors are known to be related to nerve regeneration. In addition to innate immune cells, both neurons and glia of the central nervous system (CNS) and peripheral nervous system (PNS) express TLRs. A comprehensive literature review was conducted to assess the expression and role of TLRs in peripheral nerve injury and subsequent regeneration. Studies conducted on rats and mice have demonstrated the expression of TLR1-13. Among these, TLR2-5 and TLR7 have received the most research attention in relation to facial nerve degeneration and regeneration. TLR10, TLR11, and TLR13 increase during compression injury of the facial nerve, whereas during cutting injury, TLR1-5, TLR8, and TLR10-13 increase, indicating that these TLRs are involved in the degeneration and regeneration of the facial nerve following each type of injury. Inadequate TLR expression or absence of TLR responses can hinder regeneration after facial nerve damage. Animal studies suggest that TLRs play an important role in facial nerve degeneration and regeneration.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Su Young Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Myongji Hospital, Hanyang University College of Medicine, Goyang 04763, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University Hospital, Seoul 05278, Republic of Korea
| | - Hwa Sung Rim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Hye Kyu Min
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent's Hospital, The Catholic University of Korea, Suwon 442723, Republic of Korea
| |
Collapse
|
4
|
Alizadeh N, Naderi G, Kahrizi MS, Haghgouei T, Mobed A, Shah-Abadi ME. Microbiota-Pain Association; Recent Discoveries and Research Progress. Curr Microbiol 2022; 80:29. [PMID: 36474077 DOI: 10.1007/s00284-022-03124-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
The relationship between gut microbiota and pain, such as visceral pain, headaches (migraine), itching, prosthetic joint infection (PJI), chronic abdominal pain (CAP), joint pain, etc., has received increasing attention. Several parts of the evidence suggest that microbiota is one of the most important pain modulators and they can regulate pain in the central and peripheral nervous systems. Any alteration in microbiota by diet or antibiotics mediation may characterize a novel therapeutic strategy for pain management. The present study includes the most up-to-date and influential scientific findings on the association of microbiota with pain, despite the fact that the underlying mechanism is not identified in most cases. According to recent research, identifying the molecular mechanisms of the microbiota-pain pathway can have a unique perspective in treating many diseases, even though there is a long way to reach the ideal point. This study will stress the influence of microbiota on the common diseases that can stimulate the pain with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Naser Alizadeh
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ghazal Naderi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Tannaz Haghgouei
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
- Division of Pharmacology and toxicology Department of Basic Sciences, Faculty of Veterinary Medicine University of Tabriz, Tabriz, Iran
| | - Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51664, Iran.
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
5
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
6
|
Gál P, Brábek J, Holub M, Jakubek M, Šedo A, Lacina L, Strnadová K, Dubový P, Hornychová H, Ryška A, Smetana K. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol 2022; 158:415-434. [PMID: 35867145 PMCID: PMC9305064 DOI: 10.1007/s00418-022-02140-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Recent evidence indicates that targeting IL-6 provides broad therapeutic approaches to several diseases. In patients with cancer, autoimmune diseases, severe respiratory infections [e.g. coronavirus disease 2019 (COVID-19)] and wound healing, IL-6 plays a critical role in modulating the systemic and local microenvironment. Elevated serum levels of IL-6 interfere with the systemic immune response and are associated with disease progression and prognosis. As already noted, monoclonal antibodies blocking either IL-6 or binding of IL-6 to receptors have been used/tested successfully in the treatment of rheumatoid arthritis, many cancer types, and COVID-19. Therefore, in the present review, we compare the impact of IL-6 and anti-IL-6 therapy to demonstrate common (pathological) features of the studied diseases such as formation of granulation tissue with the presence of myofibroblasts and deposition of new extracellular matrix. We also discuss abnormal activation of other wound-healing-related pathways that have been implicated in autoimmune disorders, cancer or COVID-19.
Collapse
Affiliation(s)
- Peter Gál
- Department of Pharmacology, Pavol Jozef Šafárik University, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, 160 00 Prague, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 120 00 Praha 2, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Karolína Strnadová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Petr Dubový
- Institute of Anatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Helena Hornychová
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Aleš Ryška
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| |
Collapse
|
7
|
Carta G, Fornasari BE, Fregnan F, Ronchi G, De Zanet S, Muratori L, Nato G, Fogli M, Gambarotta G, Geuna S, Raimondo S. Neurodynamic Treatment Promotes Mechanical Pain Modulation in Sensory Neurons and Nerve Regeneration in Rats. Biomedicines 2022; 10:biomedicines10061296. [PMID: 35740318 PMCID: PMC9220043 DOI: 10.3390/biomedicines10061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Somatic nerve injuries are a rising problem leading to disability associated with neuropathic pain commonly reported as mechanical allodynia (MA) and hyperalgesia. These symptoms are strongly dependent on specific processes in the dorsal root ganglia (DRG). Neurodynamic treatment (NDT), consisting of selective uniaxial nerve repeated tension protocols, effectively reduces pain and disability in neuropathic pain patients even though the biological mechanisms remain poorly characterized. We aimed to define, both in vivo and ex vivo, how NDT could promote nerve regeneration and modulate some processes in the DRG linked to MA and hyperalgesia. Methods: We examined in Wistar rats, after unilateral median and ulnar nerve crush, the therapeutic effects of NDT and the possible protective effects of NDT administered for 10 days before the injury. We adopted an ex vivo model of DRG organotypic explant subjected to NDT to explore the selective effects on DRG cells. Results: Behavioural tests, morphological and morphometrical analyses, and gene and protein expression analyses were performed, and these tests revealed that NDT promotes nerve regeneration processes, speeds up sensory motor recovery, and modulates mechanical pain by affecting, in the DRG, the expression of TACAN, a mechanosensitive receptor shared between humans and rats responsible for MA and hyperalgesia. The ex vivo experiments have shown that NDT increases neurite regrowth and confirmed the modulation of TACAN. Conclusions: The results obtained in this study on the biological and molecular mechanisms induced by NDT will allow the exploration, in future clinical trials, of its efficacy in different conditions of neuropathic pain.
Collapse
Affiliation(s)
- Giacomo Carta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Rehabilitation, ASST (Azienda Socio Sanitaria Territoriali) Nord Milano, Sesto San Giovanni Hospital, Sesto San Giovanni, 20099 Milano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Correspondence: ; Tel.: +39-(0)1-1670-5433; Fax: +39-(0)1-1903-8639
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefano De Zanet
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Giulia Nato
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Life Sciences and Systems Biology, University of Torino, 10124 Torino, Italy
| | - Marco Fogli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Life Sciences and Systems Biology, University of Torino, 10124 Torino, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| |
Collapse
|
8
|
How Is Peripheral Injury Signaled to Satellite Glial Cells in Sensory Ganglia? Cells 2022; 11:cells11030512. [PMID: 35159321 PMCID: PMC8833977 DOI: 10.3390/cells11030512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Injury or inflammation in the peripheral branches of neurons of sensory ganglia causes changes in neuronal properties, including excessive firing, which may underlie chronic pain. The main types of glial cell in these ganglia are satellite glial cells (SGCs), which completely surround neuronal somata. SGCs undergo activation following peripheral lesions, which can enhance neuronal firing. How neuronal injury induces SGC activation has been an open question. Moreover, the mechanisms by which the injury is signaled from the periphery to the ganglia are obscure and may include electrical conduction, axonal and humoral transport, and transmission at the spinal level. We found that peripheral inflammation induced SGC activation and that the messenger between injured neurons and SGCs was nitric oxide (NO), acting by elevating cyclic guanosine monophosphate (cGMP) in SGCs. These results, together with work from other laboratories, indicate that a plausible (but not exclusive) mechanism for neuron-SGCs interactions can be formulated as follows: Firing due to peripheral injury induces NO formation in neuronal somata, which diffuses to SGCs. This stimulates cGMP synthesis in SGCs, leading to their activation and to other changes, which contribute to neuronal hyperexcitability and pain. Other mediators such as proinflammatory cytokines probably also contribute to neuron-SGC communications.
Collapse
|
9
|
Min HK, Kim IH, Lee JM, Jung J, Rim HS, Kang DW, Kim SH, Yeo SG. Relationship between toll-like receptor expression in the distal facial nerve and facial nerve recovery after injury. Int J Immunopathol Pharmacol 2022; 36:3946320221090007. [PMID: 35585682 PMCID: PMC9128056 DOI: 10.1177/03946320221090007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objectives: This study aimed to determine whether toll-like receptor expression patterns differ in the distal facial nerve during recovery after crushing and cutting injuries. Methods: Adult male Sprague-Dawley rats underwent crushing or cutting injury of the unilateral facial nerve. Their whisker movement and blink reflex were examined. Western blotting was performed with the normal nerve on the left side and the damaged nerve on the right side, four days, 14 days, and 3 months after injury. Results: The scores of whisker movements and blink reflex in the crushing group showed improvements, while the score of the cutting group was significantly lower at 14 days and 3 months (p < 0.05). Western blotting showed that TLRs 11 and 13 increased in the crushing group, and TLRs 1, 2, 3, 4, 5, 8, 10, 11, 12, and 13 increased in the cutting group after 14 days (p < 0.05). After 3 months, TLRs 10 and 11 increased in the crushing group, and TLRs 1, 4, 5, 8, 11, and 12 increased in the cutting group (p < 0.05). Conclusion: TLRs 1, 4, 5, 8, and 12 are related to nerve degeneration after facial nerve injury, and TLRs 10, 11, and 13 are related to recovery from facial palsy.
Collapse
Affiliation(s)
- Hye Kyu Min
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - In Hyeok Kim
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae Min Lee
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Junyang Jung
- School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Hwa Sung Rim
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Dae Woong Kang
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Sang Hoon Kim
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung Geun Yeo
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|