1
|
Loges S, Heuser M, Chromik J, Sutamtewagul G, Kapp-Schwoerer S, Crugnola M, Di Renzo N, Lemoli R, Mattei D, Fiedler W, Alvarado-Valero Y, Ben-Batalla I, Waizenegger J, Rieckmann LM, Janning M, Collienne M, Imbusch CD, Beumer N, Micklem D, H Nilsson L, Madeleine N, McCracken N, Oliva C, Gorcea-Carson C, Gjertsen BT. Bemcentinib as monotherapy and in combination with low-dose cytarabine in acute myeloid leukemia patients unfit for intensive chemotherapy: a phase 1b/2a trial. Nat Commun 2025; 16:2846. [PMID: 40122885 PMCID: PMC11930985 DOI: 10.1038/s41467-025-58179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Beyond first line, the prognosis of relapsed/refractory (R/R) acute myeloid leukemia (AML) patients is poor with limited treatment options. Bemcentinib is an orally bioavailable, potent, highly selective inhibitor of AXL, a receptor tyrosine kinase associated with poor prognosis, chemotherapy resistance and decreased antitumor immune response. We report bemcentinib monotherapy and bemcentinib+low-dose cytarabine combination therapy arms from the completed BerGenBio-funded open-label Phase 1/2b trial NCT02488408 ( www.clinicaltrials.gov ), in patients unsuitable for intensive chemotherapy. The primary objective in the monotherapy arm was identification of maximum tolerated dose with secondary objectives to identify dose-limiting toxicities, safety and efficacy, and bemcentinib pharmacokinetic profile. In the combination arm, the primary objective was safety and tolerability, with efficacy and pharmacokinetics as secondary objectives. Safety and tolerability were based on standard clinical laboratory safety tests and Common Terminology Criteria for Adverse Events version 4. Bemcentinib monotherapy (32 R/R, 2 treatment-naïve AML and 2 myelodysplasia patients) was well-tolerated and a loading/maintenance dose of 400/200 mg was selected for combination treatment, comprising 30 R/R and 6 treatment-naïve AML patients. The most common grade 3/4 treatment-related adverse events were cytopenia, febrile neutropenia and asymptomatic QTcF prolongation, with no grade 5 events reported. In conclusion, bemcentinib+low-dose cytarabine was safe and well tolerated.
Collapse
Affiliation(s)
- Sonja Loges
- German-Cancer-Research-Center-(DKFZ)-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany.
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Personalized Oncology, University Hospital Mannheim, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Michael Heuser
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Comprehensive Cancer Center Niedersachsen, Hannover Medical School, Hannover, Germany
| | - Jörg Chromik
- University Hospital Frankfurt, Frankfurt, Germany
| | | | | | | | - Nicola Di Renzo
- Haematology and Stem Cell Transplantation Unit, Vito Fazzi Hospital, Lecce, Italy
| | - Roberto Lemoli
- Department of Internal medicine (DIMI), University of Genoa, Genoa, Italy
- IRCCS-San Martino Hospital, Genoa, Italy
| | - Daniele Mattei
- Azienda Sanitaria Ospedaliera (ASO) Santa Croce e Carle, Cuneo, Italy
| | - Walter Fiedler
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Isabel Ben-Batalla
- German-Cancer-Research-Center-(DKFZ)-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jonas Waizenegger
- German-Cancer-Research-Center-(DKFZ)-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lisa-Marie Rieckmann
- German-Cancer-Research-Center-(DKFZ)-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Melanie Janning
- German-Cancer-Research-Center-(DKFZ)-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maike Collienne
- German-Cancer-Research-Center-(DKFZ)-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics (B330), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany and Research Center for Immunotherapy (FZI), Mainz, Germany
| | - Niklas Beumer
- German-Cancer-Research-Center-(DKFZ)-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Applied Bioinformatics (B330), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany and Research Center for Immunotherapy (FZI), Mainz, Germany
| | | | | | | | | | | | | | - Bjørn T Gjertsen
- Haukeland University Hospital, Bergen, Norway, & Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Yang J, Chen G, Wang R, Song C, Yi H. Navigating TAM receptor dynamics in tumour immunotherapy. Cancer Immunol Immunother 2025; 74:146. [PMID: 40088262 PMCID: PMC11910493 DOI: 10.1007/s00262-024-03879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/02/2024] [Indexed: 03/17/2025]
Abstract
The TAM receptor family is getting more and more attention in the field of tumour immunity. Activation of TAM receptors not only aids in the survival and multiplication of tumour cells but also increases their likelihood of invading other cells and spreading. In addition, activation of TAM receptors helps to inhibit the anti-tumour immune response, allowing tumour cells to evade immune surveillance. In terms of therapeutic strategies, a number of inhibitors targeting TAM receptors are in preclinical and clinical development. Despite significant progress in clinical trials in recent years, challenges remain. This review delves into the kinetic characteristics of the TAM receptor family, their dual role in tumour immunity, and the transmission process of downstream signalling pathways. Based on this, we analysed and summarised the unique strategies and combination therapies for regulating tumour immunity using TAM receptor inhibitors. It not only helps to elucidate the key role of TAM receptors in tumour immunity but also provides new perspectives and strategies for future tumour therapy.
Collapse
Affiliation(s)
- Jihao Yang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Guanmin Chen
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Rui Wang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Chengcheng Song
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China
| | - Huaqiang Yi
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese, Medicine, Jinan, 250013, People's Republic of China.
| |
Collapse
|
3
|
Lv X, Kang Y, Chi X, Zhao J, Pan Z, Ying X, Li L, Pan Y, Huang W, Wang L. A Hybrid Energy-Based and AI-Based Screening Approach for the Discovery of Novel Inhibitors of AXL. ACS Med Chem Lett 2025; 16:410-419. [PMID: 40110119 PMCID: PMC11921171 DOI: 10.1021/acsmedchemlett.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 03/22/2025] Open
Abstract
AXL, part of the TAM receptor tyrosine kinase family, plays a significant role in the growth and survival of various tissues and tumors, making it a critical target for cancer therapy. This study introduces a novel high-throughput virtual screening (HTVS) methodology that merges an AI-enhanced graph neural network, PLANET, with a geometric deep learning algorithm, DeepDock. Using this approach, we identified potent AXL inhibitors from our database. Notably, compound 9, with an IC50 of 9.378 nM, showed excellent inhibitory activity, suggesting its potential as a candidate for further research. We also performed molecular dynamics simulations to explore the interactions between compound 9 and AXL, providing insights for future enhancements. This hybrid screening method proves effective in finding promising AXL inhibitors, and advancing the development of new cancer therapies.
Collapse
Affiliation(s)
- Xinting Lv
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Youkun Kang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Xinglong Chi
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Jingyi Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojun Ying
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
| | - Long Li
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
| | - Youlu Pan
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Linjun Wang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, P.R. China
| |
Collapse
|
4
|
Purohit S, Mandal G, Biswas S, Dalui S, Gupta A, Chowdhury SR, Bhattacharyya A. AXL/GAS6 signaling governs differentiation of tumor-associated macrophages in breast cancer. Exp Cell Res 2025; 444:114324. [PMID: 39510154 DOI: 10.1016/j.yexcr.2024.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Most epithelial cancers are infiltrated by prognostically relevant myelomonocytic cells. Immunosuppressive tumor associated macrophages (TAMs) and their precursor monocytic myeloid-derived suppressor cells (MDSCs) have previously been associated with worse outcomes in human breast cancer (BCa), yet the mechanism of immunosuppressive TAMs-polarization from myelomonocytic precursors is not completely understood. In this study, we show that persuaded AXL/GAS6 pathway alters macrophage phenotype from HLA-DRhighCD206lowCD163low classical phagocytic into HLA-DRlowCD206highCD163high immunosuppressive ones with accelerated BCa progression, and increased angiogenesis signature and invasion ability of cancer cells at tumor beds. Notably, both AXL and GAS6 expressions are upregulated in human invasive breast carcinoma, with maximum expression in triple negative histology type. Mechanistically, we demonstrate that AXL/GAS6 signaling drives immunosuppression by governing increased immunosuppressive IL10 production while dampening IL-1β expression within the tumor microenvironment (TME) of BCa. Further, AXL/GAS6 signaling promotes angiogenesis through the activation of PI3K/AKT and NF-κB signaling pathways. Our results unveil role of AXL/GAS6 axis in the differentiation of TAMs, which governs malignant growth, and suggest that therapies that uncouple AXL/GAS6 axis may exhibit therapeutic opportunity for otherwise undruggable Triple Negative Breast Cancer (TNBC) patients.
Collapse
Affiliation(s)
- Suman Purohit
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Department of Zoology, Gurudas College, 1/1, Suren Sarkar Road, Phool Bagan, Kolkata, 700054, West Bengal, India
| | - Gunjan Mandal
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Division of Cancer Biology, DBT-Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Subir Biswas
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, Maharashtra, India
| | - Shauryabrota Dalui
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Arnab Gupta
- Department of Surgical Oncology, Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Kolkata, 700063, West Bengal, India
| | - Sougata Roy Chowdhury
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India; Translational Immunology Laboratory, Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
5
|
Qiao X, Wu X, Chen S, Niu MM, Hua H, Zhang Y. Discovery of novel and potent dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment via structure-based pharmacophore modelling, virtual screening, and molecular docking, molecular dynamics simulation studies, and biological evaluation. J Enzyme Inhib Med Chem 2024; 39:2295241. [PMID: 38134358 PMCID: PMC10763849 DOI: 10.1080/14756366.2023.2295241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Nowadays, owing to the complex mechanism of tumorigenesis, simultaneous inhibition of multiple targets is an important anticancer strategy. Recent studies have demonstrated receptor tyrosine kinase AXL (AXL) and histone deacetylase 2 (HDAC2) are closely associated with colorectal cancer. Herein, we identified five hit compounds concurrently targeting AXL and HDAC2 using virtual screening. Inhibitory experiments revealed these hit compounds potently inhibited AXL and HDAC2 in the nanomolar range. Among them, Hit-3 showed the strongest inhibitory effects which were better than that of the positive control groups. Additionally, MD assays showed that Hit-3 could bind stably to the AXL and HDAC2 active pockets. Further MTT assays demonstrated that Hit-3 showed potent anti-proliferative activity. Most importantly, Hit-3 exhibited significant in vivo antitumor efficacy in xenograft models. Collectively, this study is the first discovery of dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment.
Collapse
Affiliation(s)
- Xiao Qiao
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Xiangyu Wu
- Department of Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Shutong Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Huilian Hua
- Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yan Zhang
- Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
6
|
Safaie N, Idari G, Ghasemi D, Hajiabbasi M, Alivirdiloo V, Masoumi S, Zavvar M, Majidi Z, Faridvand Y. AMPK activation; a potential strategy to mitigate TKI-induced cardiovascular toxicity. Arch Physiol Biochem 2024:1-13. [PMID: 39526616 DOI: 10.1080/13813455.2024.2426494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionised cancer treatment, yet concerns regarding cardiovascular toxicity have surfaced. This piece delves into the interplay between AMP-activated protein kinase (AMPK) signalling and TKI-induced cardiovascular toxicity. The study unravels the intricate relationship between AMPK activation and TKI-induced cardiovascular toxicity, aiming to ascertain whether AMPK can play a strategic role in mitigating adverse effects. Beyond unravelling mechanistic insights, the research sets the stage for future therapeutic approaches, envisioning AMPK activation as a pivotal connection for balancing effective cancer treatment with cardiovascular well-being. As research advances, the potential of AMPK activation not only addresses challenges in TKI-induced cardiovascular toxicity but also shapes the future landscape of personalised anticancer therapies. The article explores the mechanisms of TKI-induced toxicity, AMPK's impact on cardiovascular health, and the potential therapeutic implications of AMPK activation in alleviating TKI-associated toxicities.
Collapse
Affiliation(s)
- Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Diba Ghasemi
- Stem Cell research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramasr, Iran
| | - Shahab Masoumi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Vanderbilt University of Medical center, Nashville, TN, USA
| | - Mahdi Zavvar
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Ho H, Cheng CY, Huang CY, Chu SE, Liang YJ, Sun JT, Chen YL. Association Between Phosphorylated AXL Expression and Survival in Patients with Gastric Cancer. J Clin Med 2024; 13:6694. [PMID: 39597836 PMCID: PMC11595014 DOI: 10.3390/jcm13226694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Gastric cancer (GC) is a leading cause of cancer-related mortality, particularly in East Asia. Despite treatment advances, the prognosis remains poor owing to late diagnosis and high metastatic potential. Phosphorylated AXL (pAXL), a receptor tyrosine kinase, promotes cancer progression, including epithelial-mesenchymal transition (EMT), tumor growth, and metastasis. In this study, we aimed to investigate the relationship between pAXL expression and prognosis in patients with GC, focusing on survival outcomes and other biomarkers such as fibronectin and phosphorylated AKT (pAkt). Methods: Immunohistochemistry was performed to assess the expression of pAXL, fibronectin, and pAkt in 188 GC specimens collected between 2000 and 2013. H-scores were calculated based on staining intensity and percentage. The association between pAXL expression and patient outcomes was assessed using Kaplan-Meier survival analysis and multivariate logistic regression. Results: Higher pAXL expression was significantly associated with improved survival, particularly in male patients. pAXL expression positively correlated with fibronectin and pAkt upregulation, suggesting its role in promoting tumor invasion and EMT. Multivariate analysis identified pAXL, fibronectin, and pAkt as significant prognostic indicators, whereas other factors such as age, tumor grade, and tumor size were not statistically significant. Conclusions: This study identified pAXL as a valuable prognostic marker in GC, with higher expression levels associated with better survival outcomes, particularly in male patients. pAXL enhanced the invasive potential of GC cells through fibronectin and pAkt regulation, making it a promising therapeutic target. Further research is needed to explore the potential of pAXL-targeted therapies and better understand their role in cancer progression and treatment response.
Collapse
Affiliation(s)
- Hua Ho
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (H.H.); (C.-Y.H.); (S.-E.C.)
| | - Chiao-Yin Cheng
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan; (C.-Y.C.); (Y.-J.L.)
| | - Chun-Yen Huang
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (H.H.); (C.-Y.H.); (S.-E.C.)
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan; (C.-Y.C.); (Y.-J.L.)
| | - Sheng-En Chu
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (H.H.); (C.-Y.H.); (S.-E.C.)
- Department of Emergency Medicine, National Taiwan University Hospital Yun-Lin Branch, Douliu City 640, Taiwan
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan; (C.-Y.C.); (Y.-J.L.)
| | - Jen-Tang Sun
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (H.H.); (C.-Y.H.); (S.-E.C.)
| | - Yen-Lin Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
8
|
Ma Y, Shih CH, Cheng J, Chen HC, Wang LJ, Tan Y, Chiu YC, Chen YC. High-Throughput Empirical and Virtual Screening to Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614522. [PMID: 39386568 PMCID: PMC11463688 DOI: 10.1101/2024.09.23.614522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Therapy resistance in breast cancer is increasingly attributed to polyploid giant cancer cells (PGCCs), which arise through whole-genome doubling and exhibit heightened resilience to standard treatments. Characterized by enlarged nuclei and increased DNA content, these cells tend to be dormant under therapeutic stress, driving disease relapse. Despite their critical role in resistance, strategies to effectively target PGCCs are limited, largely due to the lack of high-throughput methods for assessing their viability. Traditional assays lack the sensitivity needed to detect PGCC-specific elimination, prompting the development of novel approaches. To address this challenge, we developed a high-throughput single-cell morphological analysis workflow designed to differentiate compounds that selectively inhibit non-PGCCs, PGCCs, or both. Using this method, we screened a library of 2,726 FDA Phase 1-approved drugs, identifying promising anti-PGCC candidates, including proteasome inhibitors, FOXM1, CHK, and macrocyclic lactones. Notably, RNA-Seq analysis of cells treated with the macrocyclic lactone Pyronaridine revealed AXL inhibition as a potential strategy for targeting PGCCs. Although our single-cell morphological analysis pipeline is powerful, empirically testing all existing compounds is impractical and inefficient. To overcome this limitation, we trained a machine learning model to predict anti-PGCC efficacy in silico, integrating chemical fingerprints and compound descriptions from prior publications and databases. The model demonstrated a high correlation with experimental outcomes and predicted efficacious compounds in an expanded library of over 6,000 drugs. Among the top-ranked predictions, we experimentally validated two compounds as potent PGCC inhibitors. These findings underscore the synergistic potential of integrating high-throughput empirical screening with machine learning-based virtual screening to accelerate the discovery of novel therapies, particularly for targeting therapy-resistant PGCCs in breast cancer.
Collapse
Affiliation(s)
- Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Chien-Hung Shih
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Li-Ju Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Yanhao Tan
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Yu-Chiao Chiu
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Apostolo D, D’Onghia D, Nerviani A, Ghirardi GM, Sola D, Perazzi M, Tonello S, Colangelo D, Sainaghi PP, Bellan M. Could Gas6/TAM Axis Provide Valuable Insights into the Pathogenesis of Systemic Sclerosis? Curr Issues Mol Biol 2024; 46:7486-7504. [PMID: 39057085 PMCID: PMC11275301 DOI: 10.3390/cimb46070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury, extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult. However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis, inflammation, cancer development, and autoimmune disorders. In the present manuscript, we review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system in several human diseases, suggesting its likely contribution in SSc and highlighting areas where further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed, understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide valuable insights for novel potential therapeutic targets.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Daniele Sola
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- IRCCS Istituto Auxologico Italiano, UO General Medicine, 28824 Oggebbio, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
10
|
Chen Y, Liu X, Ainiwan Y, Li M, Pan J, Chen Y, Xiao Z, Wang Z, Xiao X, Tang J, Zeng G, Liang J, Su X, Kungulli R, Fan Y, Lin Q, Liya A, Zheng Y, Chen Z, Xu C, Zhang H, Chen G. Axl as a potential therapeutic target for adamantinomatous craniopharyngiomas: Based on single nucleus RNA-seq and spatial transcriptome profiling. Cancer Lett 2024; 592:216905. [PMID: 38677641 DOI: 10.1016/j.canlet.2024.216905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Craniopharyngiomas (CPs), particularly Adamantinomatous Craniopharyngiomas (ACPs), often exhibit a heightened risk of postoperative recurrence and severe complications of the endocrine and hypothalamic function. The primary objective of this study is to investigate potential novel targeted therapies within the microenvironment of ACP tumors. Cancer-Associated Fibroblasts (CAFs) were identified in the craniopharyngioma microenvironment, notably in regions characterized by cholesterol clefts, wet keratin, ghost cells, and fibrous stroma in ACPs. CAFs, alongside ghost cells, basaloid-like epithelium cells and calcifications, were found to secrete PROS1 and GAS6, which can activate AXL receptors on the surface of tumor epithelium cells, promoting immune suppression and tumor progression in ACPs. Additionally, the AXL inhibitor Bemcentinib effectively inhibited the proliferation organoids and enhanced the immunotherapeutic efficacy of Atezolizumab. Furthermore, neural crest-like cells were observed in the glial reactive tissue surrounding finger-like protrusions. Overall, our results revealed that the AXL might be a potentially effective therapeutic target for ACPs.
Collapse
Affiliation(s)
- Yiguang Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xiaohai Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yilamujiang Ainiwan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Mingchu Li
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, 10005, Sweden
| | - Zebin Xiao
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ziyu Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Gao Zeng
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jiantao Liang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xin Su
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Roberta Kungulli
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuxiang Fan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - A Liya
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Yifeng Zheng
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Canli Xu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Ge Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
11
|
Sola D, Bellan M, Mai S, Minisini R, Perazzi M, Brunani A, Gentilli S, Sainaghi PP, Scacchi M, Marzullo P. Elevated Plasma Levels of Growth Arrest Specific 6 (Gas6) Protein in Severe Obesity: Implications for Adipose Tissue and Inflammation. Med Sci Monit 2024; 30:e944462. [PMID: 38932442 PMCID: PMC11305102 DOI: 10.12659/msm.944462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Preliminary data suggest an adipogenic role for growth arrest-specific 6 (Gas6), a pleiotropic molecule involved in inflammation, proliferation, and hemostasis through its Tyro3, Axl, and MerTK (TAM) receptors. This study compares Gas6 expression in plasma and visceral and subcutaneous adipose tissue in 42 adults with obesity (body mass index ≥40 kg/m²) and 32 normal-weight controls to elucidate its role in obesity and related metabolic alterations. MATERIAL AND METHODS Using a case-control design, we measured Gas6 levels in plasma via a validated sandwich enzyme-linked immunosorbent assay and in adipose tissues through quantitative polymerase chain reactio with specific probes. Medians and correlations were analyzed using Mann-Whitney and Spearman tests. A general linear model assessed the impact of covariates on the Gas6-anthropometric relationship, with statistical significance determined by P values. RESULTS Plasma Gas6 levels were significantly higher in the obese group than in controls (P=0.0006). While Gas6 mRNA expression did not significantly differ in subcutaneous adipose tissue between groups, it was notably higher in visceral than subcutaneous adipose tissue in controls (P<0.05). A significant correlation was found between plasma Gas6 levels and body mass index (P=0.001). CONCLUSIONS Gas6 plasma levels are elevated in morbid obesity, particularly in visceral adipose tissue, and are linked to altered glucose tolerance in female patients. These findings highlight the role of Gas6 in obesity-related metabolic complications and suggest avenues for further research and potential therapies.
Collapse
Affiliation(s)
- Daniele Sola
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Stefania Mai
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, Oggebbio, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Mattia Perazzi
- Department of Internal Medicine, University of Eastern Piedmont, Novara, Italy
| | - Amelia Brunani
- Laboratory of Metabolic Research, IRCCS Istituto Auxologico Italiano, Oggebbio, Italy
| | - Sergio Gentilli
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Massimo Scacchi
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
12
|
Fuentes-Rodriguez A, Mitchell A, Guérin SL, Landreville S. Recent Advances in Molecular and Genetic Research on Uveal Melanoma. Cells 2024; 13:1023. [PMID: 38920653 PMCID: PMC11201764 DOI: 10.3390/cells13121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Sylvain L. Guérin
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| |
Collapse
|
13
|
Jin F, Lin Y, Yuan W, Wu S, Yang M, Ding S, Liu J, Chen Y. Recent advances in c-Met-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2024; 272:116477. [PMID: 38733884 DOI: 10.1016/j.ejmech.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The cellular-mesenchymal epithelial transition factor (c-Met) is a receptor tyrosine kinase (RTK) located on the 7q31 locus encoding the Met proto-oncogene and plays a critical role in regulating cell proliferation, metastasis, differentiation, and apoptosis through various signaling pathways. However, its aberrant activation and overexpression have been implicated in many human cancers. Therefore, c-Met is a promising target for cancer treatment. However, the anticancer effect of selective single-targeted drugs is limited due to the complexity of the signaling system and the involvement of different proteins and enzymes. After inhibiting one pathway, signal molecules can be transmitted through other pathways, resulting in poor efficacy of single-targeted drug therapy. Dual inhibitors that simultaneously block c-Met and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, We introduced c-Met kinase and the synergism between c-Met and other anti-tumor targets, then dual-target inhibitors based on c-Met for the treatment of cancers were summarized and their design concepts and structure-activity relationships (SARs) were discussed elaborately, providing a valuable insight for the further development of novel c-Met-based dual inhibitors.
Collapse
Affiliation(s)
- Fanqi Jin
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Yihan Lin
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Weidong Yuan
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Shuang Wu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Min Yang
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China
| | - Shi Ding
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China
| | - Ju Liu
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China.
| | - Ye Chen
- College of Pharmacy of Liaoning University, Shenyang, Liaoning, 110036, PR China; API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China; Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning, 110036, PR China.
| |
Collapse
|
14
|
Liu Z, Chen L, Zhang J, Yang J, Xiao X, Shan L, Mao W. Recent discovery and development of AXL inhibitors as antitumor agents. Eur J Med Chem 2024; 272:116475. [PMID: 38714043 DOI: 10.1016/j.ejmech.2024.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
AXL, a receptor tyrosine kinase (RTK), plays a pivotal role in various cellular functions. It is primarily involved in processes such as epithelial-mesenchymal transition (EMT) in tumor cells, angiogenesis, apoptosis, immune regulation, and chemotherapy resistance mechanisms. Therefore, targeting AXL is a promising therapeutic approach for the treatment of cancer. AXL inhibitors that have entered clinical trials, such as BGB324(1), have shown promising efficacy in the treatment of melanoma and non-small cell lung cancer. Additionally, novel AXL-targeted drugs, such as AXL degraders, offer a potential solution to overcome the limitations of traditional small-molecule AXL inhibitors targeting single pathways. We provide an overview of the structure and biological functions of AXL, discusses its correlation with various cancers, and critically analyzes the structure-activity relationship of AXL small-molecule inhibitors in cellular contexts. Additionally, we summarize multiple research and development strategies, offering insights for the future development of innovative AXL inhibitors.
Collapse
Affiliation(s)
- Zihang Liu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Li Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jun Yang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xue Xiao
- Department of Obstetrics & Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Danielli SG, Wurth J, Morice S, Kisele S, Surdez D, Delattre O, Bode PK, Wachtel M, Schäfer BW. Evaluation of the Role of AXL in Fusion-positive Pediatric Rhabdomyosarcoma Identifies the Small-molecule Inhibitor Bemcentinib (BGB324) as Potent Chemosensitizer. Mol Cancer Ther 2024; 23:864-876. [PMID: 38471796 PMCID: PMC11148551 DOI: 10.1158/1535-7163.mct-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/16/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Rhabdomyosarcoma (RMS) is a highly aggressive pediatric cancer with features of skeletal muscle differentiation. More than 80% of the high-risk patients ultimately fail to respond to chemotherapy treatment, leading to limited therapeutic options and dismal prognostic rates. The lack of response and subsequent tumor recurrence is driven in part by stem cell-like cells, the tumor subpopulation that is enriched after treatment, and characterized by expression of the AXL receptor tyrosine kinase (AXL). AXL mediates survival, migration, and therapy resistance in several cancer types; however, its function in RMS remains unclear. In this study, we investigated the role of AXL in RMS tumorigenesis, migration, and chemotherapy response, and whether targeting of AXL with small-molecule inhibitors could potentiate the efficacy of chemotherapy. We show that AXL is expressed in a heterogeneous manner in patient-derived xenografts (PDX), primary cultures and cell line models of RMS, consistent with its stem cell-state selectivity. By generating a CRISPR/Cas9 AXL knock-out and overexpressing models, we show that AXL contributes to the migratory phenotype of RMS, but not to chemotherapy resistance. Instead, pharmacologic blockade with the AXL inhibitors bemcentinib (BGB324), cabozantinib and NPS-1034 rapidly killed RMS cells in an AXL-independent manner and augmented the efficacy of the chemotherapeutics vincristine and cyclophosphamide. In vivo administration of the combination of bemcentinib and vincristine exerted strong antitumoral activity in a rapidly progressing PDX mouse model, significantly reducing tumor burden compared with single-agent treatment. Collectively, our data identify bemcentinib as a promising drug to improve chemotherapy efficacy in patients with RMS.
Collapse
Affiliation(s)
- Sara G. Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Jakob Wurth
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Sarah Morice
- Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Peter K. Bode
- Department of Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Beat W. Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Wu H, Jiang W, Pang P, Si W, Kong X, Zhang X, Xiong Y, Wang C, Zhang F, Song J, Yang Y, Zeng L, Liu K, Jia Y, Wang Z, Ju J, Diao H, Bian Y, Yang B. m 6A reader YTHDF1 promotes cardiac fibrosis by enhancing AXL translation. Front Med 2024; 18:499-515. [PMID: 38806989 DOI: 10.1007/s11684-023-1052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024]
Abstract
Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-β (TGF-β)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-β-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Han Wu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weitao Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ping Pang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Si
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Kong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chunlei Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jinglun Song
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Linghua Zeng
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Kuiwu Liu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingqiong Jia
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hongtao Diao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
17
|
Knisely A, Hinchcliff EM, Gardiner E, Rangwala R, Lito K, Fellman B, Yuan Y, Sood AK, Westin SN, Lu KH, Jazaeri AA. Phase 1b study of batiraxcept in combination with durvalumab in patients with platinum-resistant ovarian cancer. iScience 2024; 27:109801. [PMID: 38726365 PMCID: PMC11079458 DOI: 10.1016/j.isci.2024.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Combining an immune checkpoint inhibitor with batiraxcept (AVB-S6-500), an AXL inhibitor that acts via selective binding to growth arrest-specific protein 6 (GAS6), may improve anti-tumor immunity in platinum-resistant ovarian cancer (PROC). This phase 1b trial of durvalumab in combination with escalating doses of batiraxcept enrolled patients with recurrent PROC (NCT04019288). The primary objective was to determine the toxicity profile of the combination. Eleven patients were enrolled on the trial. No dose-limiting toxicities were observed, and no objective responses were noted. Median progression free survival (PFS) was 1.81 months (95% confidence interval (CI) 1.71-2.40), and median overall survival (OS) was 4.53 months (95% CI 2.10-24.74). Batiraxcept effectively reduced serum GAS6 levels at 1-h post-treatment, resulting in trough levels below the limit of detection in all cases but one. In conclusion, the combination of batiraxcept and durvalumab was safe and tolerable but did not demonstrate anti-tumor activity in a heterogenous population of patients with recurrent PROC.
Collapse
Affiliation(s)
- Anne Knisely
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily M. Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Kathryn Lito
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N. Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen H. Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir A. Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Moon DO. Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management. Int J Mol Sci 2024; 25:2911. [PMID: 38474160 DOI: 10.3390/ijms25052911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This paper delves into the diverse and significant roles of curcumin, a polyphenolic compound from the Curcuma longa plant, in the context of cancer and inflammatory diseases. Distinguished by its unique molecular structure, curcumin exhibits potent biological activities including anti-inflammatory, antioxidant, and potential anticancer effects. The research comprehensively investigates curcumin's molecular interactions with key proteins involved in cancer progression and the inflammatory response, primarily through molecular docking studies. In cancer, curcumin's effectiveness is determined by examining its interaction with pivotal proteins like CDK2, CK2α, GSK3β, DYRK2, and EGFR, among others. These interactions suggest curcumin's potential role in impeding cancer cell proliferation and survival. Additionally, the paper highlights curcumin's impact on inflammation by examining its influence on proteins such as COX-2, CRP, PDE4, and MD-2, which are central to the inflammatory pathway. In vitro and clinical studies are extensively reviewed, shedding light on curcumin's binding mechanisms, pharmacological impacts, and therapeutic application in various cancers and inflammatory conditions. These studies are pivotal in understanding curcumin's functionality and its potential as a therapeutic agent. Conclusively, this review emphasizes the therapeutic promise of curcumin in treating a wide range of health issues, attributed to its complex chemistry and broad pharmacological properties. The research points towards curcumin's growing importance as a multi-faceted natural compound in the medical and scientific community.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
19
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
20
|
Lan Y, Peng X, Ji Y, Su Y, Duan W, Ai J, Zhang H. Discovery of a 1,6-naphthyridin-4-one-based AXL inhibitor with improved pharmacokinetics and enhanced in vivo antitumor efficacy. Eur J Med Chem 2024; 265:116045. [PMID: 38128234 DOI: 10.1016/j.ejmech.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The receptor tyrosine kinase AXL has emerged as an attractive target in anticancer drug discovery. Herein, we described the discovery of a new series of 1,6-naphthyridin-4-one derivatives as potent AXL inhibitors. Starting from a low in vivo potency compound 9 which was previously reported by our group, we utilized structure-based drug design and scaffold hopping strategies to discover potent AXL inhibitors. The privileged compound 13c was a highly potent and orally bioavailable AXL inhibitor with an IC50 value of 3.2 ± 0.3 nM. Compound 13c exhibited significantly improved in vivo antitumor efficacy in AXL-driven tumor xenograft mice, causing tumor regression at well-tolerated dose, and demonstrated favorable pharmacokinetic properties (MRT = 16.5 h, AUC0-∞ = 59,815 ng h/mL) in Sprague-Dawley rats. These results suggest that 13c is a promising therapeutic candidate for AXL-targeting cancer treatment.
Collapse
Affiliation(s)
- Yaohan Lan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yi Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Jing Ai
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Hefeng Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| |
Collapse
|
21
|
Song D, Yang F, Sun Y, Wu X, Zhou Q, Bi W, Sun J, Li S, Yu Y. Single-cell RNA sequencing reveals the heterogeneity of epithelial cell and fibroblast cells from non- to metastatic lymph node OTSCC. FASEB J 2024; 38:e23390. [PMID: 38169064 DOI: 10.1096/fj.202301724r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Lymph node metastasis (LNM) is one of the common features of oral tongue squamous cell carcinoma (OTSCC). LNM is also taken as a sign of advanced OTSCC and poor survival rate. Recently, single-cell RNA sequencing has been applied in investigating the heterogeneity of tumor microenvironment and discovering the potential biomarkers for helping the diagnosis and prognosticating. Pathogenesis of LNM in OTSCC remains unknown. Specifically, cancer-associated fibroblasts (CAFs) and epithelial tumor cells could foster the progression of tumors. Thus, in this study, we aimed to comprehensively analyze the roles of subpopulations of CAFs and epithelial tumor cells in lymph node metastatic OTSCC using the integration of OTSCC single-cell RNA sequencing datasets. Four distinct subtypes of CAFs, namely vascular CAFs, myofibroblast CAFs, inflammatory CAFs, and growth arrest CAFs were successfully discovered in LNM tumor and confirmed the roles of GAS and PTN pathways in the progression of tumor metastasis. In addition, NKAIN2+ epithelial cells and FN1+ epithelial cells specifically exhibited an upregulation of PTN, NRG, MIF, and SPP1 signaling pathways in the metastatic OTSCC. In doing so, we put forth some potential biomarkers that could be utilized for the purpose of diagnosing and prognosticating OTSCC during its metastatic phase and tried to confirm by immunofluorescence assays.
Collapse
Affiliation(s)
- Dandan Song
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingwen Wu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Bi
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Moufarrij S, O’Cearbhaill RE. Novel Therapeutics in Ovarian Cancer: Expanding the Toolbox. Curr Oncol 2023; 31:97-114. [PMID: 38248092 PMCID: PMC10814452 DOI: 10.3390/curroncol31010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Despite high response rates to initial therapy, most patients with ovarian cancer will ultimately recur and go on to develop resistance to standard treatments. Novel therapies have been developed to overcome drug resistance and alter the tumor immune microenvironment by targeting oncogenic pathways, activating the innate immune response, and enhancing drug delivery. In this review, we discuss the current and future roles of chemotherapy, targeted agents such as poly (ADP-ribose) polymerase (PARP) inhibitors, bevacizumab, and mirvetuximab in the treatment of ovarian cancer. We explore the emerging role of therapeutic targets, including DNA repair pathway inhibitors and novel antibody-drug conjugates. Furthermore, we delve into the role of immunotherapeutic agents such as interleukins as well as immune-promoting agents such as oncolytic viruses and cancer vaccines. Innovative combination therapies using these agents have led to a rapidly evolving treatment landscape and promising results for patients with recurrent ovarian cancer.
Collapse
Affiliation(s)
- Sara Moufarrij
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Roisin E. O’Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
23
|
Ouyang Y, Yu M, Liu T, Suo M, Qiao J, Wang L, Li N. An Activated Dendritic-Cell-Related Gene Signature Indicative of Disease Prognosis and Chemotherapy and Immunotherapy Response in Colon Cancer Patients. Int J Mol Sci 2023; 24:15959. [PMID: 37958942 PMCID: PMC10647347 DOI: 10.3390/ijms242115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Accumulating evidence has underscored the prognostic value of tumor-infiltrating immune cells in the tumor microenvironment of colon cancer (CC). In this retrospective study, based on publicly available transcriptome profiles and clinical data from the Gene Expression Omnibus and The Cancer Genome Atlas databases, we derived and verified an activated dendritic cell (aDC)-related gene signature (aDCRS) for predicting the survival outcomes and chemotherapy and immunotherapy response of CC patients. We quantified the infiltration abundance of 22 immune cell subtypes via the "CIBERSORT" R script. Univariate Cox proportional hazards (PHs) regression was used to identify aDC as the most robust protective cell type for CC prognosis. After selecting differentially expressed genes (DEGs) significantly correlated with aDC infiltration, we performed univariate Cox-PH regression, LASSO regression, and stepwise multivariate Cox-PH regression successively to screen out prognosis-related genes from selected DEGs for constructing the aDCRS. Receiver operating characteristic (ROC) curves and Kaplan-Meier (KM) analysis were employed to assess the discriminatory ability and risk-stratification capacity. The "oncoPredict" package, Cancer Treatment Response gene signature DataBase, and Tumor Immune Dysfunction and Exclusion algorithm were utilized to estimate the practicability of the aDCRS in predicting response to chemotherapy and immune checkpoint blockade. Gene set enrichment analysis and single-cell RNA sequencing analysis were also implemented. Furthermore, an aDCRS-based nomogram was constructed and validated via ROC curves, calibration plots and decision curve analysis. In conclusion, aDCRS and an aDCRS-based nomogram will facilitate precise prognosis prediction and individualized therapeutic interventions, thus improving the survival outcomes of CC patients in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Liqiang Wang
- School of Medicine, Nankai University, Tianjin 300071, China; (Y.O.); (M.Y.); (T.L.); (M.S.); (J.Q.)
| | - Na Li
- School of Medicine, Nankai University, Tianjin 300071, China; (Y.O.); (M.Y.); (T.L.); (M.S.); (J.Q.)
| |
Collapse
|
24
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
25
|
Nitulescu GM, Stancov G, Seremet OC, Nitulescu G, Mihai DP, Duta-Bratu CG, Barbuceanu SF, Olaru OT. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023; 28:5359. [PMID: 37513232 PMCID: PMC10385367 DOI: 10.3390/molecules28145359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The altered activation or overexpression of protein kinases (PKs) is a major subject of research in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best available option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal chemistry and drug development strategies, playing a vital role as a fundamental framework in the structure of various PKIs. This scaffold holds major importance and is considered a privileged structure based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement function. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK, B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring within the clinically tested PKI and on the additional required elements of their chemical structures. Related important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine, pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.
Collapse
Affiliation(s)
| | | | | | - Georgiana Nitulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (G.M.N.)
| | | | | | | | | |
Collapse
|
26
|
Pidkovka N, Belkhiri A. Altered expression of AXL receptor tyrosine kinase in gastrointestinal cancers: a promising therapeutic target. Front Oncol 2023; 13:1079041. [PMID: 37469409 PMCID: PMC10353021 DOI: 10.3389/fonc.2023.1079041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Gastrointestinal (GI) cancers that include all cancers of the digestive tract organs are generally associated with obesity, lack of exercising, smoking, poor diet, and heavy alcohol consumption. Treatment of GI cancers typically involves surgery followed by chemotherapy and/or radiation. Unfortunately, intrinsic or acquired resistance to these therapies underscore the need for more effective targeted therapies that have been proven in other malignancies. The aggressive features of GI cancers share distinct signaling pathways that are connected to each other by the overexpression and activation of AXL receptor tyrosine kinase. Several preclinical and clinical studies involving anti-AXL antibodies and small molecule AXL kinase inhibitors to test their efficacy in solid tumors, including GI cancers, have been recently carried out. Therefore, AXL may be a promising therapeutic target for overcoming the shortcomings of standard therapies in GI cancers.
Collapse
Affiliation(s)
- Nataliya Pidkovka
- Department of Health Science, South College, Nashville, TN, United States
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
27
|
Mikuteit M, Zschäbitz S, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Duensing S, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos F, Walter B, Otto W, Burger M, Erlmeier M, Schrader AJ, Hartmann A, Erlmeier F, Steffens S. Evaluation of Gas 6 as a Prognostic Marker in Papillary Renal Cell Carcinoma. Urol Int 2023; 107:713-722. [PMID: 37348477 PMCID: PMC10413799 DOI: 10.1159/000529898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/06/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Growth arrest-specific protein 6 (Gas 6) is a ligand that plays a role in proliferation and migration of cells. For several tumor entities, high levels of Gas 6 are associated with poorer survival. We examined the prognostic role of Gas 6 in renal cell carcinoma (RCC), especially in papillary RCC (pRCC), which is still unclear. METHODS The patients' sample collection is a joint collaboration of the PANZAR consortium. Patients' medical history and tumor specimens were collected from n = 240 and n = 128 patients with type 1 and 2 pRCC, respectively. Expression of Gas 6 was determined by immunohistochemistry. RESULTS In total, Gas 6 staining was evaluable in 180 of 240 type 1 and 110 of 128 type 2 pRCC cases. Kaplan-Meier analysis disclosed no significant difference in 5-year overall survival for all pRCC nor either subtype. Also, Gas+ and Gas- groups did not significantly differ in any tumor or patient characteristics. CONCLUSION Gas 6 was not found to be an independent prognostic marker in pRCC. Future studies are warranted to determine if Gas 6 plays a role as prognostic marker or therapeutic target in pRCC.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Hospital Göttingen, Göttingen, Germany
| | - Frank Becker
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
| | - Christian Wülfing
- Institute of Pathology, University Hospital Göttingen, Göttingen, Germany
| | - Peter Barth
- Department of Urology, University of Marburg, Marburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
| | - Michael Staehler
- Department of Urology, University Hospital Munich, Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital Munich, Munich, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Mainz, Mainz, Germany
| | | | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Walburgis Brenner
- Clinic for Obstretics and Woman's Health and Department of Urology, University Medical Center, Mainz, Germany
- Department of Urology, University of Mainz, Mainz, Germany
| | - Frederik Roos
- Department of Urology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Bernhard Walter
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, University of Regensburg, Regensburg, Germany
| | | | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
| | - German Network of Kidney Cancer
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
- Department of Urology, University Hospital Muenster, Muenster, Germany
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
- Department of Pathology, University Hospital Göttingen, Göttingen, Germany
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
- Institute of Pathology, University Hospital Göttingen, Göttingen, Germany
- Department of Urology, University of Marburg, Marburg, Germany
- Department of Urology, University Hospital Munich, Munich, Germany
- Department of Urology, University Hospital Mainz, Mainz, Germany
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Hospital Mainz, Mainz, Germany
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
- Clinic for Obstretics and Woman's Health and Department of Urology, University Medical Center, Mainz, Germany
- Department of Urology, University of Mainz, Mainz, Germany
- Department of Urology, University Hospital Frankfurt, Frankfurt/Main, Germany
- Department of Urology, University of Regensburg, Regensburg, Germany
- Department of Urology, München Klinik Bogenhausen, Munich, Germany
| |
Collapse
|
28
|
Tang Y, Zang H, Wen Q, Fan S. AXL in cancer: a modulator of drug resistance and therapeutic target. J Exp Clin Cancer Res 2023; 42:148. [PMID: 37328828 DOI: 10.1186/s13046-023-02726-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
AXL is a member of the TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases family (RTKs), and its abnormal expression has been linked to clinicopathological features and poor prognosis of cancer patients. There is mounting evidence supporting AXL's role in the occurrence and progression of cancer, as well as drug resistance and treatment tolerance. Recent studies revealed that reducing AXL expression can weaken cancer cells' drug resistance, indicating that AXL may be a promising target for anti-cancer drug treatment. This review aims to summarize the AXL's structure, the mechanisms regulating and activating it, and its expression pattern, especially in drug-resistant cancers. Additionally, we will discuss the diverse functions of AXL in mediating cancer drug resistance and the potential of AXL inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
29
|
Riillo C, Polerà N, Di Martino MT, Juli G, Hokanson CA, Odineca T, Signorelli S, Grillone K, Ascrizzi S, Mancuso A, Staropoli N, Caparello B, Cerra M, Nisticò G, Tagliaferri P, Crea R, Caracciolo D, Tassone P. A Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) for ovarian cancer. J Transl Med 2023; 21:301. [PMID: 37143061 PMCID: PMC10161629 DOI: 10.1186/s12967-023-04101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Pronectins™ are a new class of fibronectin-3-domain 14th-derived (14Fn3) antibody mimics that can be engineered as bispecific T cell engager (BTCE) to redirect immune effector cells against cancer. We describe here the in vitro and in vivo activity of a Pronectin™ AXL-targeted first-in-class bispecific T cell engager (pAXLxCD3ε) against Epithelial Ovarian Cancer (EOC). METHODS pAXLxCD3ε T-cell mediated cytotoxicity was evaluated by flow cytometry and bioluminescence. pAXLxCD3ε mediated T-cell infiltration, activation and proliferation were assessed by immunofluorescence microscopy and by flow cytometry. Activity of pAXLxCD3ε was also investigated in combination with poly-ADP ribose polymerase inhibitors (PARPi). In vivo antitumor activity of pAXLxCD3ε was evaluated in immunocompromised (NSG) mice bearing intraperitoneal or subcutaneous EOC xenografts and immunologically reconstituted with human peripheral blood mononuclear cells (PBMC). RESULTS pAXLxCD3ε induced dose-dependent cytotoxicity by activation of T lymphocytes against EOC cells, regardless of their histologic origin. The addition of PARPi to cell cultures enhanced pAXLxCD3ε cytotoxicity. Importantly, in vivo, pAXLxCD3ε was highly effective against EOC xenografts in two different NSG mouse models, by inhibiting the growth of tumor cells in ascites and subcutaneous xenografts. This effect translated into a significantly prolonged survival of treated animals. CONCLUSION pAXLxCD3ε is an active therapeutics against EOC cells providing a rational for its development as a novel agent in this still incurable disease. The preclinical validation of a first-in-class agent opens the way to the development of a new 14Fn3-based scaffold platform for the generation of innovative immune therapeutics against cancer.
Collapse
Affiliation(s)
- Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Stefania Signorelli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Maria Cerra
- Giovanni Paolo II General Hospital, Lamezia Terme, Italy
| | | | | | - Roberto Crea
- Protelica, Inc, Hayward, CA, USA.
- Renato Dulbecco Institute, Lamezia Terme, Italy.
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- S.H.R.O., College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Xing P, Zhong Y, Cui X, Liu Z, Wu X. Natural products in digestive tract tumors metabolism: Functional and application prospects. Pharmacol Res 2023; 191:106766. [PMID: 37061144 DOI: 10.1016/j.phrs.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Digestive tract diseases are presently the hotspot of clinical diagnosis and treatment, and the incidence of digestive tract tumor is increasing annually. Surgery remains the main therapeutic schedule for digestive tract tumor. Though benefits were brought by neoadjuvant chemotherapy, a part of patients lose the chance of surgery because of late detection or inappropriate intervention. Therefore, the treatment of inoperable patients has become an urgent need. At the same time, tumor metabolism is an extremely complex and diverse process. Natural products are confirmed effective to inhibit the development of tumors in vitro and in vitro. There are many kinds of natural products and their functions remain not clear. However, some natural products such as polyphenols have been proven to have definite anti-cancer effects, and some terpenoids have definite anti-inflammatory, anti-ulcer, anti-tumor, and other effects. Therefore, the anti-tumor characteristics of natural products should arouse our high attention. Although there are many obstacles to study the activities of natural products in tumor, including the difficulty in detection or distinguishing each component due to their low levels in tumor tissue, etc., the emergence of highly sensitive and locatable spatial metabolomics make the research and application of natural products a big step forward. In this review, natural products such as phenols, terpenoids and biotinoids were summarized to further discuss the development and therapeutic properties of natural metabolites on digestive tract tumors.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yifan Zhong
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Xingda Wu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
31
|
Huang YC, Hsieh PY, Wang LY, Tsai TH, Chen YJ, Hsieh CH. Local Liver Irradiation Concurrently Versus Sequentially with Cabozantinib on the Pharmacokinetics and Biodistribution in Rats. Int J Mol Sci 2023; 24:ijms24065849. [PMID: 36982920 PMCID: PMC10056485 DOI: 10.3390/ijms24065849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The aim of this study was to evaluate the radiotherapy (RT)-pharmacokinetics (PK) effect of cabozantinib in concurrent or sequential regimens with external beam radiotherapy (EBRT) or stereotactic body radiation therapy (SBRT). Concurrent and sequential regimens involving RT and cabozantinib were designed. The RT–drug interactions of cabozantinib under RT were confirmed in a free-moving rat model. The drugs were separated on an Agilent ZORBAX SB-phenyl column with a mobile phase consisting of 10 mM potassium dihydrogen phosphate (KH2PO4)–methanol solution (27:73, v/v) for cabozantinib. There were no statistically significant differences in the concentration versus time curve of cabozantinib (AUCcabozantinib) between the control group and the RT2Gy×3 f’x and RT9Gy×3 f’x groups in the concurrent and the sequential regimens. However, compared to those in the control group, the Tmax, T1/2 and MRT decreased by 72.8% (p = 0.04), 49.0% (p = 0.04) and 48.5% (p = 0.04) with RT2Gy×3 f’x in the concurrent regimen, respectively. Additionally, the T1/2 and MRT decreased by 58.8% (p = 0.01) and 57.8% (p = 0.01) in the concurrent RT9Gy×3 f’x group when compared with the control group, respectively. The biodistribution of cabozantinib in the heart increased by 271.4% (p = 0.04) and 120.0% (p = 0.04) with RT2Gy×3 f’x in the concurrent and sequential regimens compared to the concurrent regimen, respectively. Additionally, the biodistribution of cabozantinib in the heart increased by 107.1% (p = 0.01) with the RT9Gy×3 f’x sequential regimen. Compared to the RT9Gy×3 f’x concurrent regimen, the RT9Gy×3 f’x sequential regimen increased the biodistribution of cabozantinib in the heart (81.3%, p = 0.02), liver (110.5%, p = 0.02), lung (125%, p = 0.004) and kidneys (87.5%, p = 0.048). No cabozantinib was detected in the brain in any of the groups. The AUC of cabozantinib is not modulated by irradiation and is not affected by treatment strategies. However, the biodistribution of cabozantinib in the heart is modulated by off-target irradiation and SBRT doses simultaneously. The impact of the biodistribution of cabozantinib with RT9Gy×3 f’x is more significant with the sequential regimen than with the concurrent regimen.
Collapse
Affiliation(s)
- Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan (Y.-J.C.)
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Pei-Ying Hsieh
- Department of Oncology and Hematology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Physical Therapy Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Yu-Jen Chen
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan (Y.-J.C.)
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Artificial Intelligence and Medical Application, MacKay Junior College of Medicine, Nursing, and Management, Taipei 112, Taiwan
| | - Chen-Hsi Hsieh
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Correspondence:
| |
Collapse
|
32
|
Zhan Z, Ji Y, Su H, Fang C, Peng X, Liu Q, Dai Y, Lin D, Xu Y, Ai J, Duan W. Discovery of 10 H-Benzo[ b]pyrido[2,3- e][1,4]oxazine AXL Inhibitors via Structure-Based Drug Design Targeting c-Met Kinase. J Med Chem 2023; 66:220-234. [PMID: 36524812 DOI: 10.1021/acs.jmedchem.2c00962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Receptor tyrosine kinase AXL exerts pivotal roles in cancer cell survival, metastasis, and drug resistance. Pharmacologic or genetic targeting of the aberrant AXL signaling has proven preferable antitumor efficacies in both preclinical and clinical studies, which highlights AXL as an attractive antitumor drug target. By conformational restriction of the anilinopyrimidine 10e and systematic structure-activity relationship (SAR) exploration, we discovered 10H-benzo[b]pyrido[2,3-e][1,4]oxazine 16j as a potent and orally bioavailable AXL inhibitor. As a type II AXL inhibitor, compound 16j displayed about 15-fold selectivity for AXL over its highly homologous kinase c-Met. And it significantly blocked cellular AXL signaling, inhibited AXL-mediated cell proliferation, and impaired growth arrest-specific protein 6 (Gas6)/AXL-stimulated cell migration and invasion. Moreover, 16j exhibited significant antitumor efficacy in AXL-driven xenograft model at a well-tolerant dosage, causing tumor stasis or regression.
Collapse
Affiliation(s)
- Zhengsheng Zhan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Haixia Su
- CAS Key Laboratory of Receptor Research and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Chen Fang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P. R. China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiufeng Liu
- CAS Key Laboratory of Receptor Research and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yang Dai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Dongze Lin
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study (UCAS), Hangzhou 310024, P. R. China
| | - Wenhu Duan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
33
|
Pyo KH, Rahman SMM, Boraschi D. Editorial: Development of small molecule inhibitors and antibodies targeting AXL for tumor therapy and infectious disease control. Front Oncol 2023; 12:1121120. [PMID: 36703780 PMCID: PMC9872103 DOI: 10.3389/fonc.2022.1121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea,Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Kyoung-Ho Pyo,
| | - S. M. Mazidur Rahman
- International Centre for Diarrhoeal Disease Research (iccdr,b), Dhaka, Bangladesh
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China,Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy,Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy,China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| |
Collapse
|
34
|
Chen W, Van Beusecum JP, Xiao L, Patrick DM, Ao M, Zhao S, Lopez MG, Billings FT, Cavinato C, Caulk AW, Humphrey JD, Harrison DG. Role of Axl in target organ inflammation and damage due to hypertensive aortic remodeling. Am J Physiol Heart Circ Physiol 2022; 323:H917-H933. [PMID: 36083796 PMCID: PMC9602715 DOI: 10.1152/ajpheart.00253.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
We have shown that excessive endothelial cell stretch causes release of growth arrest-specific 6 (GAS6), which activates the tyrosine kinase receptor Axl on monocytes and promotes immune activation and inflammation. We hypothesized that GAS6/Axl blockade would reduce renal and vascular inflammation and lessen renal dysfunction in the setting of chronic aortic remodeling. We characterized a model of aortic remodeling in mice following a 2-wk infusion of angiotensin II (ANG II). These mice had chronically increased pulse wave velocity, and their aortas demonstrated increased mural collagen. Mechanical testing revealed a marked loss of Windkessel function that persisted for 6 mo following ANG II infusion. Renal function studies showed a reduced ability to excrete a volume load, a progressive increase in albuminuria, and tubular damage as estimated by periodic acid Schiff staining. Treatment with the Axl inhibitor R428 beginning 2 mo after ANG II infusion had a minimal effect on aortic remodeling 2 mo later but reduced the infiltration of T cells, γ/δ T cells, and macrophages into the aorta and kidney and improved renal excretory capacity, reduced albuminuria, and reduced evidence of renal tubular damage. In humans, circulating Axl+/Siglec6+ dendritic cells and phospho-Axl+ cells correlated with pulse wave velocity and aortic compliance measured by transesophageal echo, confirming chronic activation of the GAS6/Axl pathway. We conclude that brief episodes of hypertension induce chronic aortic remodeling, which is associated with persistent low-grade inflammation of the aorta and kidneys and evidence of renal dysfunction. These events are mediated at least in part by GAS6/Axl signaling and are improved with Axl blockade.NEW & NOTEWORTHY In this study, a brief, 2-wk period of hypertension in mice led to progressive aortic remodeling, an increase in pulse wave velocity, and evidence of renal injury, dysfunction, and albuminuria. This end-organ damage was associated with persistent renal and aortic infiltration of CD8+ and γ/δ T cells. We show that this inflammatory response is likely due to GAS6/Axl signaling and can be ameliorated by blocking this pathway. We propose that the altered microvascular mechanical forces caused by increased pulse wave velocity enhance GAS6 release from the endothelium, which in turn activates Axl on myeloid cells, promoting the end-organ damage associated with aortic stiffening.
Collapse
Affiliation(s)
- Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin P Van Beusecum
- Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Liang Xiao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - David M Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Medical Center, Nashville, Tennessee
| | - Mingfang Ao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcos G Lopez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Frederic T Billings
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Alexander W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
35
|
Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non-small cell lung cancer. Nat Commun 2022; 13:6203. [PMID: 36261437 PMCID: PMC9581911 DOI: 10.1038/s41467-022-33968-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
The complex immunosuppressive tumour microenvironment (TME) and lack of tumour-specific targets hinder the application of chimeric antigen receptor (CAR) T cells in the treatment of solid tumours. Combining local treatment with CAR T cell immunotherapy may regulate the TME and enhance the killing potency of CAR T cells in solid tumours. Here, we show that AXL, which is highly expressed in non-small cell lung cancer (NSCLC) but not in normal tissues, might be a target for CAR T cell therapy. AXL-CAR T cells alone cause moderate tumour regression in subcutaneous and pulmonary metastatic lung cancer cell-derived xenograft models. Combination of microwave ablation (MWA) and AXL-CAR T cells have superior antitumour efficacy. MWA enhances the activation, infiltration, persistence and tumour suppressive properties of AXL-CAR T cells in AXL-positive NSCLC patient-derived xenograft tumours via TME remodelling. The combination therapy increases the mitochondrial oxidative metabolism of tumour-infiltrating CAR T cells. Combination treatment induces significant tumour suppression without observed toxicities in humanized immunocompetent mice. The synergistic therapeutic effect of MWA and AXL-CAR T cells may be valuable for NSCLC treatment.
Collapse
|
36
|
SND1 confers chemoresistance to cisplatin-induced apoptosis by targeting GAS6-AKT in SKOV3 ovarian cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:169. [PMID: 35972612 DOI: 10.1007/s12032-022-01763-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 10/15/2022]
Abstract
Platinum-based (especially cisplatin) chemotherapy is the main treatment after surgery for ovarian cancer. Although the initial treatment is effective, chemotherapy resistance develops rapidly. Therefore, chemotherapy resistance has always been a huge obstacle in the treatment of ovarian cancer. Staphylococcal nuclease domain-containing protein 1 (SND1) is an evolutionarily conserved multifunctional protein that plays a role in promoting tumorigenesis under various stress states. In this study, using MTT and SKOV3 ovarian cancer cells deficient in SND1 were observed to be more apoptotic and to express more apoptotic protein after treatment with cisplatin through the MTT, clone formation, and flow cytometry assays, while cells overexpressing SND1 exhibited a decreased number of apoptotic cells and expression of apoptotic proteins. Moreover, SND1 can regulate the expression of Growth arrest-specific 6 (GAS6) and then activate the AKT signaling pathway to achieve the regulation of sensitivity to cisplatin-induced apoptosis in ovarian cancer.
Collapse
|
37
|
Zhou K, Zhao J, Xu H, Yan X, Liu W, Jiang X, Ren C. Function of AXL and molecular mechanisms in regulation of nasopharyngeal carcinoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:685-697. [PMID: 35837768 PMCID: PMC10930019 DOI: 10.11817/j.issn.1672-7347.2022.210786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignant tumor with unique geographical and ethnic distribution characteristics. NPC is mostly found in south China and Southeast Asia, and its treatment mainly depends on radiotherapy and chemotherapy. However, NPC is usually found in the late stage, and local recurrence and distant metastasis are common, leading to poor prognosis. The receptor tyrosine kinase AXL is up-regulated in various tumors and it is involved in tumor proliferation, migration, invasion, and other processes, which are associated with poor prognosis of tumors. This study aims to detect the expression of AXL in NPC cell lines and tissues, and to investigate its biological function of AXL and the underlying molecular mechanisms in regulation of NPC. METHODS The expression levels of AXL in normal nasopharyngeal epithelial tissues and NPC tissues were analyzed by GSE68799, GSE12452, and GSE53819 data sets based on Gene Expression Omnibus (GEO) database. The Cancer Genome Atlas (TCGA) database was used to analyze the relationship between AXL and prognosis of head and neck squamous cell carcinoma (HNSC). The indicators of prognosis included overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI). Western blotting assay was used to detect the AXL protein expression levels in normal nasopharyngeal epithelial cell line and NPC cell lines. Immunohistochemical method was used to detect AXL expression levels in normal nasopharyngeal epithelial tissues and NPC tissues. Cell lines with stable AXL knockdown were established by infecting 5-8F and Fadu cells with lentivirus interference vector, and cell lines with stable AXL overexpression were established by infecting C666-1 and HK-1 cells with lentivirus expression vector. Real-time PCR and Western blotting were used to detect the efficiency of knockdown and overexpression in stable cell lines. The effects of AXL knockdown or overexpression on proliferation, migration, and invasion of NPC cells were detected by CCK-8, plate colony formation, and Transwell assays, and the effect of AXL knockdown on tumor growth in nude mice was detected by subcutaneous tumor formation assay. The sequence of AXL upstream 2.0 kb promoter region was obtained by UCSC online database. The PROMO online database was used to predict AXL transcription factors with 0% fault tolerance, and the JASPAR online database was used to predict the binding sites of ETS1 to AXL. Real-time PCR and Western blotting were used to detect the effect of ETS1 on AXL protein and mRNA expression. The AXL upstream 2.0 kb promoter region was divided into 8 fragments, each of which was 250 bp in length. Primers were designed for 8 fragments. The binding of ETS1 to AXL promoter region was detected by chromatin immuno-precipitation (ChIP) assay to determine the direct regulatory relationship between ETS1 and AXL. Rescue assay was used to determine whether ETS1 affected the proliferation, migration, and invasion of NPC cells through AXL. RESULTS Bioinformatics analysis showed that AXL was highly expressed in NPC tissues (P<0.05), and AXL expression was positively correlated with OS, DFI, DSS, and PFI in HNSC patients. Western blotting and immunohistochemical results showed that AXL was highly expressed in NPC cell lines and tissues compared with the normal nasopharyngeal epithelial cell line and tissues. Real-time PCR and Western blotting results showed that knockdown and overexpression efficiency in the stable cell lines met the requirements of subsequent experiments. The results of CCK-8, plate colony formation, Transwell assays and subcutaneous tumor formation in nude mice showed that down-regulation of AXL significantly inhibited the proliferation, migration, invasion of NPC cells and tumor growth (all P<0.05), and the up-regulation of AXL significantly promoted the proliferation, migration, and invasion of NPC cells (all P<0.05).As predicted by PROMO and JASPAR online databases, ETS1 was a transcription factor of AXL and had multiple binding sites in the AXL promoter region. Real-time PCR and Western blotting results showed that knockdown or overexpression of ETS1 down-regulated or up-regulated AXL protein and mRNA expression levels. ChIP assay result showed that ETS1 bound to AXL promoter region and directly regulate AXL expression. Rescue assay showed that AXL rescued the effects of ETS1 on proliferation, migration and invasion of NPC cells (P<0.05). CONCLUSIONS AXL is highly expressed in NPC cell lines and tissues, which can promote the malignant progression of NPC, and its expression is regulated by transcription factor ETS1.
Collapse
Affiliation(s)
- Kefan Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| | - Jin Zhao
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| | - Hongjuan Xu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078
| | - Xuejun Yan
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Caiping Ren
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
38
|
Mikuteit M, Zschäbitz S, Erlmeier M, Autenrieth M, Weichert W, Hartmann A, Steffens S, Erlmeier F. Growth Arrest-Specific 6 in Chromophobe Renal Cell Carcinoma. Oncology 2022; 100:536-541. [PMID: 35760058 PMCID: PMC9677856 DOI: 10.1159/000525601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Overexpression of tumor-associated growth arrest-specific protein 6 (Gas6) is found in many tumor entities. The prognostic value of Gas6 in renal cell carcinoma (RCC), especially in non-clear cell RCC, is still unclear. AIM The aim of the study was to evaluate the prognostic impact of Gas6 expression in a large cohort of patients with chromophobe RCC (chRCC). MATERIAL AND METHODS Patients who underwent renal surgery due to chRCC were retrospectively evaluated. Tumor specimens were analyzed for Gas6 expression by immunohistochemistry. RESULTS Eighty-one chRCC patients were eligible for analysis; of these, 24 (29.6%) patients were positive for Gas6. No significant associations were found for Gas6 expression and clinical attributes in patients with chRCC. The Kaplan-Meier analysis revealed no differences in 5-year overall survival for Gas6- compared to Gas6+ (89.6% vs. 100.0%; p = 0.288) tumors. CONCLUSION In chRCC, Gas6 expression is not associated with survival and other parameters of aggressiveness. Due to the rare incidence of chRCC, further studies with larger cohorts are warranted.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean's Office − Curriculum Development, Hannover Medical School, Hannover, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Michael Autenrieth
- Department of Urology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Wilko Weichert
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
- Member of the German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Sandra Steffens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean's Office − Curriculum Development, Hannover Medical School, Hannover, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
39
|
Two-Front War on Cancer-Targeting TAM Receptors in Solid Tumour Therapy. Cancers (Basel) 2022; 14:cancers14102488. [PMID: 35626092 PMCID: PMC9140196 DOI: 10.3390/cancers14102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In recent years, many studies have shown the importance of TAM kinases in both normal and neoplastic cells. In this review, we present and discuss the role of the TAM family (AXL, MERTK, TYRO3) of receptor tyrosine kinases (RTKs) as a dual target in cancer, due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment. This review presents the potential of TAMs as emerging therapeutic targets in cancer treatment, focusing on the distinct structures of TAM receptor tyrosine kinases. We analyse and compare different strategies of TAM inhibition, for a full perspective of current and future battlefields in the war with cancer. Abstract Receptor tyrosine kinases (RTKs) are transmembrane receptors that bind growth factors and cytokines and contain a regulated kinase activity within their cytoplasmic domain. RTKs play an important role in signal transduction in both normal and malignant cells, and their encoding genes belong to the most frequently affected genes in cancer cells. The TAM family proteins (TYRO3, AXL, and MERTK) are involved in diverse biological processes: immune regulation, clearance of apoptotic cells, platelet aggregation, cell proliferation, survival, and migration. Recent studies show that TAMs share overlapping functions in tumorigenesis and suppression of antitumour immunity. MERTK and AXL operate in innate immune cells to suppress inflammatory responses and promote an immunosuppressive tumour microenvironment, while AXL expression correlates with epithelial-to-mesenchymal transition, metastasis, and motility in tumours. Therefore, TAM RTKs represent a dual target in cancer due to their intrinsic roles in tumour cell survival, migration, chemoresistance, and their immunosuppressive roles in the tumour microenvironment (TME). In this review, we discuss the potential of TAMs as emerging therapeutic targets in cancer treatment. We critically assess and compare current approaches to target TAM RTKs in solid tumours and the development of new inhibitors for both extra- and intracellular domains of TAM receptor kinases.
Collapse
|
40
|
Lei W, Wu S, Zhao A, Wu Z, Ding B, Yang W, Lu C, Wu X, Li X, Zhang S, Tian Y, Yang Y. Psoralidin protects against cerebral hypoxia/reoxygenation injury: Role of GAS6/Axl signaling. Phytother Res 2022; 36:2628-2640. [PMID: 35583809 DOI: 10.1002/ptr.7481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Psoralidin (PSO) is a natural phenolic coumarin extracted from the seeds of Psoralea corylifolia L. Growing preclinical evidence indicates that PSO has anti-inflammatory, anti-vitiligo, anti-bacterial, and anti-viral effects. Growth arrest-specific gene 6 (GAS6) and its receptor, Axl, modulate cellular oxidative stress, apoptosis, survival, proliferation, migration, and mitogenesis. Notably, the neuroprotective role of the GAS6/Axl axis has been identified in previous studies. We hypothesize that PSO ameliorates cerebral hypoxia/reoxygenation (HR) injury via activating the GAS6/Axl signaling. We first confirmed that PSO was not toxic to the cells and upregulated GAS6 and Axl expression after HR injury. Moreover, PSO exerted a marked neuroprotective effect against HR injury, represented by restored cell viability and cell morphology, decreased lactate dehydrogenase (LDH) release, and reactive oxygen species (ROS) generation. Furthermore, PSO pretreatment also elevated the levels of nuclear factor-related factor 2 (Nrf-2), NAD(P)H dehydrogenase quinone-1 (NQO1), heme oxygenase-1 (HO-1), silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), uncoupling protein 2 (UCP2), and B-cell lymphoma 2 (BCl2) both in the condition of baseline and HR injury. However, GAS6 siRNA or Axl siRNA inhibited the neuroprotective effects of PSO. Our findings suggest that PSO pretreatment attenuated HR-induced oxidative stress, apoptosis, and mitochondrial dysfunction in neuroblastoma cells through the activation of GAS6/Axl signaling.
Collapse
Affiliation(s)
- Wangrui Lei
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Songdi Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China.,Department of Neurology, Xi'an No. 1 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Aizhen Zhao
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Wu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Baoping Ding
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Xue Wu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Xiyang Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Shaofei Zhang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
41
|
Chiasakul T, Zwicker JI. The impact of warfarin on overall survival in cancer patients. Thromb Res 2022; 213:S113-S119. [PMID: 35769870 PMCID: PMC9236137 DOI: 10.1016/j.thromres.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Venous thromboembolism (VTE) is a common complication in patients with cancer. Warfarin has largely been replaced by low-molecular-weight heparin (LMWHs) and direct oral anticoagulants (DOACs) as the standard of care in cancer-associated VTE. The survival benefit of these anticoagulants over warfarin in the cancer population was not demonstrated in clinical trials, possibly due to insufficient sample size and limited follow-up duration. There are emerging population-based studies suggesting that warfarin may be associated with improved overall survival in cancers and may have a protective effect against certain types of cancers. Warfarin may exert its anti-neoplastic properties through both coagulation pathway -dependent and -independent mechanisms, the latter of which are mediated by inhibition of the Gas6-AXL signaling pathway. Further research should emphasize on identifying clinical and laboratory predictors of beneficial effects of warfarin. In this review article, we summarize and update the current evidence regarding the potential impact of warfarin on the overall survival of cancer patients and incidence of cancer, as well as review the potential mechanism of such effect and future perspectives.
Collapse
|
42
|
Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, Terry S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol 2022; 13:869676. [PMID: 35572601 PMCID: PMC9092944 DOI: 10.3389/fimmu.2022.869676] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
Collapse
Affiliation(s)
- Agnete S. T. Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria L. Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jean-Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
| | - James B. Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Stéphane Terry
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
- Research Department, Inovarion, Paris, France
| |
Collapse
|
43
|
Crintea A, Dutu AG, Constantin AM, Fekete Z, Samasca G, Lupan I, Florian IA, Silaghi CN, Craciun AM. The First Evaluation of Serum Levels of MGP, Gas6 and EGFR after First Dose of Chemotherapy in Lung Cancer. BIOLOGY 2022; 11:biology11010082. [PMID: 35053080 PMCID: PMC8772821 DOI: 10.3390/biology11010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 01/16/2023]
Abstract
Simple Summary Serum levels of MGP, Gas6, vitamin K1, and EGFR were not significantly changed in response to the first cycle of chemotherapy. We found a strong correlation between MGP and VitK1 serum values, and a moderate negative correlation between VitK1 and EGFR in pre-treatment patients. The post-treatment value of EGFR is a strong independent factor that correlates positively with the Gas6 post-treatment values. Abstract Background: Vitamin K-dependent proteins (VKDPs) and the epidermal growth factor receptor (EGFR) are involved in lung cancer progression. Therefore, we aimed to study the serum concentration of Matrix Gla protein (MGP), Growth Arrest-specific 6 (Gas6), and EGFR before and after the first cycle of chemotherapy and to investigate how MGP, Gas6, and EGFR are modified after one cycle of chemotherapy. Methods: We performed an observational study on twenty patients diagnosed with lung cancer, by assessing the serum concentration of vitaminK1 (VitK1), MGP, Gas6, and EGFR using the ELISA technique before and after three weeks of the first cycle of chemotherapy. Patients were evaluated using RECIST 1.1 criteria. Results: Serum levels of MGP, Gas6, EGFR, and VK1 before and after treatment were not changed significantly. Regarding the pre-treatment correlation of the MGP values, we found a strong positive relationship between MGP and VK1 pre-treatment values (r = 0.821, 95%CI 0.523; 0.954, p < 0.001). Furthermore, there was a moderately negative correlation between VK1 and EGFR pre-treatment values, with the relationship between them being marginally significant (r = −0.430, 95%CI −0.772; 0.001, p = 0.058). Post-treatment, we found a strong positive relationship between MGP and VK1 post-treatment values (r = 0.758, 95%CI 0.436; 0.900, p < 0.001). We also found a moderate positive relationship between Gas6 and EGFR post-treatment values, but the correlation was only marginally significant (r = 0.442, p = 0.051).
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (C.N.S.); (A.M.C.)
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (C.N.S.); (A.M.C.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Correspondence: (A.-M.C.); (G.S.)
| | - Zsolt Fekete
- Zsolt Fekete, Department of Oncology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Correspondence: (A.-M.C.); (G.S.)
| | - Iulia Lupan
- Interdisciplinary Institute of BioNanoScience, 400006 Cluj-Napoca, Romania;
| | - Ioan Alexandru Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ciprian Nicolae Silaghi
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (C.N.S.); (A.M.C.)
| | - Alexandra Marioara Craciun
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (C.N.S.); (A.M.C.)
| |
Collapse
|