1
|
Zolin A, Ooi H, Zhou M, Su C, Wang F, Sarva H. Liver fibrosis associated with more severe motor deficits in early Parkinson's disease. Clin Neurol Neurosurg 2025; 252:108861. [PMID: 40154229 DOI: 10.1016/j.clineuro.2025.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE To determine the impact of hepatic dysfunction on the motor manifestations of Parkinson's disease. METHODS We conducted a retrospective cohort study using data from the Parkinson's Progression Markers Initiative. Liver fibrosis was defined using the Fibrosis-4 score. Our primary outcome was the association of baseline Fibrosis-4 score with the Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III score. Additional outcomes were MDS-UPDRS part II, MDS-UPDRS part IV, Hoehn and Yahr stage, and levodopa equivalent daily dose. We used linear regression models to evaluate associations at baseline and 5 years after enrollment. We used linear mixed models to evaluate the association of liver fibrosis with the progression of motor dysfunction. Models were adjusted for demographics, comorbidities, alcohol use, time since Parkinson's disease diagnosis, levodopa equivalent daily dose, and genetic predisposition. RESULTS We included 360 people with Parkinson's disease with a mean age of 61.8 years (standard deviation 9.7) and 41.1 % women. There was a significant association between liver fibrosis and baseline MDS-UPDRS part III score (β=2.3, 95 % CI: 0.2, 4.5). Liver fibrosis was also correlated with higher interhemispheric signal asymmetry on DAT-SPECT scans in the anterior putamen (p < 0.05 by Wilcoxon rank sum test). There was no correlation with Fibrosis-4 score and any other motor assessment at baseline or after 5 years. Patients with elevated Fibrosis-4 scores had a slower rate of progression in MDS-UPDRS part III scores. CONCLUSION In people with Parkinson's disease, the presence of comorbid liver fibrosis was associated with more severe motor dysfunction early, but not later, within their disease course.
Collapse
Affiliation(s)
- Aryeh Zolin
- Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| | - Hwai Ooi
- Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Manqi Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA; Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Harini Sarva
- Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Di Sarno A, Romano F, Arianna R, Serpico D, Lavorgna M, Savastano S, Colao A, Di Somma C. Lipid Metabolism and Statin Therapy in Neurodegenerative Diseases: An Endocrine View. Metabolites 2025; 15:282. [PMID: 40278411 PMCID: PMC12029512 DOI: 10.3390/metabo15040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Background/aim: A growing body of evidence suggests a link between dyslipidemias and neurodegenerative diseases, highlighting the crucial role of lipid metabolism in the health of the central nervous system. The aim of our work was to provide an update on this topic, with a focus on clinical practice from an endocrinological point of view. Endocrinologists, being experts in the management of dyslipidemias, can play a key role in the prevention and treatment of neurodegenerative conditions, through precocious and effective lipid profile optimization. Methods: The literature was scanned to identify clinical trials and correlation studies on the association between dyslipidemia, statin therapy, and the following neurodegenerative diseases: Alzheimer's disease (AD), Parkisons's disease (PD), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). Results: Impaired lipid homeostasis, such as that frequently observed in patients affected by obesity and diabetes, is related to neurodegenerative diseases, such as AD, PD, and other cognitive deficits related to aging. AD and related dementias are now a real priority health problem. In the United States, there are approximately 7 million subjects aged 65 and older living with AD and related dementias, and this number is projected to grow to 12 million in the coming decades. Lipid-lowering therapy with statins is an effective strategy in reducing serum low-density lipoprotein cholesterol to normal range concentrations and, therefore, cardiovascular disease risk; moreover, statins have been reported to have a positive effect on neurodegenerative diseases. Conclusions: Several pieces of research have found inconsistent information following our review. There was no association between statin use and ALS incidence. More positive evidence has emerged regarding statin use and AD/PD. However, further large-scale prospective randomized control trials are required to properly understand this issue.
Collapse
Affiliation(s)
- Antonella Di Sarno
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Fiammetta Romano
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Rossana Arianna
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Domenico Serpico
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Mariarosaria Lavorgna
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Silvia Savastano
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
| | - Annamaria Colao
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples Federico II, 80138 Naples, Italy
| | - Carolina Di Somma
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy; (A.D.S.); (R.A.); (D.S.); (M.L.); (S.S.); (A.C.); (C.D.S.)
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
3
|
Wang Z, Yin Z, Sun G, Zhang D, Zhang J. Genetic evidence for the liver-brain axis: lipid metabolism and neurodegenerative disease risk. Lipids Health Dis 2025; 24:41. [PMID: 39923073 PMCID: PMC11806572 DOI: 10.1186/s12944-025-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND The liver‒brain axis is critical in neurodegenerative diseases (NDs), with lipid metabolism influencing neuroinflammation and microglial function. A systematic investigation of the genetic relationship between lipid metabolism abnormalities and ND, namely, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), is lacking. To assess potential causal links between ND and six lipid parameters, two-sample Mendelian randomization (MR) was used. METHODS Large-scale European ancestry GWAS data for lipid parameters and ND (AD, ALS, PD, and MS) were used. Genetic variants demonstrating significant correlations (P < 5 × 10-8) with lipid metabolism parameters were identified and employed as instrumental variables (IVs) after proper validation. The research incorporated UK Biobank genomic data to examine associations between genetic variants and lipid metabolism parameters. The analysis included primary MR, sensitivity analyses, and multivariable MR, which considered potential mediators. RESULTS MR via the inverse-variance weighted method revealed causal effects of cholesterol (CHOL, OR = 1.10, 95% CI: 1.03-1.18, P = 4.23 × 10⁻3) and low-density lipoprotein cholesterol (LDLC, OR = 1.10, 95% CI: 1.03-1.17, P = 3.28 × 10⁻3) on the risk of ALS, which were validated across multiple methods. Potential correlations were observed between ApoB and ALS and inversely correlated with AD, whereas no significant associations were found for PD or MS. CHOL and LDLC associations with ALS demonstrated no significant heterogeneity or pleiotropy, supporting their reliability. CONCLUSIONS Higher CHOL and LDLC levels were associated with increased ALS risk, suggesting a potential causal link, and supporting the liver‒brain axis hypothesis in ND. Current genetic evidence does not support a significant role for lipid metabolism in PD and MS etiology, suggesting the relationship between lipid metabolism and other NDs may be more complex and warrants further investigation.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China
| | - Guangyong Sun
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dong Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, 100070, China.
| |
Collapse
|
4
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2025; 36:53-90. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
5
|
Zeng Z, You M, Fan C, Jang J, Xia X. FABP5 regulates ROS-NLRP3 inflammasome in glutamate-induced retinal excitotoxic glaucomatous model. FASEB J 2025; 39:e70281. [PMID: 39792326 DOI: 10.1096/fj.202400435r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear. In this study, we found that FABP5 is significantly altered in a model of glutamate excitotoxicity and is regulated by Stat3. Inhibition of FABP5 alleviated oxidative stress imbalance and activation of NLRP3 inflammasome, reduced the release of inflammatory factors, and ultimately attenuated glutamate excitotoxicity-induced retinal ganglion cell loss. Meanwhile, caspase1 inhibitors could alleviate the retinal ganglion cell loss induced by glutamate excitotoxicity. In conclusion, FABP5 inhibition protects retina ganglion cells from excitotoxic damage by suppressing the ROS-NLRP3 inflammasome pathway. FABP5 maybe a promising new target for glaucoma diagnosis and treatment.
Collapse
Affiliation(s)
- Zhou Zeng
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengling You
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Fan
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiang Jang
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Wang D, Yu H, Qu Y, An K, Liang H, Mao Z, Li J, Xiong Y, Min Z, Xue Z. Identification of Downregulated MECR Gene in Parkinson's Disease Through Integrated Transcriptomic Analysis and Validation. Int J Mol Sci 2025; 26:550. [PMID: 39859268 PMCID: PMC11765974 DOI: 10.3390/ijms26020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (α-syn) aggregation. Lipid metabolism dysfunction may contribute to PD progression. This study aims to identify lipid metabolism-related genes (LMGs) associated with PD using an integrative transcriptomic analysis of microarray and single-cell RNA sequencing (scRNA-seq) datasets from patients with PD and healthy controls. Differentially expressed genes (DEGs) related to lipid metabolism were identified, and key genes were further filtered using weighted gene co-expression network analysis (WGCNA) and machine learning algorithms. Four LMGs, AGPAT2, ASAH2, FA2H, and MECR were identified, with MECR being notably downregulated in both bulk and single-cell transcriptomic analyses of PD patients. This downregulation was further validated in α-syn PFF-induced PD models. Virtual screening and molecular simulations identified potential allosteric modulators of MECR, which may offer a pathway for future therapeutic exploration. This study highlights MECR as a critical gene link between lipid metabolism dysfunction and PD, suggesting the need for further investigation into its therapeutic implications.
Collapse
Affiliation(s)
- Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoheng Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke An
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongming Liang
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Xue
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Liang Q, Zhao G. The Effect of glna Loss on the Physiological and Pathological Phenotype of Parkinson's Disease C. elegans. J Clin Lab Anal 2024; 38:e25129. [PMID: 39600125 DOI: 10.1002/jcla.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease. Glutamate(Glu) excitotoxicity is one of the main pathogenesis of PD. Glutaminase (Gls) is an enzyme primarily responsible for catalyzing the hydrolysis and deamidation of glutamine (Gln) to produce Glu and ammonia. Inhibiting the function of Gls may have a beneficial effect on the treatment of PD by reducing the production of Glu. The homologous gene of Gls in C. elegans is glna. AIMS To explore the effects of glna loss on physiological and pathological phenotype of PD C. elegans, and to provide new ideas and references for the research and treatment of PD. MATERIALS & METHODS We used PD C. elegans UA44 and QIN27 to detect development and lifespan, behavior, degeneration of dopaminergic neurons, lipid levels, ROS levels, expression levels of common amino acids. RESULTS Glna loss had no significant impact on the development and lifespan of PD C. elegans. Glna loss saved part of the decline of motor function, including the head thrash frequency and the body bend frequency, and the difference was significant. There was a trend of improvement in some motor behaviors, such as the ethanol avoidance experiment, while no improvement was observed in other experiments. Glna loss slowed down the degeneration of dopaminergic neurons. Glna loss increased the lipid levels and ROS levels in C. elegans. Glna loss decreased Glu content and increased Gln content in C. elegans. DISCUSSION The effect of glna loss on PD C. elegans may be the result of multiple factors, such as the tissue types of α-syn expression in C. elegans, the PD C. elegans model used, the adverse effects of glna loss on other systems, and the changes in ROS levels in C. elegans. The specific mechanisms causing these phenomena are still unclear and need to be further explored. CONCLUSION Glna loss has a certain protective effect on dopaminergic neurons in PD C. elegans, while the improvement effect on movement and behavior is limited.
Collapse
Affiliation(s)
- Qifei Liang
- Tongji University School of Medicine, Shanghai, China
- Nanjing Drum Tower Hospital, Nanjing, China
| | | |
Collapse
|
8
|
Pang MZ, Li HX, Dai XQ, Wang XB, Liu JY, Shen Y, Xu X, Zhong ZM, Wang H, Liu CF, Wang F. Melatonin Ameliorates Abnormal Sleep-Wake Behavior via Facilitating Lipid Metabolism in a Zebrafish Model of Parkinson's Disease. Neurosci Bull 2024; 40:1901-1914. [PMID: 39283564 PMCID: PMC11625096 DOI: 10.1007/s12264-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 12/08/2024] Open
Abstract
Sleep-wake disorder is one of the most common nonmotor symptoms of Parkinson's disease (PD). Melatonin has the potential to improve sleep-wake disorder, but its mechanism of action is still unclear. Our data showed that melatonin only improved the motor and sleep-wake behavior of a zebrafish PD model when melatonin receptor 1 was present. Thus, we explored the underlying mechanisms by applying a rotenone model. After the PD zebrafish model was induced by 10 nmol/L rotenone, the motor and sleep-wake behavior were assessed. In situ hybridization and real-time quantitative PCR were used to detect the expression of melatonin receptors and lipid-metabolism-related genes. In the PD model, we found abnormal lipid metabolism, which was reversed by melatonin. This may be one of the main pathways for improving PD sleep-wake disorder.
Collapse
Affiliation(s)
- Meng-Zhu Pang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han-Xing Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xue-Qin Dai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xing Xu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhao-Min Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, Xiongan Xuanwu Hospital, Xiongan, 071700, China.
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Carrillo F, Palomba NP, Ghirimoldi M, Didò C, Fortunato G, Khoso S, Giloni T, Santilli M, Bocci T, Priori A, Pietracupa S, Modugno N, Barberis E, Manfredi M, Signorelli P, Esposito T. Multiomics approach discloses lipids and metabolites profiles associated to Parkinson's disease stages and applied therapies. Neurobiol Dis 2024; 202:106698. [PMID: 39427845 DOI: 10.1016/j.nbd.2024.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Profiling circulating lipids and metabolites in Parkinson's disease (PD) patients could be useful not only to highlight new pathways affected in PD condition but also to identify sensitive and effective biomarkers for early disease detection and potentially effective therapeutic interventions. In this study we adopted an untargeted omics approach in three groups of patients (No L-Dopa, L-Dopa and DBS) to disclose whether long-term levodopa treatment with or without deep brain stimulation (DBS) could reflect a characteristic lipidomic and metabolomic signature at circulating level. Our findings disclosed a wide up regulation of the majority of differentially regulated lipid species that increase with disease progression and severity. We found a relevant modulation of triacylglycerols and acyl-carnitines, together with an altered profile in adiponectin and leptin, that can differentiate the DBS treated group from the others PD patients. We found a highly significant increase of exosyl ceramides (Hex2Cer) and sphingoid bases (SPB) in PD patients mainly in DBS group (p < 0.0001), which also resulted in a highly accurate diagnostic performance. At metabolomic level, we found a wide dysregulation of pathways involved in the biosynthesis and metabolism of several amino acids. The most interesting finding was the identification of a specific modulation of L-glutamic acid in the three groups of patients. L-glutamate levels increased slightly in No L-Dopa and highly in L-Dopa patients while decreased in DBS, suggesting that DBS therapy might have a beneficial effect on the glutamatergic cascade. All together, these data provide novel insights into the molecular and metabolic alterations underlying PD therapy and might be relevant for PD prediction, diagnosis and treatment.
Collapse
Affiliation(s)
- Federica Carrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | | | - Marco Ghirimoldi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Camilla Didò
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Shahzaib Khoso
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | | | | | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Sara Pietracupa
- IRCCS INM Neuromed, Pozzilli, IS, Italy; Department of Human Neuroscience, Sapienza University of Rome, Italy
| | | | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy; Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Paola Signorelli
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Biochemistry Laboratory, IRCCS Policlinico San Donato, Milano Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy; IRCCS INM Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
10
|
Ma DF, Zhang S, Xu SY, Huang Z, Tao Y, Chen F, Zhang S, Li D, Chen T, Liu C, Li M, Lu Y. Self-limiting multimerization of α-synuclein on membrane and its implication in Parkinson's diseases. SCIENCE ADVANCES 2024; 10:eado4893. [PMID: 39383232 PMCID: PMC11463274 DOI: 10.1126/sciadv.ado4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
α-Synuclein (α-syn), a crucial molecule in Parkinson's disease (PD), is known for its interaction with lipid membranes, which facilitates vesicle trafficking and modulates its pathological aggregation. Deciphering the complexity of the membrane-binding behavior of α-syn is crucial to understand its functions and the pathology of PD. Here, we used single-molecule imaging to show that α-syn forms multimers on lipid membranes with huge intermultimer distances. The multimers are characterized by self-limiting growth, manifesting in concentration-dependent exchanges of monomers, which are fast at micromolar concentrations and almost stop at nanomolar concentrations. We further uncovered movement patterns of α-syn's occasional trapping on membranes, which may be attributed to sparse lipid packing defects. Mutations such as E46K and E35K may disrupt the limit on the growth, resulting in larger multimers and accelerated amyloid fibril formation. This work emphasizes sophisticated regulation of α-syn multimerization on membranes as a critical underlying factor in the PD pathology.
Collapse
Affiliation(s)
- Dong-Fei Ma
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Yao Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zi Huang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Yuanxiao Tao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiyang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongsheng Chen
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Lu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Dos Santos JCC, Mano GBC, da Cunha Barreto-Vianna AR, Garcia TFM, de Vasconcelos AV, Sá CSG, de Souza Santana SL, Farias AGP, Seimaru B, Lima MPP, Goes JVC, Gusmão CTP, Junior HLR. The Molecular Impact of Glucosylceramidase Beta 1 (Gba1) in Parkinson's Disease: a New Genetic State of the Art. Mol Neurobiol 2024; 61:6754-6770. [PMID: 38347286 DOI: 10.1007/s12035-024-04008-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/29/2024] [Indexed: 08/22/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting 2-3% of those aged over 65, characterized by motor symptoms like slow movement, tremors, and muscle rigidity, along with non-motor symptoms such as anxiety and dementia. Lewy bodies, clumps of misfolded proteins, contribute to neuron loss in PD. Mutations in the GBA1 gene are considered the primary genetic risk factor of PD. GBA1 mutations result in decreased activity of the lysosomal enzyme glucocerebrosidase (GCase) resulting in α-synuclein accumulation. We know that α-synuclein aggregation, lysosomal dysfunction, and endoplasmic reticulum disturbance are recognized factors to PD susceptibility; however, the molecular mechanisms connecting GBA1 gene mutations to increased PD risk remain partly unknown. Thus, in this narrative review conducted according to a systematic review method, we aimed to present the main contributions arising from the molecular impact of the GBA1 gene to the pathogenesis of PD providing new insights into potential impacts for advances in the clinical care of people with PD, a neurological disorder that has contributed to the substantial increase in the global burden of disease accentuated by the aging population. In summary, this narrative review highlights the multifaceted impact of GBA1 mutations in PD, exploring their role in clinical manifestations, genetic predispositions, and molecular mechanisms. The review emphasizes the importance of GBA1 mutations in both motor and non-motor symptoms of PD, suggesting broader therapeutic and management strategies. It also discusses the potential of CRISPR/Cas9 technology in advancing PD treatment and the need for future research to integrate these diverse aspects for improved diagnostics and therapies.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Christus University Center, UNICHRISTUS, Fortaleza, Ceara, Brazil.
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Postgraduate Program in Morphofunctional Sciences, Federal University of Ceará, Fortaleza, Ceara, Brazil.
| | | | | | - Tulia Fernanda Meira Garcia
- Multicampi School of Medical Sciences, Federal University of Rio Grande Do Norte, Caico, Rio Grande Do Norte, Brazil
| | | | | | | | - Ana Gabriela Ponte Farias
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Beatriz Seimaru
- Barão de Mauá University Center, CBM, Ribeirão Preto, São Paulo, Brazil
| | | | - João Vitor Caetano Goes
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
12
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
13
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
14
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
15
|
Hu XM, Song LZX, Zhang ZZ, Ruan X, Li HC, Yu Z, Huang L. Electroacupuncture at ST25 corrected gut microbial dysbiosis and SNpc lipid peroxidation in Parkinson's disease rats. Front Microbiol 2024; 15:1358525. [PMID: 38450172 PMCID: PMC10915097 DOI: 10.3389/fmicb.2024.1358525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Parkinson's disease (PD) remains one kind of a complex, progressive neurodegenerative disease. Levodopa and dopamine agonists as widely utilized PD therapeutics have not shown significant positive long-term outcomes. Emerging evidences indicate that electroacupuncture (EA) have potential effects on the therapy of nervous system disorders, particularly PD, but its specific underlying mechanism(s) remains poorly understood, leading to the great challenge of clinical application and management. Previous study has shown that acupuncture ameliorates PD motor symptoms and dopaminergic neuron damage by modulating intestinal dysbiosis, but its intermediate pathway has not been sufficiently investigated. Methods A rat model of PD was induced using rotenone. The therapeutic effect of EA on PD was assessed using the pole and rotarod tests and immunohistostaining for tyrosine hydroxylase (TH) in the substantia nigra (SN) of brain. The role of gut microbiota was explored using 16S rRNA gene sequencing and metabonomic analysis. PICRUSt2 analysis, lipidomic analysis, LPS and inflammatory factor assays were used for subsequent exploration and validation. Correlation analysis was used to identify the key bacteria that EA regulates lipid metabolism to improve PD. Results The present study firstly reappeared the effects of EA on protecting motor function and dopaminergic neurons and modulation of gut microbial dysbiosis in rotenone-induced PD rat model. EA improved motor dysfunction (via the pole and rotarod tests) and protected TH+ neurons in PD rats. EA increased the abundance of beneficial bacteria such as Lactobacillus, Dubosiella and Bifidobacterium and decreased the abundance of Escherichia-Shigella and Morganella belonging to Pseudomonadota, suggesting that the modulation of gut microbiota by EA improving the symptoms of PD motility via alleviating LPS-induced inflammatory response and oxidative stress, which was also validated by various aspects such as microbial gene functional analysis, fecal metabolomics analysis, LPS and inflammatory factor assays and SNpc lipidomics analysis. Moreover, correlation analyses also verified strong correlations of Escherichia-Shigella and Morganella with motor symptoms and SNpc lipid peroxidation, explicating targets and intermediate pathways through which EA improve PD exercise symptom. Conclusion Our results indicate that the improvement of motor function in PD model by EA may be mediated in part by restoring the gut microbiota, which intermediate processes involve circulating endotoxins and inflammatory mediators, SNpc oxidative stress and lipid peroxidation. The gut-microbiome - brain axis may be a potential mechanism of EA treatment for the PD.
Collapse
Affiliation(s)
- Xuan-ming Hu
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li-zhe-xiong Song
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
- School of Acupuncture-Moxibustion, Tuina of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-zi Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
- School of Acupuncture-Moxibustion, Tuina of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Ruan
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai-chang Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Huang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Li H, Zeng F, Huang C, Pu Q, Thomas ER, Chen Y, Li X. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14411. [PMID: 37577934 PMCID: PMC10848100 DOI: 10.1111/cns.14411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Hangzhen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Cancan Huang
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiqi Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | | | - Yan Chen
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
17
|
Zolin A, Zhang C, Ooi H, Sarva H, Kamel H, Parikh NS. Association of liver fibrosis with cognitive decline in Parkinson's disease. J Clin Neurosci 2024; 119:10-16. [PMID: 37976909 PMCID: PMC11198872 DOI: 10.1016/j.jocn.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Cognitive decline is a common but variable non-motor manifestation of Parkinson's disease. Chronic liver disease contributes to dementia, but its impact on cognitive performance in Parkinson's disease is unknown. We assessed the effect of liver fibrosis on cognition in Parkinson's disease. METHODS We conducted a retrospective cohort study using data from the Parkinson's Progression Markers Initiative. Our exposure was liver fibrosis at baseline, based on the validated Fibrosis-4 score. Our primary outcome was the Montreal Cognitive Assessment, and additional outcome measures were the Symbol Digit Modalities Test, the Benton Judgement of Line Orientation, the Letter-Number Sequencing Test, and the Modified Semantic Fluency Test. We used linear regression models to assess the relationship between liver fibrosis and scores on cognitive assessments at baseline and linear mixed models to evaluate the association between baseline Fibrosis-4 score with changes in each cognitive test over five years. Models were adjusted for demographics, comorbidities, and alcohol use. RESULTS We included 409 participants (mean age 61, 40 % women). There was no significant association between liver fibrosis and baseline performance on any of the cognitive assessments in adjusted models. However, over the subsequent five year period, liver fibrosis was associated with more rapid decline in scores on the Montreal Cognitive Assessment (interaction coefficient, -0.07; 95 % CI, -0.12, -0.02), the Symbol Digit Modalities Test, the Benton Judgement of Line Orientation, and the Modified Semantic Fluency Test. CONCLUSION In people with Parkinson's disease, the presence of comorbid liver fibrosis was associated with more rapid decline across multiple cognitive domains.
Collapse
Affiliation(s)
- Aryeh Zolin
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Cenai Zhang
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Hwai Ooi
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA; Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Harini Sarva
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA; Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Hooman Kamel
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Neal S Parikh
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Li Y, Ji G, Lian M, Liu X, Xu Y, Gui Y. Effect of PLA2G6 and SMPD1 Variants on the Lipid Metabolism in the Cerebrospinal Fluid of Patients with Parkinson's Disease: A Non-targeted Lipidomics Study. Neurol Ther 2023; 12:2021-2040. [PMID: 37707705 PMCID: PMC10630267 DOI: 10.1007/s40120-023-00542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
INTRODUCTION Sleep patterns are more frequently interrupted in patients with Parkinson's disease (PD), and it is still unclear whether genetic factors are involved in PD-related sleep disorders. In this study, we hypothesize that PD-associated genetic risk affects lipid metabolism, which in turn contributes to different types of sleep disorders. METHODS We used a non-targeted lipidomics to explore the lipid composition of cerebrospinal fluid (CSF) exosomes derived from patients with PD carrying phospholipase A2 Group VI (PLA2G6) and sphingomyelin phosphodiesterase 1 (SMPD1) mutations. RESULTS PLA2G6 mutations (c.1966C > G, Leu656Val; c.2077C > G, Leu693Val; c.1791delC, His597fx69) significantly increase the exosomal content of glycerophospholipids and lysophospholipids, specifically phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Exosome surface presence of melatomin receptor 1A (MTNR1A) was detectable only in patients with PLA2G6 mutations. We have further shown that, in patients with PD carrying PLA2G6 mutations, sleep latency was significantly longer compared to those carrying WT PLA2G6, and we speculate that functional PLA2G6 mutations lead to structural changes and lipid deregulation of exosomes, which in turn alters exosomal cargo and affects PD-related sleep disorders. In SMPD1, G508R variant-carrying patients with PD abundance of sphingomyelins was significantly higher and had significantly shorter rapid eye movement sleep. CONCLUSIONS Our study demonstrated that the disturbed composition and function of CSF-derived exosome lipidome during the pathological stage of PD may affect different types of sleep disorder in PD.
Collapse
Affiliation(s)
- Yongang Li
- Department of Neurology, The First People's Hospital of Wenling, Wenling, China
| | - GuiKai Ji
- Shanghai FuXing Senior High School, Shanghai, 200434, China
| | - Mengjia Lian
- Department of Neurology, The First People's Hospital of Wenling, Wenling, China
| | - Xuan Liu
- Department of Neurology, The First People's Hospital of Wenling, Wenling, China
| | - Ying Xu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, China
| | - Yaxing Gui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
19
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
20
|
Ruiz-Pozo VA, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Guevara-Ramírez P, Paz-Cruz E, Chapela S, Montalván M, Morales-López T, Simancas-Racines D, Zambrano AK. The Molecular Mechanisms of the Relationship between Insulin Resistance and Parkinson's Disease Pathogenesis. Nutrients 2023; 15:3585. [PMID: 37630775 PMCID: PMC10458139 DOI: 10.3390/nu15163585] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative condition resulting from the loss of dopaminergic neurons. This neuronal loss leads to motor and non-motor neurological symptoms. Most PD cases are idiopathic, and no cure is available. Recently, it has been proposed that insulin resistance (IR) could be a central factor in PD development. IR has been associated with PD neuropathological features like α-synuclein aggregation, dopaminergic neuronal loss, neuroinflammation, mitochondrial dysfunction, and autophagy. These features are related to impaired neurological metabolism, neuronal death, and the aggravation of PD symptoms. Moreover, pharmacological options that involve insulin signaling improvement and dopaminergic and non-dopaminergic strategies have been under development. These drugs could prevent the metabolic pathways involved in neuronal damage. All these approaches could improve PD outcomes. Also, new biomarker identification may allow for an earlier PD diagnosis in high-risk individuals. This review describes the main pathways implicated in PD development involving IR. Also, it presents several therapeutic options that are directed at insulin signaling improvement and could be used in PD treatment. The understanding of IR molecular mechanisms involved in neurodegenerative development could enhance PD therapeutic options and diagnosis.
Collapse
Affiliation(s)
- Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Tania Morales-López
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
21
|
Cesur MF, Basile A, Patil KR, Çakır T. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson's disease. Life Sci Alliance 2023; 6:e202201695. [PMID: 37236669 PMCID: PMC10215973 DOI: 10.26508/lsa.202201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila-specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Tunahan Çakır
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
22
|
Deng X, Yuan L, Jankovic J, Deng H. The role of the PLA2G6 gene in neurodegenerative diseases. Ageing Res Rev 2023; 89:101957. [PMID: 37236368 DOI: 10.1016/j.arr.2023.101957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
PLA2G6-associated neurodegeneration (PLAN) represents a continuum of clinically and genetically heterogeneous neurodegenerative disorders with overlapping features. Usually, it encompasses three autosomal recessive diseases, including infantile neuroaxonal dystrophy or neurodegeneration with brain iron accumulation (NBIA) 2A, atypical neuronal dystrophy with childhood-onset or NBIA2B, and adult-onset dystonia-parkinsonism form named PARK14, and possibly a certain subtype of hereditary spastic paraplegia. PLAN is caused by variants in the phospholipase A2 group VI gene (PLA2G6), which encodes an enzyme involved in membrane homeostasis, signal transduction, mitochondrial dysfunction, and α-synuclein aggregation. In this review, we discuss PLA2G6 gene structure and protein, functional findings, genetic deficiency models, various PLAN disease phenotypes, and study strategies in the future. Our primary aim is to provide an overview of genotype-phenotype correlations of PLAN subtypes and speculate on the role of PLA2G6 in potential mechanisms underlying these conditions.
Collapse
Affiliation(s)
- Xinyue Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Disease Genome Research Center, Central South University, Changsha 410013, Hunan, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030-4202, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Disease Genome Research Center, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
23
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
24
|
Castillo-Rangel C, Marin G, Hernández-Contreras KA, Vichi-Ramírez MM, Zarate-Calderon C, Torres-Pineda O, Diaz-Chiguer DL, De la Mora González D, Gómez Apo E, Teco-Cortes JA, Santos-Paez FDM, Coello-Torres MDLÁ, Baldoncini M, Reyes Soto G, Aranda-Abreu GE, García LI. Neuroinflammation in Parkinson's Disease: From Gene to Clinic: A Systematic Review. Int J Mol Sci 2023; 24:5792. [PMID: 36982866 PMCID: PMC10051221 DOI: 10.3390/ijms24065792] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease whose progression and clinical characteristics have a close bidirectional and multilevel relationship with the process of neuroinflammation. In this context, it is necessary to understand the mechanisms involved in this neuroinflammation-PD link. This systematic search was, hereby, conducted with a focus on the four levels where alterations associated with neuroinflammation in PD have been described (genetic, cellular, histopathological and clinical-behavioral) by consulting the PubMed, Google Scholar, Scielo and Redalyc search engines, including clinical studies, review articles, book chapters and case studies. Initially, 585,772 articles were included, and, after applying the inclusion and exclusion criteria, 84 articles were obtained that contained information about the multilevel association of neuroinflammation with alterations in gene, molecular, cellular, tissue and neuroanatomical expression as well as clinical-behavioral manifestations in PD.
Collapse
Affiliation(s)
- Carlos Castillo-Rangel
- Neurosurgery Department, “Hospital Regional 1° de Octubre”, Institute of Social Security and Services for State Workers (ISSSTE), México City 07300, Mexico; (C.C.-R.); (D.L.D.-C.)
| | - Gerardo Marin
- Neural Dynamics and Modulation Lab, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Karla Aketzalli Hernández-Contreras
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Micheel Merari Vichi-Ramírez
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Cristofer Zarate-Calderon
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Osvaldo Torres-Pineda
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Dylan L. Diaz-Chiguer
- Neurosurgery Department, “Hospital Regional 1° de Octubre”, Institute of Social Security and Services for State Workers (ISSSTE), México City 07300, Mexico; (C.C.-R.); (D.L.D.-C.)
| | - David De la Mora González
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Erick Gómez Apo
- Pathology Department, “Hospital General de México”, Dr. Eduardo Liceaga, México City 06720, Mexico; (E.G.A.); (J.A.T.-C.)
| | - Javier Alejandro Teco-Cortes
- Pathology Department, “Hospital General de México”, Dr. Eduardo Liceaga, México City 06720, Mexico; (E.G.A.); (J.A.T.-C.)
| | - Flor de María Santos-Paez
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | | | - Matías Baldoncini
- Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires C1052AAA, Argentina;
| | | | - Gonzalo Emiliano Aranda-Abreu
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| | - Luis I. García
- Brain Research Institute, Universidad Veracruzana, Xalapa 91192, Mexico; (K.A.H.-C.); or (M.M.V.-R.); (C.Z.-C.); (O.T.-P.); (D.D.l.M.G.); (F.d.M.S.-P.); (G.E.A.-A.); (L.I.G.)
| |
Collapse
|
25
|
Microarrays, Enzymatic Assays, and MALDI-MS for Determining Specific Alterations to Mitochondrial Electron Transport Chain Activity, ROS Formation, and Lipid Composition in a Monkey Model of Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24065470. [PMID: 36982541 PMCID: PMC10049643 DOI: 10.3390/ijms24065470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple evidences suggest that mitochondrial dysfunction is implicated in the pathogenesis of Parkinson’s disease via the selective cell death of dopaminergic neurons, such as that which occurs after prolonged exposure to the mitochondrial electron transport chain (ETC) complex I inhibitor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP). However, the effects of chronic MPTP on the ETC complexes and on enzymes of lipid metabolism have not yet been thoroughly determined. To face these questions, the enzymatic activities of ETC complexes and the lipidomic profile of MPTP-treated non-human primate samples were determined using cell membrane microarrays from different brain areas and tissues. MPTP treatment induced an increase in complex II activity in the olfactory bulb, putamen, caudate, and substantia nigra, where a decrease in complex IV activity was observed. The lipidomic profile was also altered in these areas, with a reduction in the phosphatidylserine (38:1) content being especially relevant. Thus, MPTP treatment not only modulates ETC enzymes, but also seems to alter other mitochondrial enzymes that regulate the lipid metabolism. Moreover, these results show that a combination of cell membrane microarrays, enzymatic assays, and MALDI-MS provides a powerful tool for identifying and validating new therapeutic targets that might accelerate the drug discovery process.
Collapse
|
26
|
Smith LJ, Bolsinger MM, Chau KY, Gegg ME, Schapira AHV. The GBA variant E326K is associated with alpha-synuclein aggregation and lipid droplet accumulation in human cell lines. Hum Mol Genet 2023; 32:773-789. [PMID: 36130205 PMCID: PMC9941838 DOI: 10.1093/hmg/ddac233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Sequence variants or mutations in the GBA gene are numerically the most important risk factor for Parkinson disease (PD). The GBA gene encodes for the lysosomal hydrolase enzyme, glucocerebrosidase (GCase). GBA mutations often reduce GCase activity and lead to the impairment of the autophagy-lysosomal pathway, which is important in the turnover of alpha-synuclein, accumulation of which is a key pathological hallmark of PD. Although the E326K variant is one of the most common GBA variants associated with PD, there is limited understanding of its biochemical effects. We have characterized homozygous and heterozygous E326K variants in human fibroblasts. We found that E326K variants did not cause a significant loss of GCase protein or activity, endoplasmic reticulum (ER) retention or ER stress, in contrast to the L444P GBA mutation. This was confirmed in human dopaminergic SH-SY5Y neuroblastoma cell lines overexpressing GCase with either E326K or L444P protein. Despite no loss of the GCase activity, a significant increase in insoluble alpha-synuclein aggregates in E326K and L444P mutants was observed. Notably, SH-SY5Y overexpressing E326K demonstrated a significant increase in the lipid droplet number under basal conditions, which was exacerbated following treatment with the fatty acid oleic acid. Similarly, a significant increase in lipid droplet formation following lipid loading was observed in heterozygous and homozygous E326K fibroblasts. In conclusion, the work presented here demonstrates that the E326K mutation behaves differently to the common loss of function GBA mutations; however, lipid dyshomeostasis and alpha-synuclein pathology are still evident.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Magdalena M Bolsinger
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Division of Medicine, Friedrich-Alexander University Erlangen-Nurnberg, Schloßplatz 4, 91054 Erlangen, Germany
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew E Gegg
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Royal Free Campus, London NW3 2PF, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
27
|
Jacquemyn J, Kuenen S, Swerts J, Pavie B, Vijayan V, Kilic A, Chabot D, Wang YC, Schoovaerts N, Corthout N, Verstreken P. Parkinsonism mutations in DNAJC6 cause lipid defects and neurodegeneration that are rescued by Synj1. NPJ Parkinsons Dis 2023; 9:19. [PMID: 36739293 PMCID: PMC9899244 DOI: 10.1038/s41531-023-00459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/16/2023] [Indexed: 02/06/2023] Open
Abstract
Recent evidence links dysfunctional lipid metabolism to the pathogenesis of Parkinson's disease, but the mechanisms are not resolved. Here, we generated a new Drosophila knock-in model of DNAJC6/Auxilin and find that the pathogenic mutation causes synaptic dysfunction, neurological defects and neurodegeneration, as well as specific lipid metabolism alterations. In these mutants, membrane lipids containing long-chain polyunsaturated fatty acids, including phosphatidylinositol lipid species that are key for synaptic vesicle recycling and organelle function, are reduced. Overexpression of another protein mutated in Parkinson's disease, Synaptojanin-1, known to bind and metabolize specific phosphoinositides, rescues the DNAJC6/Auxilin lipid alterations, the neuronal function defects and neurodegeneration. Our work reveals a functional relation between two proteins mutated in Parkinsonism and implicates deregulated phosphoinositide metabolism in the maintenance of neuronal integrity and neuronal survival.
Collapse
Affiliation(s)
- Julie Jacquemyn
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- Neuroscience and Mental Health Institute, University of Alberta, Department of Physiology, Department of Cell Biology, Group on Molecular and Cell Biology of Lipids, Edmonton, Alberta, Canada
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Benjamin Pavie
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB-Bioimaging Core, 3000, Leuven, Belgium
| | - Vinoy Vijayan
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Ayse Kilic
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Dries Chabot
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB Technology Watch, Technology Innovation Laboratory, VIB, Gent, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
- VIB-Bioimaging Core, 3000, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium.
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium.
| |
Collapse
|
28
|
Pattern of Mitochondrial Respiration in Peripheral Blood Cells of Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms231810863. [PMID: 36142777 PMCID: PMC9506016 DOI: 10.3390/ijms231810863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are central in the pathogenesis of Parkinson’s disease (PD), as they are involved in oxidative stress, synaptopathy, and other immunometabolic pathways. Accordingly, they are emerging as a potential neuroprotection target, although further human-based evidence is needed for therapeutic advancements. This study aims to shape the pattern of mitochondrial respiration in the blood leukocytes of PD patients in relation to both clinical features and the profile of cerebrospinal fluid (CSF) biomarkers of neurodegeneration. Mitochondrial respirometry on the peripheral blood mononucleate cells (PBMCs) of 16 PD patients and 14 controls was conducted using Seahorse Bioscience technology. Bioenergetic parameters were correlated either with standard clinical scores for motor and non-motor disturbances or with CSF levels of α-synuclein, amyloid-β peptides, and tau proteins. In PD, PBMC mitochondrial basal respiration was normal; maximal and spare respiratory capacities were both increased; and ATP production was higher, although not significantly. Maximal and spare respiratory capacity was directly correlated with disease duration, MDS-UPDRS part III and Hoehn and Yahr motor scores; spare respiratory capacity was correlated with the CSF amyloid-β-42 to amyloid-β-42/40 ratio. We provided preliminary evidence showing that mitochondrial respiratory activity increases in the PBMCs of PD patients, probably following the compensatory adaptations to disease progression, in contrast to the bases of the neuropathological substrate.
Collapse
|
29
|
The role of NURR1 in metabolic abnormalities of Parkinson's disease. Mol Neurodegener 2022; 17:46. [PMID: 35761385 PMCID: PMC9235236 DOI: 10.1186/s13024-022-00544-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
A constant metabolism and energy supply are crucial to all organs, particularly the brain. Age-dependent neurodegenerative diseases, such as Parkinson’s disease (PD), are associated with alterations in cellular metabolism. These changes have been recognized as a novel hot topic that may provide new insights to help identify risk in the pre-symptomatic phase of the disease, understand disease pathogenesis, track disease progression, and determine critical endpoints. Nuclear receptor-related factor 1 (NURR1), an orphan member of the nuclear receptor superfamily of transcription factors, is a major risk factor in the pathogenesis of PD, and changes in NURR1 expression can have a detrimental effect on cellular metabolism. In this review, we discuss recent evidence that suggests a vital role of NURR1 in dopaminergic (DAergic) neuron development and the pathogenesis of PD. The association between NURR1 and cellular metabolic abnormalities and its implications for PD therapy have been further highlighted.
Collapse
|
30
|
Yang XX, Yang R, Zhang F. Role of Nrf2 in Parkinson's Disease: Toward New Perspectives. Front Pharmacol 2022; 13:919233. [PMID: 35814229 PMCID: PMC9263373 DOI: 10.3389/fphar.2022.919233] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common and chronic degenerative diseases in the central nervous system. The main pathology of PD formation is the progressive loss of dopaminergic neurons in substantia nigra and the formation of α-synuclein-rich Lewy bodies. The pathogenesis of PD is not caused by any single independent factor. The diversity of these independent factors of PD, such as iron accumulation, oxidative stress, neuroinflammation, mitochondrial dysfunction, age, environment, and heredity, makes the research progress of PD slow. Nrf2 has been well-known to be closely associated with the pathogenesis of PD and could regulate these induced factors development. Nrf2 activation could protect dopaminergic neurons and slow down the progression of PD. This review summarized the role of Nrf2 pathway on the pathogenesis of PD. Regulation of Nrf2 pathway might be one of the promising strategies to prevent and treat PD.
Collapse
Affiliation(s)
- Xin-xing Yang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rong Yang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
31
|
Lipidomics of Bioactive Lipids in Alzheimer's and Parkinson's Diseases: Where Are We? Int J Mol Sci 2022; 23:ijms23116235. [PMID: 35682914 PMCID: PMC9181703 DOI: 10.3390/ijms23116235] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Lipids are not only constituents of cellular membranes, but they are also key signaling mediators, thus acting as “bioactive lipids”. Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation, and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between the immune and nervous systems, and lipids can interact particularly with the aggregation and propagation of many pathogenic proteins that are well-renowned hallmarks of several neurodegenerative disorders, including Alzheimer’s (AD) and Parkinson’s (PD) diseases. In this review, we summarize the current knowledge about the presence and quantification of the main classes of endogenous bioactive lipids, namely glycerophospholipids/sphingolipids, classical eicosanoids, pro-resolving lipid mediators, and endocannabinoids, in AD and PD patients, as well as their most-used animal models, by means of lipidomic analyses, advocating for these lipid mediators as powerful biomarkers of pathology, diagnosis, and progression, as well as predictors of response or activity to different current therapies for these neurodegenerative diseases.
Collapse
|
32
|
Translocation of TMEM175 Lysosomal Potassium Channel to the Plasma Membrane by Dynasore Compounds. Int J Mol Sci 2021; 22:ijms221910515. [PMID: 34638858 PMCID: PMC8508992 DOI: 10.3390/ijms221910515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
TMEM175 (transmembrane protein 175) coding sequence variants are associated with increased risk of Parkinson’s disease. TMEM175 is the ubiquitous lysosomal K+ channel regulated by growth factor receptor signaling and direct interaction with protein kinase B (PKB/Akt). In the present study, we show that the expression of mouse TMEM175 results in very small K+ currents through the plasma membrane in Xenopus laevis oocytes, in good accordance with the previously reported intracellular localization of the channel. However, the application of the dynamin inhibitor compounds, dynasore or dyngo-4a, substantially increased TMEM175 currents measured by the two-electrode voltage clamp method. TMEM175 was more permeable to cesium than potassium ions, voltage-dependently blocked by 4-aminopyridine (4-AP), and slightly inhibited by extracellular acidification. Immunocytochemistry experiments indicated that dyngo-4a increased the amount of epitope-tagged TMEM175 channel on the cell surface. The coexpression of dominant-negative dynamin, and the inhibition of clathrin- or caveolin-dependent endocytosis increased TMEM175 current much less than dynasore. Therefore, dynamin-independent pharmacological effects of dynasore may also contribute to the action on the channel. TMEM175 current rapidly decays after the withdrawal of dynasore, raising the possibility that an efficient internalization mechanism removes the channel from the plasma membrane. Dyngo-4a induced about 20-fold larger TMEM175 currents than the PKB activator SC79, or the coexpression of a constitutively active mutant PKB with the channel. In contrast, the allosteric PKB inhibitor MK2206 diminished the TMEM175 current in the presence of dyngo-4a. These data suggest that, in addition to the lysosomes, PKB-dependent regulation also influences TMEM175 current in the plasma membrane.
Collapse
|