1
|
Zhang H, Ma WX, Xie Q, Bu LF, Kong LX, Yuan PC, Zhou RH, Wang YH, Wu L, Zhu CY, Wang ZL, Han J, Huang ZL, Wang YQ. Compound 38, a novel potent and selective antagonist of adenosine A 2A receptor, enhances arousal in mice. Acta Pharmacol Sin 2025; 46:1177-1189. [PMID: 39779967 DOI: 10.1038/s41401-024-01443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Adenosine A2A receptor (A2AR) plays a pivotal role in the regulation of sleep-wake behaviors. We previously reported an A2AR selective antagonist compound 38 with an IC50 value of 29.0 nM. In this study, we investigated its effect on sleep-wake regulation in mice. Wild-type (WT) mice were administered compound 38 (3.3, 5.0, 7.5, 15, 30 mg/kg, i.p.) at 9:00, and electroencephalography and electromyography were simultaneously recorded. We showed that administration of compound 38 exhibited a dose-dependent effect on wakefulness promotion. To investigate the impact of compound 38 on sleep rebound, we conducted a 6 h (13:00-19:00) sleep deprivation experiment. We found that administration of compound 38 (30 mg/kg) produced a wakefulness-promoting effect lasting for 1 h. Subsequently, we explored the critical role of A2AR in the wakefulness-promoting effect of compound 38 using A2AR knockout (KO) mice and their WT littermates. We found that compound 38 enhanced wakefulness in WT mice, but did not have an arousal-promoting effect in A2AR KO mice, suggesting that the arousal-promoting effect of compound 38 was mediated by A2AR. We conducted immunohistochemistry and selectively ablated A2AR-positive neurons using cell type-specific caspase-3 expression, which revealed an essential role of A2AR-positive neurons in the nucleus accumbens shell for the arousal-promoting effect of compound 38. In conclusion, as a novel A2AR antagonist, compound 38 promotes wakefulness in mice via the A2AR and exhibits promising applications for further advancements in the field of sleep-wake disorders.
Collapse
Affiliation(s)
- Hui Zhang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Li-Fang Bu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Rong-Hui Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yong-Hui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lei Wu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chen-Yu Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhi-Lin Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241002, China.
- Wuhu Modern Technology Research and Development Center of Chinese Herbal Medicine and Functional Food, Anhui College of Traditional Chinese Medicine, Wuhu, 241002, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China.
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Fernández PR, Gaydou L, Schumacher R, Rossetti MF, García AP, Sabella A, Ramos JG, Canesini G, Stoker C. Early Overfeeding and Adult Anhedonia: Impact of Neonatal Nutrition on Hedonic Food Regulation in male Rats. J Nutr Biochem 2025:109933. [PMID: 40254039 DOI: 10.1016/j.jnutbio.2025.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
The aim of our study was to analyse the impact of early-life overnutrition and the exposure in adulthood to a cafeteria diet (CAF) on eating behaviour and on the expression of key genes involved in the regulation of food intake. Male Wistar rats were raised in small (SL, 4 pups/dam) or normal litters (NL, 10 pups/dam), fed a control diet (CON) until postnatal day (PND) 90. Then, they received CON or CAF for 11 weeks (NL-CON, NL-CAF, SL-CON, SL-CAF; 12±2 rats/group). Body weight, food intake and behavioural tests (Elevated Plus Maze: EPM, Sensory-specific satiety: SSS) were assessed. At PND167, the rats were euthanized to obtain brain, blood and fat pads. Ventral Tegmental Area (VTA), Nucleus Accumbens (NAc) and Arcuate Nucleus (Arc), were isolated by micropunch technique for qPCR analysis. Early overfeeding alone had the ability to alter long-term SSS. CAF groups showed increased body weight, adiposity and energy intake; sweet food preference and altered SSS. SL-CAF showed hypophagia, basal hyperglycemia, altered SSS and anxiety-like behaviour. Both NL-CAF and SL-CAF showed antidopaminergic effects, but through different pathways: NL-CAF reduced dopamine (DA) production in VTA via decreased tyrosine hydroxylase expression, while SL-CAF exhibited an increase in dopamine active transporter expression in NAc enhancing clearance. SL decreased NPY expression in the Arc in adulthood, which has been proposed to be the link between homeostatic and hedonic systems. Our research reveals a key link between early-life overnutrition and adult hedonic feeding control, emphasizing its lasting impact on eating behaviour and the potential for innovative therapeutics to combat obesity.
Collapse
Affiliation(s)
- Pamela Rocío Fernández
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Nutrición en Situaciones Patológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Luisa Gaydou
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | | | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Ana Paula García
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Agustina Sabella
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Nutrición en Situaciones Patológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
3
|
Zhao X, Fan Z, Yin Q, Yang J, Wu G, Tang S, Ouyang X, Liu Z, Chen X, Tao H. Aberrant white matter structural connectivity of nucleus accumbens in patients with major depressive disorder: A probabilistic fibre tracing study. J Affect Disord 2025; 381:158-165. [PMID: 40185407 DOI: 10.1016/j.jad.2025.03.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Extensive neuroimaging studies have established that functional abnormalities and morphological alterations in the nucleus accumbens (NAc) are implicated in major depressive disorder (MDD), but changes in its white matter structural connectivity (SC) remain unclear. We aimed to elucidate the changes in the white matter fibre connectivity of the NAc in MDD patients. METHODS This study used probabilistic fibre tracking to analyze the diffusion tensor imaging (DTI) data of 125 MDD patients and 129 healthy controls (HCs), calculating the strength of SC (sSC) from bilateral NAc to the entire brain and its correlation with depressive symptoms. RESULTS Compared to HCs, MDD exhibited increased sSC between the left NAc (L.NAc) and regions involving the left middle frontal gyrus, bilateral cingulate gyrus (CG), bilateral hippocampus, left caudate, left medial superior occipital gyrus, right globus pallidus, right superior and middle temporal gyrus, right precuneus, right insula, and right posterior parietal thalamus. Enhanced sSC was also observed between the right NAc (R.NAc) and the left temporal lobe, left posterior superior temporal sulcus (pSTS), bilateral lateral occipital cortex, left hippocampus, right putamen and right ventral occipital cortex. The sSC of L.NAc-left CG and R.NAc-left pSTS was positively correlated with HAMD scores in MDD. CONCLUSIONS Abnormal white matter connectivity of the NAc primarily affects the cortico-limbic circuit, cortico-basal ganglia circuit, and the temporal-occipital cortical regions in patients with MDD, along with the asymmetrical features of the inter-hemispheric SC related to NAc. These alteration may underlie the dysfunction of reward processing and emotion regulation in MDD.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zebin Fan
- Department of Psychiatry, The Fifth People's Hospital of Xiangtan City, Xiangtan 411100, China
| | - Qirui Yin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Guowei Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shixiong Tang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xudong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haojuan Tao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Suhaimi FW, Khari NHM, Hassan Z, Müller CP. Exploring the cognitive effects of kratom: A review. Behav Brain Res 2025; 480:115387. [PMID: 39643045 DOI: 10.1016/j.bbr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Despite the strict kratom regulation in some regions, the demand for kratom products is still increasing worldwide. Kratom products are commonly consumed for their pain-relieving effect or as a self-treatment for opioid use disorder. Kratom is also taken as a recreational drug among youth and adults. Since substance abuse can cause cognitive impairment, many studies investigated the effects of kratom on cognition. The interaction of some kratom alkaloids with various receptors such as opioid, serotonergic, and adrenergic receptors further sparks the interest to investigate the effects of kratom on cognitive function. Hence, this review aims to provide an overview of the effects of kratom on cognitive behaviours and their underlying changes in neurobiological mechanisms. In conclusion, kratom, particularly its main alkaloid, mitragynine may adversely affect cognitive performances that may be attributed to the disruption in synaptic plasticity, brain activity as well as various proteins involved in synaptic transmission. The impact of kratom on cognitive functions could also shed light on its safety profile, which is essential for the therapeutic development of kratom, including its potential use in opioid substitution therapy.
Collapse
Affiliation(s)
| | | | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Esfand SM, Querdasi FR, Gancz NN, Savoca PW, Nussbaum S, Somers JA, Ditzer J, Figueroa MB, Chu K, Towner E, Callaghan BL. The mind, brain, and body study: A protocol for examining the effects of the gut-brain-immune axis on internalizing symptoms in youth exposed to caregiving-related early adversity. Brain Behav Immun Health 2024; 42:100880. [PMID: 39881818 PMCID: PMC11776082 DOI: 10.1016/j.bbih.2024.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 01/31/2025] Open
Abstract
Experiences of caregiving-related adversity are common and one of the strongest predictors of internalizing psychopathology (i.e., anxiety and depression). Specifically, individuals who have been exposed to such early adversities have altered affective neurodevelopment, impaired memory systems, increased risk of developing internalizing disorders, greater inflammation, and differences in gastrointestinal (gut) microbiome composition. Crucially, the gut microbiome undergoes a sensitive period of development that precedes neural and immune sensitive periods, thus making it a potentially fruitful target for intervention. Though previous work has assessed neural, immune, and gut microbiome systems in individuals exposed to early adversity, studies have primarily looked at these biological systems independently. The Mind, Brain, and Body study (MBB) implements multimodal and longitudinal design to assess how changes in the gut microbiome following caregiving-related adversity may underlie altered affective neurodevelopment, memory, and immune functioning in youth and contribute to internalizing symptoms. Across three waves, spread approximately 12-18 months apart, youth with and without previous experiences of caregiving-related adversity completed self-report measures of mental and physical health, provided stool, saliva, hair, and blood samples, and completed an MRI scan. Results of this study will expand our knowledge on how the gut microbiome shapes several biological and cognitive systems and motivate future work investigating the gut microbiome as potential target for intervention.
Collapse
Affiliation(s)
- Shiba M. Esfand
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Francesca R. Querdasi
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Naomi N. Gancz
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Paul W. Savoca
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Siyan Nussbaum
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Jennifer A. Somers
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
- Department of Psychological Sciences, Auburn University, 111 Thach Hall, Auburn, AL, 36849, USA
| | - Julia Ditzer
- Department of Psychology, Clinical Child and Adolescent Psychology, Technische Universität Dresden, Dresden, Germany
| | - Matthew B. Figueroa
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Kristen Chu
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Emily Towner
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Bridget L. Callaghan
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Karaivazoglou K, Aggeletopoulou I, Triantos C. The Contribution of the Brain-Gut Axis to the Human Reward System. Biomedicines 2024; 12:1861. [PMID: 39200325 PMCID: PMC11351993 DOI: 10.3390/biomedicines12081861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The human reward network consists of interconnected brain regions that process stimuli associated with satisfaction and modulate pleasure-seeking behaviors. Impairments in reward processing have been implicated in several medical and psychiatric conditions, and there is a growing interest in disentangling the underlying pathophysiological mechanisms. The brain-gut axis plays a regulatory role in several higher-order neurophysiological pathways, including reward processing. In this context, the aim of the current review was to critically appraise research findings on the contribution of the brain-gut axis to the human reward system. Enteric neuropeptides, which are implicated in the regulation of hunger and satiety, such as ghrelin, PYY3-36, and glucagon-like peptide 1 (GLP-1), have been associated with the processing of food-related, alcohol-related, and other non-food-related rewards, maintaining a delicate balance between the body's homeostatic and hedonic needs. Furthermore, intestinal microbiota and their metabolites have been linked to differences in the architecture and activation of brain reward areas in obese patients and patients with attention deficit and hyperactivity disorder. Likewise, bariatric surgery reduces hedonic eating by altering the composition of gut microbiota. Although existing findings need further corroboration, they provide valuable information on the pathophysiology of reward-processing impairments and delineate a novel framework for potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
7
|
Farrokhi AM, Moshrefi F, Eskandari K, Azizbeigi R, Haghparast A. Hippocampal D1-like dopamine receptor as a novel target for the effect of cannabidiol on extinction and reinstatement of methamphetamine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111025. [PMID: 38729234 DOI: 10.1016/j.pnpbp.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine (METH) is a major health problem without effective pharmacological treatment. Cannabidiol (CBD), a component of the Cannabis sativa plant, is believed to have the potential to inhibit drug-related behavior. However, the neurobiological mechanisms responsible for the effects of CBD remain unclear. Several studies have proposed that the suppressing effects of CBD on drug-seeking behaviors could be through the modulation of the dopamine system. The hippocampus (HIP) D1-like dopamine receptor (D1R) is essential for forming and retrieving drug-associated memory. Therefore, the present study aimed to investigate the role of D1R in the hippocampal CA1 region on the effects of CBD on the extinction and reinstatement of METH-conditioned place preference (CPP). For this purpose, different groups of rats over a 10-day extinction period were administered different doses of intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl, Saline) as a D1R antagonist before ICV injection of CBD (10 μg/5 μl, DMSO12%). In addition, a different set of animals received intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl) before CBD injection (50 μg/5 μl) on the reinstatement day. The results revealed that the highest dose of SCH23390 (4 μg) significantly reduced the accelerating effects of CBD on the extinction of METH-CPP (P < 0.01). Furthermore, SCH23390 (1 and 4 μg) in the reinstatement phase notably reversed the preventive effects of CBD on the reinstatement of drug-seeking behavior (P < 0.05 and P < 0.001, respectively). In conclusion, the current study revealed that CBD made a shorter extinction period and suppressed METH reinstatement in part by interacting with D1-like dopamine receptors in the CA1 area of HIP.
Collapse
Affiliation(s)
- Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Yuan S, Jiang SC, Zhang ZW, Li ZL, Hu J. Substance Addiction Rehabilitation Drugs. Pharmaceuticals (Basel) 2024; 17:615. [PMID: 38794185 PMCID: PMC11124501 DOI: 10.3390/ph17050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The relapse rate of substance abusers is high, and addiction rehabilitation adjunct drugs need to be developed urgently. There have been numerous reports on blocking the formation of substance addiction, but studies on drugs that can alleviate withdrawal symptoms are very limited. Both the dopamine transporter (DAT) hypothesis and D3 dopamine receptor (D3R) hypothesis are proposed. DAT activators reduce the extracellular dopamine level, and D3R antagonists reduce the neuron's sensitivity to dopamine, both of which may exacerbate the withdrawal symptoms subsequently. The D3R partial agonist SK608 has biased signaling properties via the G-protein-dependent pathway but did not induce D3R desensitization and, thus, may be a promising drug for the withdrawal symptoms. Drugs for serotoninergic neurons or GABAergic neurons and anti-inflammatory drugs may have auxiliary effects to addiction treatments. Drugs that promote structural synaptic plasticity are also discussed.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Si-Cong Jiang
- Haisco Pharmaceutical Group Comp. Ltd., Chengdu 611138, China;
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi’an 710032, China;
| | - Jing Hu
- School of Medicine, Northwest University, Xi’an 710069, China;
| |
Collapse
|
9
|
Kirkland JM, Edgar EL, Patel I, Feustel P, Belin S, Kopec AM. Synaptic pruning during adolescence shapes adult social behavior in both males and females. Dev Psychobiol 2024; 66:e22473. [PMID: 38433422 PMCID: PMC11758907 DOI: 10.1002/dev.22473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic "reward" circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. We previously demonstrated that during adolescence, in rats, microglial synaptic pruning shapes the development of NAc and social play behavior in males and females. In this report, we hypothesize that interrupting microglial pruning in NAc during adolescence will have persistent effects on male and female social behavior in adulthood. We found that inhibiting microglial pruning in the NAc during adolescence had different effects on social behavior in males and females. In males, inhibiting pruning increased familiar exploration and increased nonsocial contact. In females, inhibiting pruning did not change familiar exploration behavior but increased active social interaction. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors toward a familiar conspecific in both males and females.
Collapse
Affiliation(s)
- Julia M Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Erin L Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Paul Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
10
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Yin B, Jiang YB, Chen J. Realizing consumers' existential dreams via product marketing and mixed reality: a perspective based on affective neuroscience theories. Front Neurosci 2023; 17:1256194. [PMID: 37732310 PMCID: PMC10508346 DOI: 10.3389/fnins.2023.1256194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
In an era of swift societal changes and escalating consumerism, this paper presents an exploration of an innovative approach that integrates product marketing strategies, mixed reality (MR) technology, and affective neuroscience theories to actualize consumers' existential dreams. MR, with its unique capacity to blend the virtual and real worlds, can enhance the consumer experience by creating immersive, personalized environments that resonate with consumers' existential aspirations. Insights from affective neuroscience, specifically the brain's processing of emotions, guide the development of emotionally engaging marketing strategies, which strengthen the connection between consumers, products, and brands. These integrated strategies not only present a novel blueprint for companies to deepen consumer engagement but also promise more fulfilling and meaningful consumer experiences. Moreover, this approach contributes to societal well-being and prosperity, marking a significant stride in the field of marketing.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Learning and Behavioral Sciences, School of Psychology, Fujian Normal University, Fuzhou, China
- Department of Applied Psychology, School of Psychology, Fujian Normal University, Fuzhou, China
- School of Psychology, Institute of Organizational and Industrial Psychology, Fujian Normal University, Fuzhou, China
| | - Yan-Bin Jiang
- Department of Applied Psychology, School of Psychology, Fujian Normal University, Fuzhou, China
- School of Psychology, Institute of Organizational and Industrial Psychology, Fujian Normal University, Fuzhou, China
| | - Jian Chen
- Department of Applied Psychology, School of Psychology, Fujian Normal University, Fuzhou, China
- School of Psychology, Institute of Organizational and Industrial Psychology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
12
|
Ryakiotakis E, Fousfouka D, Stamatakis A. Maternal neglect alters reward-anticipatory behavior, social status stability, and reward circuit activation in adult male rats. Front Neurosci 2023; 17:1201345. [PMID: 37521688 PMCID: PMC10375725 DOI: 10.3389/fnins.2023.1201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Adverse early life experiences affect neuronal growth and maturation of reward circuits that modify behavior under reward predicting conditions. Previous studies demonstrate that rats undergoing denial of expected reward in the form of maternal contact (DER-animal model of maternal neglect) during early post-natal life developed anhedonia, aggressive play-fight behaviors and aberrant prefrontal cortex structure and neurochemistry. Although many studies revealed social deficiency following early-life stress most reports focus on individual animal tasks. Thus, attention needs to be given on the social effects during group tasks in animals afflicted by early life adversity. Methods To investigate the potential impact of the DER experience on the manifestation of behavioral responses induced by natural rewards, we evaluated: 1) naïve adult male sexual preference and performance, and 2) anticipatory behavior during a group 2-phase food anticipation learning task composed of a context-dependent and a cue-dependent learning period. Results DER rats efficiently spent time in the vicinity of and initiated sexual intercourse with receptive females suggesting an intact sexual reward motivation and consummation. Interestingly, during the context-dependent phase of food anticipation training DER rats displayed a modified exploratory activity and lower overall reward-context association. Moreover, during the cue-dependent phase DER rats displayed a mild deficit in context-reward association while increased cue-dependent locomotion. Additionally, DER rats displayed unstable food access priority following food presentation. These abnormal behaviours were accompanied by overactivation of the ventral prefrontal cortex and nucleus accumbens, as assessed by pCREB levels. Conclusions/discussion Collectively, these data show that the neonatal DER experience resulted in adulthood in altered activation of the reward circuitry, interfered with the normal formation of context-reward associations, and disrupted normal reward access hierarchy formation. These findings provide additional evidence to the deleterious effects of early life adversity on reward system, social hierarchy formation, and brain function.
Collapse
Affiliation(s)
- Ermis Ryakiotakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Fousfouka
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- MSc Program in Molecular Biomedicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Stamatakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Liu HM, Liao ML, Liu GX, Wang LJ, Lian D, Ren J, Chi XT, Lv ZR, Liu M, Wu Y, Xu T, Wei JY, Feng X, Jiang B, Zhang XQ, Xin WJ. IPAC integrates rewarding and environmental memory during the acquisition of morphine CPP. SCIENCE ADVANCES 2023; 9:eadg5849. [PMID: 37352353 PMCID: PMC10289658 DOI: 10.1126/sciadv.adg5849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
The association between rewarding and drug-related memory is a leading factor for the formation of addiction, yet the neural circuits underlying the association remain unclear. Here, we showed that the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) integrated rewarding and environmental memory information by two different receiving projections from ventral tegmental area (VTA) and nucleus accumbens shell region (NAcSh) to mediate the acquisition of morphine conditioned place preference (CPP). A projection from the VTA GABAergic neurons (VTAGABA) to the IPAC lateral region GABAergic neurons (IPACLGABA) mediated the effect of morphine rewarding, whereas the pathway from NAcSh dopamine receptor 1-expressing neurons (NAcShD1) to the IPAC medial region GABAergic neurons (IPACMGABA) was involved in the acquisition of environmental memory. These findings demonstrated that the distinct IPAC circuits VTAGABA→IPACLGABA and NAcShD1R→IPACMGABA were attributable to the rewarding and environmental memory during the acquisition of morphine CPP, respectively, and provided the circuit-based potential targets for preventing and treating opioid addiction.
Collapse
Affiliation(s)
- Huan-Min Liu
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Ming-Lu Liao
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Guan-Xi Liu
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Lai-Jian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Dian Lian
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Jie Ren
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Xin-Tian Chi
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Zhuo-Ran Lv
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People’s Hospital, Guangzhou 510000, China
| | - Yan Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jia-You Wei
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Xue-Qin Zhang
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
14
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
15
|
Kirkland JM, Edgar EL, Patel I, Kopec AM. Impaired microglia-mediated synaptic pruning in the nucleus accumbens during adolescence results in persistent dysregulation of familiar, but not novel social interactions in sex-specific ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539115. [PMID: 37205324 PMCID: PMC10187149 DOI: 10.1101/2023.05.02.539115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic 'reward' circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. In rats, we previously demonstrated that microglial synaptic pruning also mediates NAc and social development during sex-specific adolescent periods and via sex-specific synaptic pruning targets. In this report, we demonstrate that interrupting microglial pruning in NAc during adolescence persistently dysregulates social behavior towards a familiar, but not novel social partner in both sexes, via sex-specific behavioral expression. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors primarily directed toward a familiar conspecific in both sexes, but in sex-specific ways.
Collapse
Affiliation(s)
- Julia M. Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L. Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
16
|
Gou L, Li Y, Liu S, Sang H, Lan J, Chen J, Wang L, Li C, Lian B, Zhang X, Sun H, Sun L. (2R,6R)-hydroxynorketamine improves PTSD-associated behaviors and structural plasticity via modulating BDNF-mTOR signaling in the nucleus accumbens. J Affect Disord 2023; 335:129-140. [PMID: 37137411 DOI: 10.1016/j.jad.2023.04.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a mental illness caused by either experiencing or observing a traumatic event that is perceived to pose a serious risk to one's life. (2R,6R)-HNK has an alleviating effect on negative emotions, nevertheless, the mechanism of (2R,6R)-HNK action is unclear. METHODS In this study, the single prolonged stress and electric foot shock (SPS&S) method was used to establish a rat model of PTSD. After determining the validity of the model, (2R,6R)-HNK was administered to the NAc by microinjection using a concentration gradient of 10, 50, and 100 μM, and the effects of the drug in the SPS&S rat model were evaluated. Moreover, our study measured changes in related proteins in the NAc (BDNF, p-mTOR/mTOR, and PSD95) and synaptic ultrastructure. RESULTS In the SPS&S group, the protein expression of brain-derived neurotrophic factor (BDNF), mammalian target of rapamycin (mTOR), and PSD95 was reduced and synaptic morphology was damaged in the NAc. In contrast, after the administration of 50 μM (2R,6R)-HNK, SPS&S-treated rats improved their exploration and depression-linked behavior, while protein levels and synaptic ultrastructure were also restored in the NAc. With the administration of 100 μM (2R,6R)-HNK, locomotor behavior, and social interaction improved in the PTSD model. LIMITATIONS The mechanism of BDNF-mTOR signaling after (2R,6R)-HNK administration was not explored. CONCLUSION (2R,6R)-HNK may ameliorate negative mood and social avoidance symptoms in PTSD rats by regulating BDNF/mTOR-mediated synaptic structural plasticity in the NAc, providing new targets for the development of anti-PTSD drugs.
Collapse
Affiliation(s)
- Luping Gou
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Yu Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Shiqi Liu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Haohan Sang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Jiajun Lan
- School of Clinical Medical, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Jinhong Chen
- College of Extended Education, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Ling Wang
- Clinical Competency Training Center, Medical Experiment and Training Center, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Xianqiang Zhang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China.
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China.
| |
Collapse
|
17
|
Hunt CA, Letzen JE, Krimmel SR, Burrowes SAB, Haythornthwaite JA, Keaser M, Reid M, Finan PH, Seminowicz DA. Meditation Practice, Mindfulness, and Pain-Related Outcomes in Mindfulness-Based Treatment for Episodic Migraine. Mindfulness (N Y) 2023; 14:769-783. [PMID: 38435377 PMCID: PMC10907069 DOI: 10.1007/s12671-023-02105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/07/2023]
Abstract
Objectives Mindfulness-based interventions (MBIs) have emerged as promising prophylactic episodic migraine treatments. The present study investigated biopsychosocial predictors and outcomes associated with formal, daily-life meditation practice in migraine patients undergoing MBI, and whether augmented mindfulness mechanistically underlies change. Methods Secondary analyses of clinical trial data comparing a 12-week enhanced mindfulness-based stress reduction course (MBSR + ; n = 50) to stress management for headache (SMH; n = 48) were conducted. Results Pre-treatment mesocorticolimbic system functioning (i.e., greater resting state ventromedial prefrontal cortex-right nucleus accumbens [vmPFC-rNAC] functional connectivity) predicted greater meditation practice duration over MBSR + (r = 0.58, p = 0.001), as well as the change in headache frequency from pre- to post-treatment (B = -12.60, p = 0.02) such that MBSR + participants with greater vmPFC-rNAC connectivity showed greater reductions in headache frequency. MBSR + participants who meditated more showed greater increases in mindfulness (B = 0.52, p = 0.02) and reductions in the helplessness facet of pain catastrophizing (B = -0.13, p = 0.01), but not headache frequency, severity, or impact. Augmented mindfulness mediated reductions in headache impact resulting from MBSR + , but not headache frequency. Conclusions Mesocorticolimbic system function is implicated in motivated behavior, and thus, motivation-enhancing interventions might be delivered alongside mindfulness-based training to enhance meditation practice engagement. Formal, daily-life meditation practice duration appears to benefit pain-related cognitions, but not clinical pain, while mindfulness emerges as a mechanism of MBIs on headache impact, but not frequency. Further research is needed to investigate the day-to-day effects of formal, daily-life meditation practice on pain, and continue to characterize the specific mechanisms of MBIs on headache outcomes. Preregistration This study is not preregistered.
Collapse
Affiliation(s)
- Carly A. Hunt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology, University of Virginia, VA, Charlottesville, USA
| | - Janelle E. Letzen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R. Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shana A. B. Burrowes
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02218, USA
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Jennifer A. Haythornthwaite
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Keaser
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Matthew Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick H. Finan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology, University of Virginia, VA, Charlottesville, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD 21201, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Wang T, Ma YN, Zhang CC, Liu X, Sun YX, Wang HL, Wang H, Zhong YH, Su YA, Li JT, Si TM. The Nucleus Accumbens CRH-CRHR1 System Mediates Early-Life Stress-Induced Sleep Disturbance and Dendritic Atrophy in the Adult Mouse. Neurosci Bull 2023; 39:41-56. [PMID: 35750984 PMCID: PMC9849529 DOI: 10.1007/s12264-022-00903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/14/2022] [Indexed: 01/24/2023] Open
Abstract
Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.
Collapse
Affiliation(s)
- Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yu-Heng Zhong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
19
|
Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology 2023; 48:90-103. [PMID: 36057649 PMCID: PMC9700729 DOI: 10.1038/s41386-022-01422-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
What changes in brain function cause the debilitating symptoms of depression? Can we use the answers to this question to invent more effective, faster acting antidepressant drug therapies? This review provides an overview and update of the converging human and preclinical evidence supporting the hypothesis that changes in the function of excitatory synapses impair the function of the circuits they are embedded in to give rise to the pathological changes in mood, hedonic state, and thought processes that characterize depression. The review also highlights complementary human and preclinical findings that classical and novel antidepressant drugs relieve the symptoms of depression by restoring the functions of these same synapses and circuits. These findings offer a useful path forward for designing better antidepressant compounds.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
20
|
Impaired interhemispheric synchrony in Parkinson's disease patients with apathy. J Affect Disord 2022; 318:283-290. [PMID: 36096372 DOI: 10.1016/j.jad.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Apathy is a common non-motor symptom in Parkinson's disease (PD), yet the neural mechanism remains unknown. It has been reported that the lateralization of dopamine levels is correlated with apathetic symptoms. We aimed to ascertain the role of lateralization in the neuropathogenesis of apathy in PD. METHODS Twenty-six apathetic PD patients (PD-A), twenty-seven nonapathetic PD patients (PD-NA), and twenty-three healthy controls (HCs) were recruited. All subjects underwent T1-weighted and resting state functional MRI scanning during OFF medication state. Voxel-mirrored Homotopic Connectivity (VMHC) and asymmetry voxel-based morphometry (asymmetry VBM) analysis were applied to detect the synchrony of homotopic connections between hemispheres and grey matter asymmetry index. RESULTS Compared with both PD-NA and HCs groups, the PD-A group showed excessively decreased z-VMHC values in the nucleus accumbens (NAcc) and putamen. Additionally, both PD subgroups exhibited decreased z-VMHC values in the cerebellum lobule VIII compared with controls. However, no corresponding alteration in grey matter asymmetry index was found. Further, a negative correlation between the z-VMHC values of the NAcc and the Apathy Scale (AS) was confirmed in the PD-A group. Meanwhile, the same relationship was also confirmed between the putamen and AS. Notably, ROC curve analyses uncovered that the z-VMHC values of the NAcc and putamen could be a potential neuroimaging feature discerning apathetic PD patient, respectively. LIMITATIONS This is a cross-sectional study. CONCLUSION Our findings demonstrated that the asymmetric functional connectivity in the mesocorticolimbic and nigrostriatal systems might induce the pathophysiological mechanisms of apathy in PD.
Collapse
|
21
|
Bayassi-Jakowicka M, Lietzau G, Czuba E, Patrone C, Kowiański P. More than Addiction—The Nucleus Accumbens Contribution to Development of Mental Disorders and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052618. [PMID: 35269761 PMCID: PMC8910774 DOI: 10.3390/ijms23052618] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Stress and negative emotions evoked by social relationships and working conditions, frequently accompanied by the consumption of addictive substances, and metabolic and/or genetic predispositions, negatively affect brain function. One of the affected structures is nucleus accumbens (NAc). Although its function is commonly known to be associated with brain reword responses and addiction, a growing body of evidence also suggests its role in some mental disorders, such as depression and schizophrenia, as well as neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s. This may result from disintegration of the extensive connections based on numerous neurotransmitter systems, as well as impairment of some neuroplasticity mechanisms in the NAc. The consequences of NAc lesions are both morphological and functional. They include changes in the NAc’s volume, cell number, modifications of the neuronal dendritic tree and dendritic spines, and changes in the number of synapses. Alterations in the synaptic plasticity affect the efficiency of synaptic transmission. Modification of the number and structure of the receptors affects signaling pathways, the content of neuromodulators (e.g., BDNF) and transcription factors (e.g., pCREB, DeltaFosB, NFκB), and gene expression. Interestingly, changes in the NAc often have a different character and intensity compared to the changes observed in the other parts of the basal ganglia, in particular the dorsal striatum. In this review, we highlight the role of the NAc in various pathological processes in the context of its structural and functional damage, impaired connections with the other brain areas cooperating within functional systems, and progression of the pathological processes.
Collapse
Affiliation(s)
- Martyna Bayassi-Jakowicka
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
| | - Grazyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
- Correspondence: (G.L.); (P.K.); Tel.: +48-58-349-14-01 (G.L. & P.K.)
| | - Ewelina Czuba
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Sjukhusbacken 17, 11883 Stockholm, Sweden;
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
- Correspondence: (G.L.); (P.K.); Tel.: +48-58-349-14-01 (G.L. & P.K.)
| |
Collapse
|