1
|
Zhang L, Yu Z, Liu S, Liu F, Zhou S, Zhang Y, Tian Y. Advanced progress of adipose-derived stem cells-related biomaterials in maxillofacial regeneration. Stem Cell Res Ther 2025; 16:110. [PMID: 40038758 DOI: 10.1186/s13287-025-04191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The tissue injury in maxillofacial region affects patients' physical function and specific mental health. This decade, utilizing regenerative medicine to achieve tissue regeneration has been proved a hopeful direction. Seed cells play a vital role in regeneration strategy. Among various kinds of stem cells that effectively to regenerate the soft and hard tissue of maxillofacial region, adipose-derived stem cells (ADSCs) have gained increasing interests of researchers due to their abundant sources, easy availability and multi-differentiation potentials in recent decades. Thus, this review focuses on the advances of ADSCs-based biomaterial in maxillofacial regeneration from the progress and strategies perspective. It is structured as introducing the properties of ADSCs, biomaterials (polymers, ceramics and metals) within ADSCs and the latest applications of ADSCs in maxillofacial regeneration, including temporomandibular joint (TMJ), bone, periodontal tissue, tooth, nerve as well as cosmetic field. In order to further facilitate ADSCs-based therapies as an emerging platform for regenerative medicine, this review also emphasized current challenges in translating ADSC-based therapies into clinical application and dissussed the strategies to solve these obstacles.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Zihang Yu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shuchang Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shijie Zhou
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China.
| |
Collapse
|
2
|
Egner SA, Agrawal M, Sai H, Dore MD, Palmer LC, Stupp SI. Functional Design of Peptide Materials Based on Supramolecular Cohesion. J Am Chem Soc 2025. [PMID: 40013454 DOI: 10.1021/jacs.4c17867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Peptide materials offer a broad platform to design biomimetic soft matter, and filamentous networks that emulate those in extracellular matrices and the cytoskeleton are among the important targets. Given the vast sequence space, a combination of computational approaches and readily accessible experimental techniques is required to design peptide materials efficiently. We report here on a strategy that utilizes this combination to predict supramolecular cohesion within filaments of peptide amphiphiles, a property recently linked to supramolecular dynamics and consequently bioactivity. Using established coarse-grained simulations on 10,000 randomly generated peptide sequences, we identified 3500 likely to self-assemble in water into nanoscale filaments. Atomistic simulations of small clusters were used to further analyze this subset of sequences and identify mathematical descriptors that are predictive of intermolecular cohesion, which was the main purpose of this work. We arbitrarily selected a small cohort of these sequences for chemical synthesis and verified their fiber morphology. With further characterization, we were able to link the latent heat associated with fiber to micelle transitions, an indicator of cohesion and potential supramolecular dynamicity within the filaments, to calculated hydrogen bond densities in the simulation clusters. Based on validation from in situ synchrotron X-ray scattering and differential scanning calorimetry, we conclude that the phase transitions can be easily observed by very simple polarized light microscopy experiments. We are encouraged by the methodology explored here as a relatively low-cost and fast way to design potential functions of peptide materials.
Collapse
Affiliation(s)
- Simon A Egner
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mayank Agrawal
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Sai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Michael D Dore
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Liam C Palmer
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic Properties of M2 Macrophages in Chronic Wounds: An Innovative Area of Biomaterial-Assisted M2 Macrophage Targeted Therapy. Stem Cell Rev Rep 2025; 21:390-422. [PMID: 39556244 DOI: 10.1007/s12015-024-10806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Wound healing is a dynamic, multi-stage process essential for restoring skin integrity. Dysregulated wound healing is often linked to impaired macrophage function, particularly in individuals with chronic underlying conditions. Macrophages, as key regulators of wound healing, exhibit significant phenotypic diversity, ranging from the pro-healing M2 phenotype to the pro-inflammatory M1 phenotype. Imbalances in the M1/M2 ratio or hyperactivation of the M1 phenotype can delay the normal healing. Consequently, strategies aimed at suppressing the M1 phenotype or promoting the shift of local skin macrophages toward the M2 phenotype can potentially treat chronic non-healing wounds. This manuscript provides an overview of macrophages' role in normal and pathological wound-healing processes. It examines various therapeutic approaches targeting M2 macrophages, such as ex vivo-activated macrophage therapy, immunopharmacological strategies, and biomaterial-directed macrophage polarization. However, it also highlights that M2 macrophage therapies and immunopharmacological interventions may have drawbacks, including rapid phenotypic changes, adverse effects on other skin cells, biotoxicity, and concerns related to biocompatibility, stability, and drug degradation. Therefore, there is a need for more targeted macrophage-based therapies that ensure optimal biosafety, allowing for effective reprogramming of dysregulated macrophages and improved therapeutic outcomes. Recent advances in nano-biomaterials have demonstrated promising regenerative potential compared to traditional treatments. This review discusses the progress of biomaterial-assisted macrophage targeting in chronic wound repair and addresses the challenges faced in its clinical application. Additionally, it explores novel design concepts for combinational therapies, such as incorporating regenerative particles like exosomes into dressing materials or encapsulating them in microneedling systems to enhance wound healing rates.
Collapse
Affiliation(s)
- Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Mostanadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
4
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
5
|
Zhang L, Long H, Zhang P, Liu B, Li S, Sun R, Diao T, Li F. Development and characterization of a novel injectable thyroid extracellular matrix hydrogel for enhanced thyroid tissue engineering applications. Front Bioeng Biotechnol 2024; 12:1481295. [PMID: 39664883 PMCID: PMC11631613 DOI: 10.3389/fbioe.2024.1481295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Hypothyroidism, a condition characterized by decreased synthesis and secretion of thyroid hormones, significantly impacts intellectual development and physical growth. Current treatments, including hormone replacement therapy and thyroid transplantation, have limitations due to issues like hormone dosage control and immune rejection. Tissue engineering presents a potential solution by combining cells and biomaterials to construct engineered thyroid tissue. This study focuses on the development and characterization of a novel 3D injectable hydrogel derived from thyroid extracellular matrix (TEM) for thyroid tissue engineering. TEM hydrogels were prepared through decellularization of rat thyroid tissue, followed by extensive physicochemical and mechanical property evaluations. The TEM hydrogels exhibited properties similar to natural thyroid tissue, including high biocompatibility and a complex 3D ultrastructure. Thyroid hormone-secreting cells cultured in TEM hydrogels demonstrated superior viability, hormone secretion, and thyroid-related gene expression compared to those in traditional type I collagen hydrogels. The study also confirmed the significant retention of key growth factors and ECM proteins within the TEM hydrogels. The results indicate that TEM hydrogels can provide a biomimetic microenvironment, promoting the long-term survival and function of thyroid cells, thus holding great promise for the treatment of hypothyroidism. This research contributes a potential new avenue for thyroid tissue engineering, offering a promising alternative for hypothyroidism treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Houlong Long
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Peng Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Bin Liu
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Shuheng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Rong Sun
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Tongmei Diao
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Feng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| |
Collapse
|
6
|
Donmazov S, Saruhan EN, Pekkan K, Piskin S. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials. Cardiovasc Eng Technol 2024; 15:522-549. [PMID: 38956008 DOI: 10.1007/s13239-024-00737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Advanced material models and material characterization of soft biological tissues play an essential role in pre-surgical planning for vascular surgeries and transcatheter interventions. Recent advances in heart valve engineering, medical device and patch design are built upon these models. Furthermore, understanding vascular growth and remodeling in native and tissue-engineered vascular biomaterials, as well as designing and testing drugs on soft tissue, are crucial aspects of predictive regenerative medicine. Traditional nonlinear optimization methods and finite element (FE) simulations have served as biomaterial characterization tools combined with soft tissue mechanics and tensile testing for decades. However, results obtained through nonlinear optimization methods are reliable only to a certain extent due to mathematical limitations, and FE simulations may require substantial computing time and resources, which might not be justified for patient-specific simulations. To a significant extent, machine learning (ML) techniques have gained increasing prominence in the field of soft tissue mechanics in recent years, offering notable advantages over conventional methods. This review article presents an in-depth examination of emerging ML algorithms utilized for estimating the mechanical characteristics of soft biological tissues and biomaterials. These algorithms are employed to analyze crucial properties such as stress-strain curves and pressure-volume loops. The focus of the review is on applications in cardiovascular engineering, and the fundamental mathematical basis of each approach is also discussed. METHODS The review effort employed two strategies. First, the recent studies of major research groups actively engaged in cardiovascular soft tissue mechanics are compiled, and research papers utilizing ML and deep learning (DL) techniques were included in our review. The second strategy involved a standard keyword search across major databases. This approach provided 11 relevant ML articles, meticulously selected from reputable sources including ScienceDirect, Springer, PubMed, and Google Scholar. The selection process involved using specific keywords such as "machine learning" or "deep learning" in conjunction with "soft biological tissues", "cardiovascular", "patient-specific," "strain energy", "vascular" or "biomaterials". Initially, a total of 25 articles were selected. However, 14 of these articles were excluded as they did not align with the criteria of focusing on biomaterials specifically employed for soft tissue repair and regeneration. As a result, the remaining 11 articles were categorized based on the ML techniques employed and the training data utilized. RESULTS ML techniques utilized for assessing the mechanical characteristics of soft biological tissues and biomaterials are broadly classified into two categories: standard ML algorithms and physics-informed ML algorithms. The standard ML models are then organized based on their tasks, being grouped into Regression and Classification subcategories. Within these categories, studies employ various supervised learning models, including support vector machines (SVMs), bagged decision trees (BDTs), artificial neural networks (ANNs) or deep neural networks (DNNs), and convolutional neural networks (CNNs). Additionally, the utilization of unsupervised learning approaches, such as autoencoders incorporating principal component analysis (PCA) and/or low-rank approximation (LRA), is based on the specific characteristics of the training data. The training data predominantly consists of three types: experimental mechanical data, including uniaxial or biaxial stress-strain data; synthetic mechanical data generated through non-linear fitting and/or FE simulations; and image data such as 3D second harmonic generation (SHG) images or computed tomography (CT) images. The evaluation of performance for physics-informed ML models primarily relies on the coefficient of determinationR 2 . In contrast, various metrics and error measures are utilized to assess the performance of standard ML models. Furthermore, our review includes an extensive examination of prevalent biomaterial models that can serve as physical laws for physics-informed ML models. CONCLUSION ML models offer an accurate, fast, and reliable approach for evaluating the mechanical characteristics of diseased soft tissue segments and selecting optimal biomaterials for time-critical soft tissue surgeries. Among the various ML models examined in this review, physics-informed neural network models exhibit the capability to forecast the mechanical response of soft biological tissues accurately, even with limited training samples. These models achieve highR 2 values ranging from 0.90 to 1.00. This is particularly significant considering the challenges associated with obtaining a large number of living tissue samples for experimental purposes, which can be time-consuming and impractical. Additionally, the review not only discusses the advantages identified in the current literature but also sheds light on the limitations and offers insights into future perspectives.
Collapse
Affiliation(s)
- Samir Donmazov
- Department of Mathematics, University of Kentucky, Lexington, KY, 40506, USA
| | - Eda Nur Saruhan
- Department of Computer Science and Engineering, Koc University, Sariyer, Istanbul, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Sariyer, Istanbul, Turkey
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Vadi Kampusu, Sariyer, 34396, Istanbul, Turkey.
- Modeling, Simulation and Extended Reality Laboratory, Faculty of Engineering and Natural Sciences, Istinye University, Vadi Kampusu, Sariyer, 34396, Istanbul, Turkey.
| |
Collapse
|
7
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
8
|
Xiang JY, Kang L, Li ZM, Tseng SL, Wang LQ, Li TH, Li ZJ, Huang JZ, Yu NZ, Long X. Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing. World J Stem Cells 2024; 16:334-352. [PMID: 38690516 PMCID: PMC11056631 DOI: 10.4252/wjsc.v16.i4.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
Collapse
Affiliation(s)
- Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
9
|
Humzah D, Molina B, Salti G, Cigni C, Bellia G, Grimolizzi F. Intradermal Injection of Hybrid Complexes of High- and Low-Molecular-Weight Hyaluronan: Where Do We Stand and Where Are We Headed in Regenerative Medicine? Int J Mol Sci 2024; 25:3216. [PMID: 38542191 PMCID: PMC10970357 DOI: 10.3390/ijms25063216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
Hyaluronic acid (HA) is a remarkably multifaceted biomacromolecule, playing a role in regulating myriad biological processes such as wound healing, tissue regeneration, anti-inflammation, and immunomodulation. Crosslinked high- and low-molecular-weight hyaluronic acid hydrogels achieve higher molar concentrations, display slower degradation, and allow optimal tissue product diffusion, while harnessing the synergistic contribution of different-molecular-weight hyaluronans. A recent innovation in the world of hyaluronic acid synthesis is represented by NAHYCO® Hybrid Technology, a thermal process leading to hybrid cooperative hyaluronic acid complexes (HCC). This review summarizes the current literature on the in vitro studies and in vivo applications of HCC, from facial and body rejuvenation to future perspectives in skin wound healing, dermatology, and genitourinary pathologies.
Collapse
Affiliation(s)
- Dalvi Humzah
- Private Practice, West Midlands, Bromsgrove B60 3ET, UK
| | | | | | - Clara Cigni
- IBSA Farmaceutici Italia Srl, 26900 Lodi, Italy
| | | | | |
Collapse
|
10
|
Chen Z, Hu Y, Mei H. Harnessing Biomaterials for Safeguarding Chimeric Antigen Receptor T Cell Therapy: An Artful Expedition in Mitigating Adverse Effects. Pharmaceuticals (Basel) 2024; 17:139. [PMID: 38276012 PMCID: PMC10819334 DOI: 10.3390/ph17010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has emerged as a groundbreaking approach in cancer treatment, showcasing remarkable efficacy. However, the formidable challenge lies in taming the formidable side effects associated with this innovative therapy, among which cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS) and on-target off-tumor toxicities (OTOT) are typical representatives. Championing the next frontier in cellular immunotherapy, this comprehensive review embarks on an artistic exploration of leveraging biomaterials to meticulously navigate the intricate landscape of CAR-T cell therapy. Unraveling the tapestry of potential toxicities, our discourse unveils a symphony of innovative strategies designed to elevate the safety profile of this revolutionary therapeutic approach. Through the lens of advanced medical science, we illuminate the promise of biomaterial interventions in sculpting a safer and more efficacious path for CAR-T cell therapy, transcending the boundaries of conventional treatment paradigms.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China;
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| |
Collapse
|
11
|
Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303215. [PMID: 37906032 PMCID: PMC10724421 DOI: 10.1002/advs.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a highly efficacious treatment modality for refractory and relapsed hematopoietic malignancies in recent years. Furthermore, CAR technologies for cancer immunotherapy have expanded from CAR-T to CAR-natural killer cell (CAR-NK), CAR-cytokine-induced killer cell (CAR-CIK), and CAR-macrophage (CAR-MΦ) therapy. Nevertheless, the high cost and complex manufacturing processes of ex vivo generation of autologous CAR products have hampered broader application. There is an urgent need to develop an efficient and economical paradigm shift for exploring new sourcing strategies and engineering approaches toward generating CAR-engineered immune cells to benefit cancer patients. Currently, researchers are actively investigating various strategies to optimize the preparation and sourcing of these potent immunotherapeutic agents. In this work, the latest research progress is summarized. Perspectives on the future of CAR-engineered immune cell manufacturing are provided, and the engineering approaches, and diverse sources used for their development are focused upon.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Heng Mei
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| |
Collapse
|
12
|
Ye H, Wang F, Xu G, Shu F, Fan K, Wang D. Advancements in engineered exosomes for wound repair: current research and future perspectives. Front Bioeng Biotechnol 2023; 11:1301362. [PMID: 38033824 PMCID: PMC10682480 DOI: 10.3389/fbioe.2023.1301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Wound healing is a complex and prolonged process that remains a significant challenge in clinical practice. Exosomes, a type of nanoscale extracellular vesicles naturally secreted by cells, are endowed with numerous advantageous attributes, including superior biocompatibility, minimal toxicity, and non-specific immunogenicity. These properties render them an exceptionally promising candidate for bioengineering applications. Recent advances have illustrated the potential of exosome therapy in promoting tissue repair. To further augment their therapeutic efficacy, the concept of engineered exosomes has been proposed. These are designed and functionally modifiable exosomes that have been tailored on the attributes of natural exosomes. This comprehensive review delineates various strategies for exosome engineering, placing specific emphasis on studies exploring the application of engineered exosomes for precision therapy in wound healing. Furthermore, this review sheds light on strategies for integrating exosomes with biomaterials to enhance delivery effectiveness. The insights presented herein provide novel perspectives and lay a robust foundation for forthcoming research in the realm of cutaneous wound repair therapies.
Collapse
Affiliation(s)
- Hailian Ye
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Wang
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Guangchao Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feihong Shu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunwu Fan
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
14
|
Zielinska D, Yosef HK, Zollitsch T, Kern J, Jakob Y, Gvaramia D, Rotter N, Pontiggia L, Moehrlen U, Biedermann T, Klar AS. Characterization of Distinct Chondrogenic Cell Populations of Patients Suffering from Microtia Using Single-Cell Micro-Raman Spectroscopy. Biomedicines 2023; 11:2588. [PMID: 37761029 PMCID: PMC10526501 DOI: 10.3390/biomedicines11092588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Microtia is a congenital condition of abnormal development of the outer ear. Tissue engineering of the ear is an alternative treatment option for microtia patients. However, for this approach, the identification of high regenerative cartilage progenitor cells is of vital importance. Raman analysis provides a novel, non-invasive, label-free diagnostic tool to detect distinctive biochemical features of single cells or tissues. Using micro-Raman spectroscopy, we were able to distinguish and characterize the particular molecular fingerprints of differentiated chondrocytes and perichondrocytes and their respective progenitors isolated from healthy individuals and microtia patients. We found that microtia chondrocytes exhibited lower lipid concentrations in comparison to healthy cells, thus indicating the importance of fat storage. Moreover, we suggest that collagen is a useful biomarker for distinguishing between populations obtained from the cartilage and perichondrium because of the higher spectral contributions of collagen in the chondrocytes compared to perichondrocytes from healthy individuals and microtia patients. Our results represent a contribution to the identification of cell markers that may allow the selection of specific cell populations for cartilage tissue engineering. Moreover, the observed differences between microtia and healthy cells are essential for gaining better knowledge of the cause of microtia. It can be useful for designing novel treatment options based on further investigations of the discovered biochemical substrate alterations.
Collapse
Affiliation(s)
- Dominika Zielinska
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Hesham K. Yosef
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- microphotonXGmbH, 82327 Tutzing, Germany
| | | | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Yvonne Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - David Gvaramia
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Luca Pontiggia
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
15
|
Bai Y, Niu Y, Qin S, Ma G. A New Biomaterial Derived from Aloe vera-Acemannan from Basic Studies to Clinical Application. Pharmaceutics 2023; 15:1913. [PMID: 37514099 PMCID: PMC10385217 DOI: 10.3390/pharmaceutics15071913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Aloe vera is a kind of herb rich in polysaccharides. Acemannan (AC) is considered to be a natural polysaccharide with good biodegradability and biocompatibility extracted from Aloe vera and has a wide range of applications in the biomedical field due to excellent immunomodulatory, antiviral, antitumor, and tissue regeneration effects. In recent years, clinical case reports on the application of AC as a novel biomedical material in tissue regenerative medicine have emerged; it is mainly used in bone tissue engineering, pulp-dentin complex regeneration engineering, and soft tissue repair, among other operations. In addition, multiple studies have proved that the new composite products formed by the combination of AC and other compounds have excellent biological and physical properties and have broader research prospects. This paper introduces the preparation process, surface structure, and application forms of AC; summarizes the influence of acetyl functional group content in AC on its functions; and provides a detailed review of the functional properties, laboratory studies, clinical cutting-edge applications, and combined applications of AC. Finally, the current application status of AC from basic research to clinical treatment is analyzed and its prospects are discussed.
Collapse
Affiliation(s)
- Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Shengao Qin
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, China
- Department of Stomatology, Stomatological Hospital Affiliated School, Stomatology of Dalian Medical University, NO. 397 Huangpu Road, Shahekou District, Dalian 116086, China
| |
Collapse
|
16
|
Han F, Meng Q, Xie E, Li K, Hu J, Chen Q, Li J, Han F. Engineered biomimetic micro/nano-materials for tissue regeneration. Front Bioeng Biotechnol 2023; 11:1205792. [PMID: 37469449 PMCID: PMC10352664 DOI: 10.3389/fbioe.2023.1205792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
The incidence of tissue and organ damage caused by various diseases is increasing worldwide. Tissue engineering is a promising strategy of tackling this problem because of its potential to regenerate or replace damaged tissues and organs. The biochemical and biophysical cues of biomaterials can stimulate and induce biological activities such as cell adhesion, proliferation and differentiation, and ultimately achieve tissue repair and regeneration. Micro/nano materials are a special type of biomaterial that can mimic the microstructure of tissues on a microscopic scale due to its precise construction, further providing scaffolds with specific three-dimensional structures to guide the activities of cells. The study and application of biomimetic micro/nano-materials have greatly promoted the development of tissue engineering. This review aims to provide an overview of the different types of micro/nanomaterials, their preparation methods and their application in tissue regeneration.
Collapse
Affiliation(s)
- Feng Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qingchen Meng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - En Xie
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Kexin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jie Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qianglong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Wytrwal M, Sekuła-Stryjewska M, Pomorska A, Oclon E, Zuba-Surma E, Zapotoczny S, Szczubiałka K. Cellular Response to Bone Morphogenetic Proteins-2 and -7 Covalently Bound to Photocrosslinked Heparin-Diazoresin Multilayer. Biomolecules 2023; 13:biom13050842. [PMID: 37238712 DOI: 10.3390/biom13050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the plethora of research that exists on recombinant human bone morphogenetic protein-2 and -7 (rhBMP-2 and rhBMP-7) and has been clinically approved, there is still a need to gain information that would allow for their more rational use in bone implantology. The clinical application of supra-physiological dosages of these superactive molecules causes many serious adverse effects. At the cellular level, they play a role in osteogenesis and cellular adhesion, migration, and proliferation around the implant. Therefore, in this work, we investigated the role of the covalent binding of rhBMP-2 and rhBMP-7 separately and in combination with ultrathin multilayers composed of heparin and diazoresin in stem cells. In the first step, we optimized the protein deposition conditions via quartz crystal microbalance (QCM). Then, atomic force microscopy (AFM) and enzyme-linked immunosorbent assay (ELISA) were used to analyze protein-substrate interactions. The effect of the protein binding on the initial cell adhesion, migration, and short-term expression of osteogenesis markers was tested. In the presence of both proteins, cell flattening and adhesion became more prominent, resulting in limited motility. However, the early osteogenic marker expression significantly increased compared to the single protein systems. The presence of single proteins resulted in the elongation of cells, which promoted their migration activity.
Collapse
Affiliation(s)
- Magdalena Wytrwal
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | | | - Agata Pomorska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Ewa Oclon
- Laboratory of Recombinant Proteins Production, Centre for Experimental and Innovative Medicine, University of Agriculture in Krakow, 1C Redzina Street, 30-248 Krakow, Poland
| | - Ewa Zuba-Surma
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Szczepan Zapotoczny
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
18
|
Martín C, Bachiller A, Fernández-Blázquez JP, Nishina Y, Jorcano JL. Plasma-Derived Fibrin Hydrogels Containing Graphene Oxide for Infections Treatment. ACS MATERIALS LETTERS 2023; 5:1245-1255. [PMID: 38323142 PMCID: PMC10842975 DOI: 10.1021/acsmaterialslett.2c01044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 02/08/2024]
Abstract
Wound infection is inevitable in most patients suffering from extensive burns or chronic ulcers, and there is an urgent demand for the production of bactericidal dressings to be used as grafts to restore skin functionalities. In this context, the present study explores the fabrication of plasma-derived fibrin hydrogels containing bactericidal hybrids based on graphene oxide (GO). The hydrogels were fully characterized regarding gelation kinetics, mechanical properties, and internal hydrogel structures by disruptive cryo scanning electron microscopies (cryo-SEMs). The gelation kinetic experiments revealed an acceleration of the gel formation when GO was added to the hydrogels in a concentration of up to 0.2 mg/mL. The cryo-SEM studies showed up a decrease of the pore size when GO was added to the network, which agreed with a faster area contraction and a higher compression modulus of the hydrogels that contained GO, pointing out the critical structural role of the nanomaterial. Afterward, to study the bactericidal ability of the gels, GO was used as a carrier, loading streptomycin (STREP) on its surface. The loading content of the drug to form the hybrid (GO/STREP) resulted in 50.2% ± 4.7%, and the presence of the antibiotic was also demonstrated by Raman spectroscopy, Z-potential studies, and thermogravimetric analyses. The fibrin-derived hydrogels containing GO/STREP showed a dose-response behavior according to the bactericidal hybrid concentration and allowed a sustained release of the antibiotic at a programmed rate, leading to drug delivery over a prolonged period of time.
Collapse
Affiliation(s)
- Cristina Martín
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| | - Ariadna Bachiller
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| | | | - Yuta Nishina
- Graduate
School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Research
Core for Interdisciplinary Sciences, Okayama
University, Okayama 700-8530, Japan
| | - José L. Jorcano
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| |
Collapse
|
19
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
20
|
Togo H, Terada K, Ujitsugu A, Hirose Y, Takeuchi H, Kusunoki M. Fabrication Scaffold with High Dimensional Control for Spheroids with Undifferentiated iPS Cell Properties. Cells 2023; 12:278. [PMID: 36672213 PMCID: PMC9857117 DOI: 10.3390/cells12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Spheroids are expected to aid the establishment of an in vitro-based cell culture system that can realistically reproduce cellular dynamics in vivo. We developed a fluoropolymer scaffold with an extracellular matrix (ECM) dot array and confirmed the possibility of mass-producing spheroids with uniform dimensions. Controlling the quality of ECM dots is important as it ensures spheroid uniformity, but issues such as pattern deviation and ECM drying persist in the conventional microstamping method. In this study, these problems were overcome via ECM dot printing using a resin mask with dot-patterned holes. For dot diameters of φ 300 μm, 400 μm, and 600 μm, the average spheroid diameters of human iPS cells (hiPSCs) were φ 260.8 μm, 292.4 μm, and 330.7 μm, respectively. The standard deviation when each average was normalized to 100 was 14.1%. A high throughput of 89.9% for colony formation rate to the number of dots and 89.3% for spheroid collection rate was achieved. The cells proliferated on ECM dots, and the colonies could be naturally detached from the scaffold without the use of enzymes, so there was almost no stimulation of the cells. Thus, the undifferentiated nature of hiPSCs was maintained until day 4. Therefore, this method is expected to be useful in drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Hidetaka Togo
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Kento Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Akira Ujitsugu
- Faculty of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Yudai Hirose
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Masanobu Kusunoki
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
- Faculty of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
21
|
Mishra S, Jayronia S, Tyagi LK, Kohli K. Targeted Delivery Strategies of Herbal-Based Nanogels: Advancements and Applications. Curr Drug Targets 2023; 24:1260-1270. [PMID: 37953621 DOI: 10.2174/0113894501275800231103063853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023]
Abstract
The objective of this review is to thoroughly investigate herbal nano gels as a promising drug delivery approach for the management of various chronic and acute disorders. Herbal nano gels are a novel and promising drug delivery technique, offering special benefits for better therapeutic efficacy. This review offers a comprehensive analysis of the herbal nano gels with a particular emphasis on their evaluation concerning conventional dosage forms, polymer selection criteria, drug release mechanisms, and applications. The comparison study demonstrates that herbal nano gels have different benefits over conventional dose forms. In the areas of oral administration for improved bioavailability and targeted delivery to the gastrointestinal tract, topical drug delivery for dermatological conditions, and targeted delivery strategies for the site-specific treatment of cancer, inflammatory diseases, and infections, they demonstrate encouraging results in transdermal drug delivery for systemic absorption. A promising platform for improved medication delivery and therapeutic effectiveness is provided by herbal nanogels. Understanding drug release mechanisms further contributes to the controlled and sustained delivery of herbal therapeutics. Some of the patents are discussed and the comparative analysis showcases their superiority over conventional dosage forms, and the polymer selection criteria ensure the design of efficient and optimized formulations. Herbal-based nano gels have become a potential approach for improving drug administration. They provide several advantages such as better stability, targeted delivery, and controlled release of therapeutic components. Herbal nano gels are a promising therapeutic approach with the ability to combat a wide range of conditions like cancer, wound healing and also improve patient compliance.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Sonali Jayronia
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Lalit Kumar Tyagi
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| |
Collapse
|
22
|
Role of Patient-Derived Models of Cancer in Translational Oncology. Cancers (Basel) 2022; 15:cancers15010139. [PMID: 36612135 PMCID: PMC9817860 DOI: 10.3390/cancers15010139] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer is a heterogeneous disease. Each individual tumor is unique and characterized by structural, cellular, genetic and molecular features. Therefore, patient-derived cancer models are indispensable tools in cancer research and have been actively introduced into the healthcare system. For instance, patient-derived models provide a good reproducibility of susceptibility and resistance of cancer cells against drugs, allowing personalized therapy for patients. In this article, we review the advantages and disadvantages of the following patient-derived models of cancer: (1) PDC-patient-derived cell culture, (2) PDS-patient-derived spheroids and PDO-patient-derived organoids, (3) PDTSC-patient-derived tissue slice cultures, (4) PDX-patient-derived xenografts, humanized PDX, as well as PDXC-PDX-derived cell cultures and PDXO-PDX-derived organoids. We also provide an overview of current clinical investigations and new developments in the area of patient-derived cancer models. Moreover, attention is paid to databases of patient-derived cancer models, which are collected in specialized repositories. We believe that the widespread use of patient-derived cancer models will improve our knowledge in cancer cell biology and contribute to the development of more effective personalized cancer treatment strategies.
Collapse
|
23
|
Xia Y, Yang R, Wang H, Hou Y, Li Y, Zhu J, Xu F, Fu C. Biomaterials delivery strategies to repair spinal cord injury by modulating macrophage phenotypes. J Tissue Eng 2022; 13:20417314221143059. [PMID: 36600997 PMCID: PMC9806413 DOI: 10.1177/20417314221143059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) causes tremendous harm to a patient's physical, mental, and financial health. Moreover, recovery of SCI is affected by many factors, inflammation is one of the most important as it engulfs necrotic tissue and cells during the early stages of injury. However, excessive inflammation is not conducive to damage repair. Macrophages are classified into either blood-derived macrophages or resident microglia based on their origin, their effects on SCI being two-sided. Microglia first activate and recruit blood-derived macrophages at the site of injury-blood-borne macrophages being divided into pro-inflammatory M1 phenotypes and anti-inflammatory M2 phenotypes. Among them, M1 macrophages secrete inflammatory factors such as interleukin-β (IL-β), tumor necrosis factor-α (TNF-α), IL-6, and interferon-γ (IFN-γ) at the injury site, which aggravates SCIs. M2 macrophages secrete IL-4, IL-10, IL-13, and neurotrophic factors to inhibit the inflammatory response and inhibit neuronal apoptosis. Consequently, modulating phenotypic differentiation of macrophages appears to be a meaningful therapeutic target for the treatment of SCI. Biomaterials are widely used in regenerative medicine and tissue engineering due to their targeting and bio-histocompatibility. In this review, we describe the effects of biomaterials applied to modulate macrophage phenotypes on SCI recovery and provide an outlook.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Ruohan Yang
- Cancer Center, The First Hospital of
Jilin University, Changchun, PR China
| | - Hengyi Wang
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Yulin Hou
- Depattment of Cardiology, Guangyuan
Central Hospital, Guangyuan, PR China
| | - Yuehong Li
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Jianshu Zhu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Feng Xu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China
| | - Changfeng Fu
- Department of Spine Surgery, The First
Hospital of Jilin University, Changchun, PR China,Changfeng Fu, Department of Spine Surgery,
The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR
China.
| |
Collapse
|
24
|
Abstract
Degradable and environmentally responsive polymers have been actively developed for drug delivery and regenerative medicine applications, yet inadequate consideration of their compatibility with terminal sterilization presents notable barriers to clinical translation. This Review discusses industry-established terminal sterilization methods and aseptic processing and contrasts them with innovative approaches aimed at preserving the integrity of polymeric implants. Regulatory guidelines, fiscal considerations, and potential pitfalls are discussed to encourage early integration of sterility regulatory considerations in material designs.
Collapse
Affiliation(s)
- Chloe K Herczeg
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
25
|
Paladini F, Pollini M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6952. [PMID: 36234293 PMCID: PMC9572978 DOI: 10.3390/ma15196952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
26
|
Lamparelli EP, Ciardulli MC, Giudice V, Scala P, Vitolo R, Dale TP, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D in-vitro cultures of human bone marrow and Wharton’s jelly derived mesenchymal stromal cells show high chondrogenic potential. Front Bioeng Biotechnol 2022; 10:986310. [PMID: 36225603 PMCID: PMC9549977 DOI: 10.3389/fbioe.2022.986310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, chondrogenic potentials of 3D high-density cultures of Bone Marrow (BM) and Wharton’s Jelly (WJ)-derived mesenchymal stromal cells (MSCs) was investigated by chondrogenesis- and cytokine-related gene expression over a 16-day culture period supplemented with human transforming growth factor (hTGF)-β1 at 10 ng/ml. In BM-MSC 3D models, a marked upregulation of chondrogenesis-related genes, such as SOX9, COL2A1, and ACAN (all p < 0.05) and formation of spherical pellets with structured type II collagen fibers were observed. Similarly, WJ-based high-density culture appeared higher in size and more regular in shape, with a significant overexpression of COL2A1 and ACAN (all p < 0.05) at day 16. Moreover, a similar upregulation trend was documented for IL-6 and IL-10 expression in both BM and WJ 3D systems. In conclusion, MSC-based high-density cultures can be considered a promising in vitro model of cartilage regeneration and tissue engineering. Moreover, our data support the use of WJ-MSCs as a valid alternative for chondrogenic commitment of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | | | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, SA, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Rosa Vitolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, SA, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Fisciano, SA, Italy
- *Correspondence: Giovanna Della Porta,
| |
Collapse
|
27
|
Fathi-Karkan S, Ghavidel-Kenarsari F, Maleki-Baladi R. Pullulan as promoting endothelialization capacity of electrospun PCL-PU scaffold. Int J Artif Organs 2022; 45:1013-1020. [PMID: 36151713 DOI: 10.1177/03913988221125247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This project's primary purpose was to create engineered vascular scaffolds using polyurethane, polycaprolactone, and pullulan polymers, along with suitable mechanical-dynamic conditions. Therefore, electrospun scaffolds with optimized intrinsic physiological properties and the ability to support endothelial cells were prepared in vitro, and cell viability was studied in PCL-PU and PCL-PU scaffolds containing Pullulan. THE MAIN METHODS The electrospinning method has been used to prepare PCL-PU and PCL-PU scaffolds containing Pullulan. The scaffold's surface morphology was evaluated using SEM microscopic imaging. The scaffolds' physicochemical properties were prepared using ATR-FTIR, strain stress, and water contact angle tests, and the biocompatibility of PCL-PU and PU-PCL-Pl nanofibers was evaluated using the MTT test. PRINCIPAL FINDINGS The test results showed that PCL-PU scaffolds containing Pullulan have more suitable mechanical properties such as stress-strain, water contact angle, swelling rate, biocompatibility, fiber diameter, and pore size compared to PU-PCL. The culture of endothelial cells under static conditions on these scaffolds did not cause cytotoxic effects under static conditions compared to the control group. SEM images confirmed the ability of endothelial cells to attach to the scaffold surface. SUMMARY AND CONCLUSION The results showed that PCL-PU substrate containing pullulan could stimulate endothelial cells' proliferation under static conditions.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ghavidel-Kenarsari
- Department of Laboratory Medicine and Radiology, School of Health Services, Dokuz Eylul University, Izmir, Turkey.,Department of Molecular and Cellular Biology, Faculty of Basic Sciences, Aletaha Institute of Higher Education, Tehran, Iran
| | - Reza Maleki-Baladi
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
28
|
Zou S, Yao X, Shao H, Reis RL, Kundu SC, Zhang Y. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration. Acta Biomater 2022; 153:68-84. [PMID: 36113722 DOI: 10.1016/j.actbio.2022.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Silk fibroin (SF) is a promising biomaterial due to its good biocompatibility, easy availability, and high mechanical properties. Compared with mulberry silk fibroin (MSF), nonmulberry silk fibroin (NSF) isolated from typical nonmulberry silkworm silk exhibits unique arginine-glycine-aspartic acid (RGD) sequences with favorable cell adhesion enhancing effect. This inherent property probably makes the NSF more suitable for cell culture and tissue regeneration-related applications. Accordingly, various types of NSF-based biomaterials, such as particles, films, fiber mats, and 3D scaffolds, are constructed and their application potential in different biomedical fields is extensively investigated. Based on these promising NSF biomaterials, this review firstly makes a systematical comparison between the molecular structure and properties of MSF and typical NSF and highlights the unique properties of NSF. In addition, we summarize the effective fabrication strategies from degummed nonmulberry silk fibers to regenerated NSF-based biomaterials with controllable formats and their recent application progresses in cell behavior regulation and tissue regeneration. Finally, current challenges and future perspectives for the fabrication and application of NSF-based biomaterials are discussed. Related research and perspectives may provide valuable references for designing and modifying effective NSF-based and other natural biomaterials. STATEMENT OF SIGNIFICANCE: There exist many reviews about mulberry silk fibroin (MSF) biomaterials and their biomedical applications, while that about nonmulberry silk fibroin (NSF) biomaterials is scarce. Compared with MSF, NSF exhibits unique arginine-glycine-aspartic acid sequences with promising cell adhesion enhancing effect, which makes NSF more suitable for cell culture and tissue regeneration related applications. Focusing on these advanced NSF biomaterials, this review has systematically compared the structure and properties of MSF and NSF, and emphasized the unique properties of NSF. Following that, the effective construction strategies for NSF-based biomaterials are summarized, and their recent applications in cell behavior regulations and tissue regenerations are highlighted. Furthermore, current challenges and future perspectives for the fabrication and application of NSF-based biomaterials were discussed.
Collapse
Affiliation(s)
- Shengzhi Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Rui L Reis
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Subhas C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
29
|
Lamparelli EP, Casagranda V, Pressato D, Maffulli N, Della Porta G, Bellini D. Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen. Pharmaceutics 2022; 14:pharmaceutics14091752. [PMID: 36145500 PMCID: PMC9505875 DOI: 10.3390/pharmaceutics14091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, the synthesis and characterization of a novel composite biopolymer scaffold—based on equine type I collagen and hyaluronic acid—were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm−1 associated with ester carbonyl stretch. TGA and DSC characterizations confirmed different thermal stability of cross-linked scaffolds while morphological analysis by scanning electron microscopy (SEM) suggested the presence of a highly porous structure with open and interconnected void areas suitable for hosting cells. The enzymatic degradation profile confirmed scaffold higher endurance with collagenase as compared with collagen alone. However, it was particularly interesting that the mechanical behavior of the composite scaffold showed an excellent shape memory, especially when it was hydrated, with an improved Young’s modulus of 9.96 ± 0.53 kPa (p ≤ 0.001) as well as a maximum load at 97.36 ± 3.58 kPa compared to the simple collagen scaffold that had a modulus of 1.57 ± 0.08 kPa and a maximum load of 36.91 ± 0.24 kPa. Finally, in vitro cytotoxicity confirmed good product safety with human lymphocytes (viability of 81.92 ± 1.9 and 76.37 ± 1.2 after 24 and 48 h, respectively), whereas excellent gene expression profiles of chondrocytes with a significant upregulation of SOX9 and ACAN after 10 days of culture indicated our scaffold’s ability of preserving chondrogenic phenotype. The described material could be considered a potential tool to be implanted in patients with cartilage defects.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | | | | | - Nicola Maffulli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel./Fax: +39-089965234
| | - Davide Bellini
- Novagenit Srl, Viale Trento 115/117, 38017 Mezzolombardo, Italy
| |
Collapse
|
30
|
Prabhakaran P, Palaniyandi T, Kanagavalli B, Ram Kumar V, Hari R, Sandhiya V, Baskar G, Rajendran BK, Sivaji A. Prospect and retrospect of 3D bio-printing. Acta Histochem 2022; 124:151932. [PMID: 36027838 DOI: 10.1016/j.acthis.2022.151932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/01/2022]
Abstract
3D bioprinting has become a popular medical technique in recent years. The most compelling rationale for the development of 3D bioprinting is the paucity of biological structures required for the rehabilitation of missing organs and tissues. They're useful in a multitude of domains, including disease modelling, regenerative medicine, tissue engineering, drug discovery with testing, personalised medicine, organ development, toxicity studies, and implants. Bioprinting requires a range of bioprinting technologies and bioinks to finish their procedure, that Inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, stereolithography-based bioprinting, and in situ bioprinting are some of the technologies listed here. Bioink is a 3D printing material that is used to construct engineered artificial living tissue. It can be constructed solely for cells, but it usually includes a carrier substance that envelops the cells, then there's Agarose-based bioinks, alginate-based bioinks, collagen-based bioinks, and hyaluronic acid-based bioinks, to name a few. Here we presented about the different bioprinting methods with the use of bioinks in it and then Prospected over various applications in different fields.
Collapse
Affiliation(s)
- Pranav Prabhakaran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Thirunavukkarsu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India; Department of Anatomy, Biomedical Reseach Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - B Kanagavalli
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - V Ram Kumar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Rajeswari Hari
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - V Sandhiya
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
31
|
Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, Carriquiry-Chequer PA, Valencia-Gómez LE, Matthews ER, Gómez-Flores V, Simental-Mendía M, Delgado-Gonzalez P, Delgado-Gallegos JL, Padilla-Rivas GR, Islas JF. Artificial Scaffolds in Cardiac Tissue Engineering. Life (Basel) 2022; 12:1117. [PMID: 35892919 PMCID: PMC9331725 DOI: 10.3390/life12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. Current treatments directed at heart repair have several disadvantages, such as a lack of donors for heart transplantation or non-bioactive inert materials for replacing damaged tissue. Because of the natural lack of regeneration of cardiomyocytes, new treatment strategies involve stimulating heart tissue regeneration. The basic three elements of cardiac tissue engineering (cells, growth factors, and scaffolds) are described in this review, with a highlight on the role of artificial scaffolds. Scaffolds for cardiac tissue engineering are tridimensional porous structures that imitate the extracellular heart matrix, with the ability to promote cell adhesion, migration, differentiation, and proliferation. In the heart, there is an important requirement to provide scaffold cellular attachment, but scaffolds also need to permit mechanical contractility and electrical conductivity. For researchers working in cardiac tissue engineering, there is an important need to choose an adequate artificial scaffold biofabrication technique, as well as the ideal biocompatible biodegradable biomaterial for scaffold construction. Finally, there are many suitable options for researchers to obtain scaffolds that promote cell-electrical interactions and tissue repair, reaching the goal of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Nidia K. Moncada-Saucedo
- Servicio de Hematología, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Pablo A. Carriquiry-Chequer
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Laura E. Valencia-Gómez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Elizabeth Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Mario Simental-Mendía
- Orthopedic Trauma Service, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| |
Collapse
|
32
|
Koskinen Holm C, Qu C. Engineering a 3D In Vitro Model of Human Gingival Tissue Equivalent with Genipin/Cytochalasin D. Int J Mol Sci 2022; 23:ijms23137401. [PMID: 35806407 PMCID: PMC9266888 DOI: 10.3390/ijms23137401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Although three-dimensional (3D) co-culture of gingival keratinocytes and fibroblasts-populated collagen gel can mimic 3D structure of in vivo tissue, the uncontrolled contraction of collagen gel restricts its application in clinical and experimental practices. We here established a stable 3D gingival tissue equivalent (GTE) using hTERT-immortalized gingival fibroblasts (hGFBs)-populated collagen gel directly crosslinked with genipin/cytochalasin D and seeding hTERT-immortalized gingival keratinocytes (TIGKs) on the upper surface for a 2-week air–liquid interface co-culture. MTT assay was used to measure the cell viability of GTEs. GTE size was monitored following culture period, and the contraction was analyzed. Immunohistochemical assay was used to analyze GTE structure. qRT-PCR was conducted to examine the mRNA expression of keratinocyte-specific genes. Fifty µM genipin (G50) or combination (G + C) of G50 and 100 nM cytochalasin D significantly inhibited GTE contraction. Additionally, a higher cell viability appeared in GTEs crosslinked with G50 or G + C. GTEs crosslinked with genipin/cytochalasin D showed a distinct multilayered stratified epithelium that expressed keratinocyte-specific genes similar to native gingiva. Collagen directly crosslinked with G50 or G + C significantly reduced GTE contraction without damaging the epithelium. In summary, the TIGKs and hGFBs can successfully form organotypic multilayered cultures, which can be a valuable tool in the research regarding periodontal disease as well as oral mucosa disease. We conclude that genipin is a promising crosslinker with the ability to reduce collagen contraction while maintaining normal cell function in collagen-based oral tissue engineering.
Collapse
Affiliation(s)
- Cecilia Koskinen Holm
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| |
Collapse
|
33
|
Abstract
Purpose of Review Pain presents a unique challenge due to the complexity of the biological pathways involved in the pain perception, the growing concern regarding the use of opioid analgesics, and the limited availability of optimal treatment options. The use of biomaterials and regenerative medicine in pain management is being actively explored and showing exciting progress in improving the efficacy of conventional pharmacotherapy and as novel non-pharmacological therapy for chronic pain caused by degenerative diseases. In this paper we review current clinical applications, and promising research in the use of biomaterials and regenerative medicine in pain management. Recent Findings Regenerative therapies have been developed to repair damaged tissues in back, joint, and shoulder that lead to chronic and inflammatory pain. Novel regenerative biomaterials have been designed to incorporate biochemical and physical pro-regenerative cues that augment the efficacy of regenerative therapies. New biomaterials improve target localization with improved tunability for controlled drug delivery, and injectable scaffolds enhance the efficacy of regenerative therapies through improving cellular migration. Advanced biomaterial carrier systems have been developed for sustained and targeted delivery of analgesic agents to specific tissues and organs, showing improved treatment efficacy, extended duration of action, and reduced dosage. Targeting endosomal receptors by nanoparticles has shown promising anti-nociception effects. Biomaterial scavengers are designed to remove proinflammatory reactive oxygen species that trigger nociceptors and cause pain hypersensitivity, providing a proactive approach for pain management. Summary Pharmacotherapy remains the method of choice for pain management; however, conventional analgesic agents are associated with adverse effects. The relatively short duration of action when applied as free drug limited their efficacy in postoperative and chronic pain treatment. The application of biomaterials in pain management is a promising strategy to improve the efficacy of current pharmacotherapy through sustained and targeted delivery of analgesic agents. Regenerative medicine strategies target the damaged tissue and provide non-pharmacological alternatives to manage chronic and inflammatory pain. In the future, the successful development of regenerative therapies that completely repair damaged tissues will provide a more optimal alternative for the treatment of chronic pain caused. Future studies will leverage on the increasing understanding of the molecular mechanisms governing pain perception and transmission, injury response and tissue regeneration, and the development of new biomaterials and tissue regenerative methods.
Collapse
|
34
|
Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060903. [PMID: 35743934 PMCID: PMC9225502 DOI: 10.3390/life12060903] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/11/2022]
Abstract
Trauma and bone loss from infections, tumors, and congenital diseases make bone repair and regeneration the greatest challenges in orthopedic, craniofacial, and plastic surgeries. The shortage of donors, intrinsic limitations, and complications in transplantation have led to more focus and interest in regenerative medicine. Structures that closely mimic bone tissue can be produced by this unique technology. The steady development of three-dimensional (3D)-printed bone tissue engineering scaffold therapy has played an important role in achieving the desired goal. Bioceramic scaffolds are widely studied and appear to be the most promising solution. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures to match their functional properties. Inkjet, extrusion, and light-based 3D printing are among the rapidly advancing bone bioprinting technologies. Furthermore, stem cell therapy has recently shown an important role in this field, although large tissue defects are difficult to fill by injection alone. The combination of 3D-printed bone tissue engineering scaffolds with stem cells has shown very promising results. Therefore, biocompatible artificial tissue engineering with living cells is the key element required for clinical applications where there is a high demand for bone defect repair. Furthermore, the emergence of various advanced manufacturing technologies has made the form of biomaterials and their functions, composition, and structure more diversified, and manifold. The importance of this article lies in that it aims to briefly review the main principles and characteristics of the currently available methods in orthopedic bioprinting technology to prepare bioceramic scaffolds, and finally discuss the challenges and prospects for applications in this promising and vital field.
Collapse
|
35
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
36
|
Multifunctional PLA/Gelatin Bionanocomposites for Tailored Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14061138. [PMID: 35745711 PMCID: PMC9227928 DOI: 10.3390/pharmaceutics14061138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A series of bionanocomposites composed of shark gelatin hydrogels and PLA nanoparticles featuring different nanostructures were designed to generate multifunctional drug delivery systems with tailored release rates required for personalized treatment approaches. The global conception of the systems was considered from the desired customization of the drug release while featuring the viscoelastic properties needed for their ease of storage and posterior local administration as well as their biocompatibility and cell growth capability for the successful administration at the biomolecular level. The hydrogel matrix offers the support to develop a direct thermal method to convert the typical kinetic trapped nanostructures afforded by the formulation method whilst avoiding the detrimental nanoparticle agglomeration that diminishes their therapeutic effect. The nanoparticles generated were successfully formulated with two different antitumoral compounds (doxorubicin and dasatinib) possessing different structures to prove the loading versatility of the drug delivery system. The bionanocomposites were characterized by several techniques (SEM, DLS, RAMAN, DSC, SAXS/WAXS and rheology) as well as their reversible sol–gel transition upon thermal treatment that occurs during the drug delivery system preparation and the thermal annealing step. In addition, the local applicability of the drug delivery system was assessed by the so-called “syringe test” to validate both the storage capability and its flow properties at simulated physiological conditions. Finally, the drug release profiles of the doxorubicin from both the PLA nanoparticles or the bionanocomposites were analyzed and correlated to the nanostructure of the drug delivery system.
Collapse
|
37
|
Yang Z, Huang T, Cao P, Cui Y, Nie J, Chen T, Yang H, Wang F, Sun L. Carbonized Silk Nanofibers in Biodegradable, Flexible Temperature Sensors for Extracellular Environments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18110-18119. [PMID: 35435678 DOI: 10.1021/acsami.2c00384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Temperature is one of the key parameters for activity of cells. The trade-off between sensitivity and biocompatibility of cell temperature measurement is a challenge for temperature sensor development. Herein, a highly sensitive, biocompatible, and degradable temperature sensor was proposed to detect the living cell extracellular environments. Biocompatible silk materials were applied as sensing and packing layers, which endow the device with biocompatibility, biodegradability, and flexibility. The silk-based temperature sensor presented a sensitivity of 1.75%/°C and a working range of 35-63 °C with the capability to measure the extracellular environments. At the bending state, this sensor worked at promising response of cells at different temperatures. The applications of this developed silk material-based temperature sensor include biological electronic devices for cell manipulation, cell culture, and cellular metabolism.
Collapse
Affiliation(s)
- Zhan Yang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Ting Huang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Peidong Cao
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Yangchen Cui
- School of Public Health, Medical College of Soochow University, Soochow University, Suzhou 215131, China
| | - Jihua Nie
- School of Public Health, Medical College of Soochow University, Soochow University, Suzhou 215131, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Hao Yang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Fengxia Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| | - Lining Sun
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China
| |
Collapse
|
38
|
Preparation of Spheroids from Primary Pig Cells in a Mid-Scale Bioreactor Retaining Their Myogenic Potential. Cells 2022; 11:cells11091453. [PMID: 35563757 PMCID: PMC9103977 DOI: 10.3390/cells11091453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
Three-dimensional cell culture techniques mimic the in vivo cell environment more adequately than flat surfaces. Spheroids are multicellular aggregates and we aimed to produce scaffold-free spheroids of myogenic origin, called myospheres, using a mid-scale incubator and bioreactor hybrid. For the first time, we obtained spheroids from primary porcine muscle cells (PMCs) with this technology and compared their morphology and growth parameters, marker expression, and myogenic potential to C2C12-derived spheroids. Both cell types were able to form round-shaped spheroids in the bioreactor already after 24 h. The mean diameter of the C2C12 spheroids (44.6 µm) was larger than that of the PMCs (32.7 µm), and the maximum diameter exceeded 1 mm. C2C12 cells formed less aggregates than PMCs with a higher packing density (cell nuclei/mm2). After dissociation from the spheroids, C2C12 cells and PMCs started to proliferate again and were able to differentiate into the myogenic lineage, as shown by myotube formation and the expression of F-Actin, Desmin, MyoG, and Myosin. For C2C12, multinucleated syncytia and Myosin expression were observed in spheroids, pointing to accelerated myogenic differentiation. In conclusion, the mid-scale incubator and bioreactor system is suitable for spheroid formation and cultivation from primary muscle cells while preserving their myogenic potential.
Collapse
|
39
|
Hu X, Liu W, Sun L, Xu S, Wang T, Meng J, Wen T, Liu Q, Liu J, Xu H. Magnetic Nanofibrous Scaffolds Accelerate the Regeneration of Muscle Tissue in Combination with Extra Magnetic Fields. Int J Mol Sci 2022; 23:ijms23084440. [PMID: 35457258 PMCID: PMC9025939 DOI: 10.3390/ijms23084440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/27/2022] Open
Abstract
The reversal of loss of the critical size of skeletal muscle is urgently required using biomaterial scaffolds to guide tissue regeneration. In this work, coaxial electrospun magnetic nanofibrous scaffolds were fabricated, with gelatin (Gel) as the shell of the fiber and polyurethane (PU) as the core. Iron oxide nanoparticles (Mag) of 10 nm diameter were added to the shell and core layer. Myoblast cells (C2C12) were cultured on the magnetic scaffolds and exposed to the applied magnetic fields. A mouse model of skeletal muscle injury was used to evaluate the repair guided by the scaffolds under the magnetic fields. It was shown that VEGF secretion and MyoG expression for the myoblast cells grown on the magnetic scaffolds under the magnetic fields were significantly increased, while, the gene expression of Myh4 was up-regulated. Results from an in vivo study indicated that the process of skeletal muscle regeneration in the mouse muscle injury model was accelerated by using the magnetic actuated strategy, which was verified by histochemical analysis, immunofluorescence staining of CD31, electrophysiological measurement and ultrasound imaging. In conclusion, the integration of a magnetic scaffold combined with the extra magnetic fields enhanced myoblast differentiation and VEGF secretion and accelerated the defect repair of skeletal muscle in situ.
Collapse
Affiliation(s)
- Xuechun Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Wenhao Liu
- Peking Union Medical College, Beijing 100073, China;
| | - Lihong Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Shilin Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Tao Wen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Qingqiao Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
- Correspondence: (J.L.); (H.X.); Tel.: +86-10-6915-6437 (H.X.)
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
- Correspondence: (J.L.); (H.X.); Tel.: +86-10-6915-6437 (H.X.)
| |
Collapse
|
40
|
Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int J Mol Sci 2022; 23:ijms23063310. [PMID: 35328732 PMCID: PMC8954945 DOI: 10.3390/ijms23063310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton’s jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.
Collapse
|
41
|
Paradiso F, Lenna S, Gazze SA, Garcia Parra J, Murphy K, Margarit L, Gonzalez D, Francis L, Taraballi F. Mechanomimetic 3D Scaffolds as a Humanized In Vitro Model for Ovarian Cancer. Cells 2022; 11:824. [PMID: 35269446 PMCID: PMC8909508 DOI: 10.3390/cells11050824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The mechanical homeostasis of tissues can be altered in response to trauma or disease, such as cancer, resulting in altered mechanotransduction pathways that have been shown to impact tumor development, progression, and the efficacy of therapeutic approaches. Specifically, ovarian cancer progression is parallel to an increase in tissue stiffness and fibrosis. With in vivo models proving difficult to study, tying tissue mechanics to altered cellular and molecular properties necessitate advanced, tunable, in vitro 3D models able to mimic normal and tumor mechanic features. First, we characterized normal human ovary and high-grade serous (HGSC) ovarian cancer tissue stiffness to precisely mimic their mechanical features on collagen I-based sponge scaffolds, soft (NS) and stiff (MS), respectively. We utilized three ovarian cancer cell lines (OVCAR-3, Caov-3, and SKOV3) to evaluate changes in viability, morphology, proliferation, and sensitivity to doxorubicin and liposomal doxorubicin treatment in response to a mechanically different microenvironment. High substrate stiffness promoted the proliferation of Caov-3 and SKOV3 cells without changing their morphology, and upregulated mechanosensors YAP/TAZ only in SKOV3 cells. After 7 days in culture, both OVCAR3 and SKOV3 decreased the MS scaffold storage modulus (stiffness), suggesting a link between cell proliferation and the softening of the matrix. Finally, high matrix stiffness resulted in higher OVCAR-3 and SKOV3 cell cytotoxicity in response to doxorubicin. This study demonstrates the promise of biomimetic porous scaffolds for effective inclusion of mechanical parameters in 3D cancer modeling. Furthermore, this work establishes the use of porous scaffolds for studying ovarian cancer cells response to mechanical changes in the microenvironment and as a meaningful platform from which to investigate chemoresistance and drug response.
Collapse
Affiliation(s)
- Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| | - S. Andrea Gazze
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Jezabel Garcia Parra
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Kate Murphy
- Department of Pathology, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK;
| | - Lavinia Margarit
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Lewis Francis
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (S.A.G.); (J.G.P.); (L.M.); (D.G.); (L.F.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (F.P.); (S.L.)
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6445 Main St., Houston, TX 77030, USA
| |
Collapse
|
42
|
Huttala O, Loreth D, Staff S, Tanner M, Wikman H, Ylikomi T. Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment. Biomedicines 2022; 10:biomedicines10020271. [PMID: 35203480 PMCID: PMC8869401 DOI: 10.3390/biomedicines10020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/19/2022] Open
Abstract
Vascularization plays an important role in the microenvironment of the tumor. Therefore, it should be a key element to be considered in the development of in vitro cancer assays. In this study, we decellularized in vitro capillaries to remove genetic material and optimized the medium used to increase the robustness and versatility of applications. The growth pattern and drug responses of cancer cell lines and patient-derived primary cells were studied on decellularized capillaries. Interestingly, two distinct growth patterns were seen when cancer cells were grown on decellularized capillaries: “network” and “cluster”. Network formation correlated with the metastatic properties of the cells and cluster formation was observed in non-metastatic cells. Drug responses of patient-derived cells correlated better with clinical findings when cells were cultured on decellularized capillaries compared with those cultured on plastic. Decellularized capillaries provide a novel method for cancer cell culture applications. It bridges the gap between complex 3D culture methods and traditional 2D culture methods by providing the ease and robustness of 2D culture as well as an in vivo-like microenvironment and scaffolding for 3D cultures.
Collapse
Affiliation(s)
- Outi Huttala
- Cell Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Correspondence: ; Tel.: +358-401909721
| | - Desiree Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (H.W.)
| | - Synnöve Staff
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Tanner
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
- Department of Oncology, Tampere University Hospital, 33520 Tampere, Finland
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.L.); (H.W.)
| | - Timo Ylikomi
- Cell Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; (S.S.); (M.T.)
| |
Collapse
|
43
|
Tissue Engineered Transcatheter Pulmonary Valved Stent Implantation: Current State and Future Prospect. Int J Mol Sci 2022; 23:ijms23020723. [PMID: 35054905 PMCID: PMC8776029 DOI: 10.3390/ijms23020723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Patients with the complex congenital heart disease (CHD) are usually associated with right ventricular outflow tract dysfunction and typically require multiple surgical interventions during their lives to relieve the right ventricular outflow tract abnormality. Transcatheter pulmonary valve replacement was used as a non-surgical, less invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly developing over the past years. Despite the current favorable results of transcatheter pulmonary valve replacement, many patients eligible for pulmonary valve replacement are still not candidates for transcatheter pulmonary valve replacement. Therefore, one of the significant future challenges is to expand transcatheter pulmonary valve replacement to a broader patient population. This review describes the limitations and problems of existing techniques and focuses on decellularized tissue engineering for pulmonary valve stenting.
Collapse
|
44
|
Nii T, Tabata Y. Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro invasion of cancer cells. Regen Ther 2022; 18:516-522. [PMID: 34977285 PMCID: PMC8668441 DOI: 10.1016/j.reth.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The objective of this study is to design a co-culture system of cancer cells and three-dimensional (3D) mesenchymal stem cells (MSC) aggregates for the in vitro evaluation of cancer invasion. Methods First, the MSC of an immunosuppressive phenotype (MSC2) were prepared by the MSC stimulation of polyriboinosinic polyribocytidylic acid. By simple mixing MSC2 and gelatin hydrogel microspheres (GM) in a U-bottomed well of 96 well plates which had been pre-coated with poly (vinyl alcohol), 3D MSC2 aggregates incorporating GM were obtained. The amount of chemokine (C–C motif) ligand 5 (CCL5) secreted from the MSC2 aggregates incorporating GM. Finally, an invasion assay was performed to evaluate the cancer invasion rate by co-cultured cancer cells and the 3D MSC2 incorporating GM. Results The amount of CCL5 secreted for the 3D MSC2 aggregates incorporating GM was significantly higher than that of two-dimensional (2D) MSC, 2D MSC2, and 3D MSC aggregates incorporating GM. When MDA-MB-231 human breast cancer cells were co-cultured with the 3D MSC2 aggregates incorporating GM, the invasion rate of cancer cells was significantly high compared with that of 2D MSC or 2D MSC2 and 3D MSC aggregates incorporating GM. In addition, high secretion of matrix metalloproteinase-2 was observed for the 3D MSC2 aggregates/cancer cells system. Conclusions It is concluded that the co-culture system of 3D MSC2 aggregates incorporating GM and cancer cells is promising to evaluate the invasion of cancer cells in vitro. This invasion model is an important tool for anti-cancer drug screening. Mesenchymal stem cells of an immunosuppressive phenotype (MSC2) were obtained. 3D MSC2 aggregates incorporating gelatin hydrogel microspheres were prepared. 3D MSC2 aggregates promoted the invasion rate of cancer cells.
Collapse
Key Words
- (CCL)5, chemokine (C–C motif) ligand
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cells
- MSC2, MSC of an immunosuppressive phenotype
- Mesenchymal stem cells
- PBS, phosphate buffered-saline
- PVA, poly (vinyl alcohol)
- TAM, tumor-associated macrophages
- Three-dimensional cell culture
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
45
|
In Vivo Study of Nasal Bone Reconstruction with Collagen, Elastin and Chitosan Membranes in Abstainer and Alcoholic Rats. Polymers (Basel) 2022; 14:polym14010188. [PMID: 35012210 PMCID: PMC8747723 DOI: 10.3390/polym14010188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to evaluate the use of collagen, elastin, or chitosan biomaterial for bone reconstruction in rats submitted or not to experimental alcoholism. Wistar male rats were divided into eight groups, submitted to chronic alcohol ingestion (G5 to G8) or not (G1 to G4). Nasal bone defects were filled with clot in animals of G1 and G5 and with collagen, elastin, and chitosan grafts in G2/G6, G3/G7, and G4/G8, respectively. Six weeks after, all specimens underwent radiographic, tomographic, and microscopic evaluations. Bone mineral density was lower in the defect area in alcoholic animals compared to the abstainer animals. Bone neoformation was greater in the abstainer groups receiving the elastin membrane and in abstainer and alcoholic rats receiving the chitosan membrane (15.78 ± 1.19, 27.81 ± 0.91, 47.29 ± 0.97, 42.69 ± 1.52, 13.81 ± 1.60, 18.59 ± 1.37, 16.54 ± 0.89, and 37.06 ± 1.17 in G1 to G8, respectively). In conclusion, osteogenesis and bone density were more expressive after the application of the elastin matrix in abstainer animals and of the chitosan matrix in both abstainer and alcoholic animals. Chronic alcohol ingestion resulted in lower bone formation and greater formation of fibrous connective tissue.
Collapse
|
46
|
Gamboa CM, Wang Y, Xu H, Kalemba K, Wondisford FE, Sabaawy HE. Optimized 3D Culture of Hepatic Cells for Liver Organoid Metabolic Assays. Cells 2021; 10:cells10123280. [PMID: 34943788 PMCID: PMC8699701 DOI: 10.3390/cells10123280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
The liver is among the principal organs for glucose homeostasis and metabolism. Studies of liver metabolism are limited by the inability to expand primary hepatocytes in vitro while maintaining their metabolic functions. Human hepatic three-dimensional (3D) organoids have been established using defined factors, yet hepatic organoids from adult donors showed impaired expansion. We examined conditions to facilitate the expansion of adult donor-derived hepatic organoids (HepAOs) and HepG2 cells in organoid cultures (HepGOs) using combinations of growth factors and small molecules. The expansion dynamics, gluconeogenic and HNF4α expression, and albumin secretion are assessed. The conditions tested allow the generation of HepAOs and HepGOs in 3D cultures. Nevertheless, gluconeogenic gene expression varies greatly between conditions. The organoid expansion rates are limited when including the TGFβ inhibitor A8301, while are relatively higher with Forskolin (FSK) and Oncostatin M (OSM). Notably, expanded HepGOs grown in the optimized condition maintain detectable gluconeogenic expression in a spatiotemporal distribution at 8 weeks. We present optimized conditions by limiting A8301 and incorporating FSK and OSM to allow the expansion of HepAOs from adult donors and HepGOs with gluconeogenic competence. These models increase the repertoire of human hepatic cellular tools available for use in liver metabolic assays.
Collapse
Affiliation(s)
- Christian Moya Gamboa
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yujue Wang
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Huiting Xu
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Katarzyna Kalemba
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Fredric E. Wondisford
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
- Correspondence: (F.E.W.); (H.E.S.); Tel.: +1-732-235-9838 (F.E.W.); +1-732-235-8081 (H.E.S.)
| | - Hatem E. Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
- Department of Pathology and Laboratory Medicine, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (F.E.W.); (H.E.S.); Tel.: +1-732-235-9838 (F.E.W.); +1-732-235-8081 (H.E.S.)
| |
Collapse
|
47
|
Valdoz JC, Johnson BC, Jacobs DJ, Franks NA, Dodson EL, Sanders C, Cribbs CG, Van Ry PM. The ECM: To Scaffold, or Not to Scaffold, That Is the Question. Int J Mol Sci 2021; 22:12690. [PMID: 34884495 PMCID: PMC8657545 DOI: 10.3390/ijms222312690] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas-scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (J.C.V.); (B.C.J.); (D.J.J.); (N.A.F.); (E.L.D.); (C.S.); (C.G.C.)
| |
Collapse
|
48
|
Nii T. Strategies Using Gelatin Microparticles for Regenerative Therapy and Drug Screening Applications. Molecules 2021; 26:molecules26226795. [PMID: 34833885 PMCID: PMC8617939 DOI: 10.3390/molecules26226795] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Gelatin, a denatured form of collagen, is an attractive biomaterial for biotechnology. In particular, gelatin particles have been noted due to their attractive properties as drug carriers. The drug release from gelatin particles can be easily controlled by the crosslinking degree of gelatin molecule, responding to the purpose of the research. The gelatin particles capable of drug release are effective in wound healing, drug screening models. For example, a sustained release of growth factors for tissue regeneration at the injured sites can heal a wound. In the case of the drug screening model, a tissue-like model composed of cells with high activity by the sustained release of drug or growth factor provides reliable results of drug effects. Gelatin particles are effective in drug delivery and the culture of spheroids or cell sheets because the particles prevent hypoxia-derived cell death. This review introduces recent research on gelatin microparticles-based strategies for regenerative therapy and drug screening models.
Collapse
Affiliation(s)
- Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
49
|
Horbert V, Xin L, Föhr P, Huber R, Burgkart RH, Kinne RW. In Vitro Cartilage Regeneration with a Three-Dimensional Polyglycolic Acid (PGA) Implant in a Bovine Cartilage Punch Model. Int J Mol Sci 2021; 22:11769. [PMID: 34769199 PMCID: PMC8583898 DOI: 10.3390/ijms222111769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Resorbable polyglycolic acid (PGA) chondrocyte grafts are clinically established for human articular cartilage defects. Long-term implant performance was addressed in a standardized in vitro model. PGA implants (+/- bovine chondrocytes) were placed inside cartilage rings punched out of bovine femoral trochleas (outer Ø 6 mm; inner defect Ø 2 mm) and cultured for 84 days (12 weeks). Cartilage/PGA hybrids were subsequently analyzed by histology (hematoxylin/eosin; safranin O), immunohistochemistry (aggrecan, collagens 1 and 2), protein assays, quantitative real-time polymerase chain reactions, and implant push-out force measurements. Cartilage/PGA hybrids remained vital with intact matrix until 12 weeks, limited loss of proteoglycans from "host" cartilage or cartilage-PGA interface, and progressively diminishing release of proteoglycans into the supernatant. By contrast, the collagen 2 content in cartilage and cartilage-PGA interface remained approximately constant during culture (with only little collagen 1). Both implants (+/- cells) displayed implant colonization and progressively increased aggrecan and collagen 2 mRNA, but significantly decreased push-out forces over time. Cell-loaded PGA showed significantly accelerated cell colonization and significantly extended deposition of aggrecan. Augmented chondrogenic differentiation in PGA and cartilage/PGA-interface for up to 84 days suggests initial cartilage regeneration. Due to the PGA resorbability, however, the model exhibits limitations in assessing the "lateral implant bonding".
Collapse
Affiliation(s)
- Victoria Horbert
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
| | - Long Xin
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Peter Föhr
- Biomechanics Laboratory, Chair of Orthopedics and Sport Orthopedics, Technische Universität München, 81675 Munich, Germany; (P.F.); (R.H.B.)
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Rainer H. Burgkart
- Biomechanics Laboratory, Chair of Orthopedics and Sport Orthopedics, Technische Universität München, 81675 Munich, Germany; (P.F.); (R.H.B.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
| |
Collapse
|
50
|
Marsudi MA, Ariski RT, Wibowo A, Cooper G, Barlian A, Rachmantyo R, Bartolo PJDS. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives. Int J Mol Sci 2021; 22:11543. [PMID: 34768972 PMCID: PMC8584045 DOI: 10.3390/ijms222111543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
The practice of combining external stimulation therapy alongside stimuli-responsive bio-scaffolds has shown massive potential for tissue engineering applications. One promising example is the combination of electrical stimulation (ES) and electroactive scaffolds because ES could enhance cell adhesion and proliferation as well as modulating cellular specialization. Even though electroactive scaffolds have the potential to revolutionize the field of tissue engineering due to their ability to distribute ES directly to the target tissues, the development of effective electroactive scaffolds with specific properties remains a major issue in their practical uses. Conductive polymers (CPs) offer ease of modification that allows for tailoring the scaffold's various properties, making them an attractive option for conductive component in electroactive scaffolds. This review provides an up-to-date narrative of the progress of CPs-based electroactive scaffolds and the challenge of their use in various tissue engineering applications from biomaterials perspectives. The general issues with CP-based scaffolds relevant to its application as electroactive scaffolds were discussed, followed by a more specific discussion in their applications for specific tissues, including bone, nerve, skin, skeletal muscle and cardiac muscle scaffolds. Furthermore, this review also highlighted the importance of the manufacturing process relative to the scaffold's performance, with particular emphasis on additive manufacturing, and various strategies to overcome the CPs' limitations in the development of electroactive scaffolds.
Collapse
Affiliation(s)
- Maradhana Agung Marsudi
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Ridhola Tri Ariski
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Glen Cooper
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| | - Anggraini Barlian
- School of Life Science & Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Riska Rachmantyo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (R.T.A.); (R.R.)
| | - Paulo J. D. S. Bartolo
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (G.C.); (P.J.D.S.B.)
| |
Collapse
|