1
|
Kazmierska-Grebowska P, Jankowski MM, Obrador E, Kolodziejczyk-Czepas J, Litwinienko G, Grebowski J. Nanotechnology meets radiobiology: Fullerenols and Metallofullerenols as nano-shields in radiotherapy. Biomed Pharmacother 2025; 184:117915. [PMID: 39983431 DOI: 10.1016/j.biopha.2025.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Despite significant advances in the development of radioprotective measures, the clinical application of radioprotectors and radiomitigators remains limited due to insufficient efficacy and high toxicity of most agents. Additionally, in oncological radiotherapy, these compounds may interfere with the therapeutic effectiveness. Recent progress in nanotechnology highlights fullerenols (FulOHs) and metallofullerenols (Me@FulOHs) as promising candidates for next-generation radioprotectors. These nanostructures possess unique antioxidant properties, demonstrating greater efficacy in rediucing oxidative stress compared to conventional agents. Moreover, their potential to minimize pro-oxidative risks depends on the precise identification of cellular environments and irradiation conditions that optimize their radioprotective effects. In parallel, Me@FulOHs serve as powerful theranostic tools in oncology. Their strong imaging signals enable high-resolution PET and MRI, facilitating early detection and accurate localization of pathogenic alterations. This dual functionality positions Me@FulOHs as key components in advanced radiotherapy. By integrating these nanomaterials with modern theranostic approaches, it is possible to enhance the precision of treatment while minimizing side effects, addressing a critical need in contemporary oncology. This review emphasizes the importance of systematic evaluation of context-dependent effects of Me@FulOHs, particularly in pre- and post-irradiation scenarios, to optimize their clinical relevance. The dual role of Me@FulOHs as both radioprotectors and diagnostic agents distinguishes them from traditional compounds, paving the way for innovative practical applications. Their use in radiotherapy represents a significant step toward the development of safer and more effective strategies in radiation protection and cancer treatment. We also review ionizing radiation effects, classifications, cancer radiotherapy applications, and countermeasures.
Collapse
Affiliation(s)
- Paulina Kazmierska-Grebowska
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Maciej M Jankowski
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gabriela Narutowicza 11/12, Gdansk 80-233, Poland
| | - Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | | | - Jacek Grebowski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, Warsaw 04-141, Poland.
| |
Collapse
|
2
|
Pulliam CF, Fath MA, Sho S, Johnson ST, Wagner BA, Singhania M, Kalen AL, Bayanbold K, Solst SR, Allen BG, George BN, Caster JM, Buettner GR, Riley DP, Keene JL, Beardsley RA, Spitz DR. Pharmacological ascorbate combined with rucosopasem selectively radio-chemo-sensitizes NSCLC via generation of H 2O 2. Redox Biol 2025; 80:103505. [PMID: 39884000 PMCID: PMC11830350 DOI: 10.1016/j.redox.2025.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Differences in cancer and normal cell oxidative metabolism provide a unique therapeutic opportunity for developing combined modality approaches with redox-active small molecules as radio-chemosensitizers that are well-tolerated by normal tissues. Pentaazamacrocyclic Mn (II)-containing (MnPAM) superoxide dismutase (SOD) mimetics and pharmacological ascorbate given IV to achieve [mM] plasma levels (pharmacological ascorbate: P-AscH‾) have been shown to act individually as cancer cell radio- and chemosensitizers via the generation of H2O2in vivo. The current study shows that the combination of newly developed MnPAM dismutase mimetic, rucosopasem manganese (RUC) with P-AscH‾ radio-sensitizes non-small cell lung cancer cells (NSCLC) and increases steady state levels of intracellular H2O2 with no additional toxicity to normal human bronchial epithelial cells (HBECs). Conditional over expression of catalase (CAT) in H1299T CATc15 cells demonstrates that the combination of RUC and P-AscH‾ causes radio-sensitization through an H2O2-dependent mechanism. Interestingly, RUC combined with P-AscH‾ demonstrates more than additive cytotoxicity in both H1299T and A549 NSCLC cells, but conditional over-expression of ferritin heavy chain (FtH) protected only the H1299T, and not the A549, from this toxicity. Most importantly, the combination of RUC + P-AscH‾ was found to sensitize both H1299T and A549 cell types to radio-chemotherapy with cisplatin (CIS) + etoposide (ETOP). Finally, in H1299T NSCLC xenografts the combination of RUC + P-AscH‾ with CIS + ETOP and 12 × 2 Gy radiation significantly inhibits tumor growth and increased median overall over survival. These results support the hypothesis that selective MnPAM dismutase mimetic + P-AscH‾ enhances the efficacy of radio-chemotherapy in NSCLC through a mechanism governed by redox active metals and H2O2 production.
Collapse
Affiliation(s)
- C F Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.
| | - M A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - S Sho
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - S T Johnson
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - B A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - M Singhania
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - A L Kalen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - K Bayanbold
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - S R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - B G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.
| | - B N George
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - J M Caster
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - G R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.
| | - D P Riley
- Galera Therapeutics, Malvern, PA, 19355, USA.
| | - J L Keene
- Galera Therapeutics, Malvern, PA, 19355, USA.
| | | | - D R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
3
|
Teferi N, Ekanayake A, Owusu SB, Moninger TO, Sarkaria JN, Tivanski AV, Petronek MS. Glutathione peroxidase 4 overexpression induces anomalous subdiffusion and impairs glioblastoma cell growth. J Biol Eng 2024; 18:72. [PMID: 39709480 DOI: 10.1186/s13036-024-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Glioblastoma tumors are the most common and aggressive adult central nervous system malignancy. Nearly all patients experience disease progression, which significantly contributes to disease mortality. Recently, it has been suggested that recurrent tumors may be characterized by a ferroptosis-prone phenotype with a significant decrease in glutathione peroxidase 4 (GPx4) expression. This led to the hypothesis that GPx4 expression negatively influences GBM cell growth. This study utilizes a doxycycline inducible GPx4 overexpression model to test this hypothesis. Consistently, the overexpression of GPx4 significantly impairs cell growth and colony formation while also causing an accumulation of cells in G1/G0 phase of the cell cycle. From a biophysical perspective, GPx4 overexpressing cells have significantly greater surface area, increased Young's modulus, and experience anomalous sub-diffusion as opposed to normal diffusion associated with Brownian motion. Moreover, analysis of patient derived GBM cells reveal that cell growth rates, plating efficiency, and Young's modulus are all inversely proportional to GPx4 expression. Therefore, GPx4 appears to be a biophysical regulator of GBM cell growth that warrants further mechanistic investigation in its role in GBM progression.
Collapse
Affiliation(s)
- Nahom Teferi
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Stephenson B Owusu
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Thomas O Moninger
- Central Microscopy Research Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Michael S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Ma L, Jin Y, Aili A, Xu L, Wang X, Xiao L, Zhao W, Yin S, Liu B, Yuan X. High-dose vitamin C attenuates radiation-induced pulmonary fibrosis by targeting S100A8 and S100A9. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167358. [PMID: 39025374 DOI: 10.1016/j.bbadis.2024.167358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a frequently encountered late complication in patients undergoing radiation therapy, presenting a substantial risk to patient mortality and quality of life. The pathogenesis of RIPF remains unclear, and current treatment options are limited in efficacy. High-dose vitamin C has demonstrated potential when used in conjunction with other adjuvant therapies due to potent anticancer properties. However, the potential relationship between high-dose vitamin C and RIPF has not yet been explored in existing literature. In our study, the RIPF model and the LLC tumor model were used as two animal models to explore how high-dose vitamin C can improve RIPF without hampering the antitumour efficacy of radiotherapy. The impact of high-dose vitamin C on RIPF was assessed through various assays, including micro-CT, HE staining, Masson staining, and immunohistochemistry. Our results indicated that administering high-dose vitamin C 2 days before radiation and continuing for a duration of 6 weeks significantly inhibited the progression of RIPF. In order to explore the mechanism by which high-dose vitamin C attenuates RIPF, we utilized RNA-seq analysis of mouse lung tissue in conjunction with publicly available databases. Our findings indicated that high-dose vitamin C inhibits the differentiation of fibroblasts into myofibroblasts by targeting S100A8 and S100A9 derived from neutrophils. Additionally, the combination of high-dose vitamin C and radiation demonstrated enhanced inhibition of tumor growth in a murine LLC tumor model. These results revealed that the combination of radiotherapy and high-dose vitamin C may offer a promising therapeutic approach for the clinical management of thoracic tumors and the prevention of RIPF.
Collapse
Affiliation(s)
- Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aifeina Aili
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Yin
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Owusu SB, Zaher A, Ahenkorah S, Pandya DN, Wadas TJ, Petronek MS. Gallium Uncouples Iron Metabolism to Enhance Glioblastoma Radiosensitivity. Int J Mol Sci 2024; 25:10047. [PMID: 39337531 PMCID: PMC11432413 DOI: 10.3390/ijms251810047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Gallium-based therapy has been considered a potentially effective cancer therapy for decades and has recently re-emerged as a novel therapeutic strategy for the management of glioblastoma tumors. Gallium targets the iron-dependent phenotype associated with aggressive tumors by mimicking iron in circulation and gaining intracellular access through transferrin-receptor-mediated endocytosis. Mechanistically, it is believed that gallium inhibits critical iron-dependent enzymes like ribonucleotide reductase and NADH dehydrogenase (electron transport chain complex I) by replacing iron and removing the ability to transfer electrons through the protein secondary structure. However, information regarding the effects of gallium on cellular iron metabolism is limited. As mitochondrial iron metabolism serves as a central hub of the iron metabolic network, the goal of this study was to investigate the effects of gallium on mitochondrial iron metabolism in glioblastoma cells. Here, it has been discovered that gallium nitrate can induce mitochondrial iron depletion, which is associated with the induction of DNA damage. Moreover, the generation of gallium-resistant cell lines reveals a highly unstable phenotype characterized by impaired colony formation associated with a significant decrease in mitochondrial iron content and loss of the mitochondrial iron uptake transporter, mitoferrin-1. Moreover, gallium-resistant cell lines are significantly more sensitive to radiation and have an impaired ability to repair any sublethal damage and to survive potentially lethal radiation damage when left for 24 h following radiation. These results support the hypothesis that gallium can disrupt mitochondrial iron metabolism and serve as a potential radiosensitizer.
Collapse
Affiliation(s)
- Stephenson B. Owusu
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242, USA; (S.B.O.); (A.Z.)
| | - Amira Zaher
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242, USA; (S.B.O.); (A.Z.)
| | - Stephen Ahenkorah
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA; (S.A.)
| | - Darpah N. Pandya
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA; (S.A.)
| | - Thaddeus J. Wadas
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA; (S.A.)
| | - Michael S. Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242, USA; (S.B.O.); (A.Z.)
| |
Collapse
|
6
|
Shen X, Wang J, Deng B, Zhao Z, Chen S, Kong W, Zhou C, Bae-Jump V. Review of the Potential Role of Ascorbate in the Prevention and Treatment of Gynecological Cancers. Antioxidants (Basel) 2024; 13:617. [PMID: 38790722 PMCID: PMC11118910 DOI: 10.3390/antiox13050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbate (vitamin C) is an essential vitamin for the human body and participates in various physiological processes as an important coenzyme and antioxidant. Furthermore, the role of ascorbate in the prevention and treatment of cancer including gynecological cancer has gained much more interest recently. The bioavailability and certain biological functions of ascorbate are distinct in males versus females due to differences in lean body mass, sex hormones, and lifestyle factors. Despite epidemiological evidence that ascorbate-rich foods and ascorbate plasma concentrations are inversely related to cancer risk, ascorbate has not demonstrated a significant protective effect in patients with gynecological cancers. Adequate ascorbate intake may have the potential to reduce the risk of human papillomavirus (HPV) infection and high-risk HPV persistence status. High-dose ascorbate exerts antitumor activity and synergizes with chemotherapeutic agents in preclinical cancer models of gynecological cancer. In this review, we provide evidence for the biological activity of ascorbate in females and discuss the potential role of ascorbate in the prevention and treatment of ovarian, endometrial, and cervical cancers.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Petronek MS, Monga V, Bodeker KL, Kwofie M, Lee CY, Mapuskar KA, Stolwijk JM, Zaher A, Wagner BA, Smith MC, Vollstedt S, Brown H, Chandler ML, Lorack AC, Wulfekuhle JS, Sarkaria JN, Flynn RT, Greenlee JD, Howard MA, Smith BJ, Jones KA, Buettner GR, Cullen JJ, St-Aubin J, Buatti JM, Magnotta VA, Spitz DR, Allen BG. Magnetic Resonance Imaging of Iron Metabolism with T2* Mapping Predicts an Enhanced Clinical Response to Pharmacologic Ascorbate in Patients with GBM. Clin Cancer Res 2024; 30:283-293. [PMID: 37773633 PMCID: PMC10841843 DOI: 10.1158/1078-0432.ccr-22-3952] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Pharmacologic ascorbate (P-AscH-) is hypothesized to be an iron (Fe)-dependent tumor-specific adjuvant to chemoradiation in treating glioblastoma (GBM). This study determined the efficacy of combining P-AscH- with radiation and temozolomide in a phase II clinical trial while simultaneously investigating a mechanism-based, noninvasive biomarker in T2* mapping to predict GBM response to P-AscH- in humans. PATIENTS AND METHODS The single-arm phase II clinical trial (NCT02344355) enrolled 55 subjects, with analysis performed 12 months following the completion of treatment. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared across patient subgroups with log-rank tests. Forty-nine of 55 subjects were evaluated using T2*-based MRI to assess its utility as an Fe-dependent biomarker. RESULTS Median OS was estimated to be 19.6 months [90% confidence interval (CI), 15.7-26.5 months], a statistically significant increase compared with historic control patients (14.6 months). Subjects with initial T2* relaxation < 50 ms were associated with a significant increase in PFS compared with T2*-high subjects (11.2 months vs. 5.7 months, P < 0.05) and a trend toward increased OS (26.5 months vs. 17.5 months). These results were validated in preclinical in vitro and in vivo model systems. CONCLUSIONS P-AscH- combined with temozolomide and radiotherapy has the potential to significantly enhance GBM survival. T2*-based MRI assessment of tumor iron content is a prognostic biomarker for GBM clinical outcomes. See related commentary by Nabavizadeh and Bagley, p. 255.
Collapse
Affiliation(s)
| | - Varun Monga
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa; Iowa City, IA, USA
| | - Kellie L. Bodeker
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Michael Kwofie
- Department of Radiology, University of Iowa; Iowa City, IA, USA
| | - Chu-Yu Lee
- Department of Radiology, University of Iowa; Iowa City, IA, USA
| | - Kranti A. Mapuskar
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | - Amira Zaher
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Brett A. Wagner
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Mark C. Smith
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Sandy Vollstedt
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Heather Brown
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Meghan L. Chandler
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Amanda C. Lorack
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic; Rochester, MN, USA
| | - Ryan T. Flynn
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | | | - Brian J. Smith
- Department of Biostatistics, University of Iowa; Iowa City, IA, USA
| | - Karra A. Jones
- Department of Pathology, Division of Neuropathology, Duke University; Durham, NC, USA
| | - Garry R. Buettner
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | - Joel St-Aubin
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - John M. Buatti
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | | | - Douglas R. Spitz
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| | - Bryan G. Allen
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| |
Collapse
|
8
|
Herdiana Y, Sriwidodo S, Sofian FF, Wilar G, Diantini A. Nanoparticle-Based Antioxidants in Stress Signaling and Programmed Cell Death in Breast Cancer Treatment. Molecules 2023; 28:5305. [PMID: 37513179 PMCID: PMC10384004 DOI: 10.3390/molecules28145305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is a complex and heterogeneous disease, and oxidative stress is a hallmark of BC. Oxidative stress is characterized by an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense mechanisms. ROS has been implicated in BC development and progression by inducing DNA damage, inflammation, and angiogenesis. Antioxidants have been shown to scavenge ROS and protect cells from oxidative damage, thereby regulating signaling pathways involved in cell growth, survival, and death. Plants contain antioxidants like ascorbic acid, tocopherols, carotenoids, and flavonoids, which have been found to regulate stress signaling and PCD in BC. Combining different antioxidants has shown promise in enhancing the effectiveness of BC treatment. Antioxidant nanoparticles, when loaded with antioxidants, can effectively target breast cancer cells and enhance their cellular uptake. Notably, these nanoparticles have shown promising results in inducing PCD and sensitizing breast cancer cells to chemotherapy, even in cases where resistance is observed. This review aims to explore how nanotechnology can modulate stress signaling and PCD in breast cancer. By summarizing current research, it underscores the potential of nanotechnology in enhancing antioxidant properties for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ferry Ferdiansyah Sofian
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
9
|
Obrador E, Montoro A. Ionizing Radiation, Antioxidant Response and Oxidative Damage: Radiomodulators. Antioxidants (Basel) 2023; 12:1219. [PMID: 37371949 DOI: 10.3390/antiox12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Ionizing radiation (IR) is the energy released by atoms in the form of electromagnetic waves (e [...].
Collapse
Affiliation(s)
- Elena Obrador
- Elena Obrador Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Alegría Montoro
- Alegría Montoro, Radiation Protection Service, University and Polytechnic Hospital La Fe, 46021 Valencia, Spain
| |
Collapse
|
10
|
Petronek MS, Teferi N, Caster JM, Stolwijk JM, Zaher A, Buatti JM, Hasan D, Wafa EI, Salem AK, Gillan EG, St-Aubin JJ, Buettner GR, Spitz DR, Magnotta VA, Allen BG. Magnetite nanoparticles as a kinetically favorable source of iron to enhance GBM response to chemoradiosensitization with pharmacological ascorbate. Redox Biol 2023; 62:102651. [PMID: 36924683 PMCID: PMC10025281 DOI: 10.1016/j.redox.2023.102651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Ferumoxytol (FMX) is an FDA-approved magnetite (Fe3O4) nanoparticle used to treat iron deficiency anemia that can also be used as an MR imaging agent in patients that can't receive gadolinium. Pharmacological ascorbate (P-AscH-; IV delivery; plasma levels ≈ 20 mM) has shown promise as an adjuvant to standard of care chemo-radiotherapy in glioblastoma (GBM). Since ascorbate toxicity mediated by H2O2 is enhanced by Fe redox cycling, the current study determined if ascorbate catalyzed the release of ferrous iron (Fe2+) from FMX for enhancing GBM responses to chemo-radiotherapy. Ascorbate interacted with Fe3O4 in FMX to produce redox-active Fe2+ while simultaneously generating increased H2O2 fluxes, that selectively enhanced GBM cell killing (relative to normal human astrocytes) as opposed to a more catalytically active Fe complex (EDTA-Fe3+) in an H2O2 - dependent manner. In vivo, FMX was able to improve GBM xenograft tumor control when combined with pharmacological ascorbate and chemoradiation in U251 tumors that were unresponsive to pharmacological ascorbate therapy. These data support the hypothesis that FMX combined with P-AscH- represents a novel combined modality therapeutic approach to enhance cancer cell selective chemoradiosentization in the management of glioblastoma.
Collapse
Affiliation(s)
- M S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| | - N Teferi
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - J M Caster
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Stolwijk
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - A Zaher
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - J M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D Hasan
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - E I Wafa
- Department of Pharmaceutical Sciences, University of Iowa, Iowa City, IA, USA
| | - A K Salem
- Department of Pharmaceutical Sciences, University of Iowa, Iowa City, IA, USA
| | - E G Gillan
- Department of Chemistry, University of Iowa, Iowa City, IA, USA
| | - J J St-Aubin
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - G R Buettner
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - D R Spitz
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - V A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - B G Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
11
|
Fan D, Liu X, Shen Z, Wu P, Zhong L, Lin F. Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed Pharmacother 2023; 162:114695. [PMID: 37058822 DOI: 10.1016/j.biopha.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Vitamin C, a small organic molecule, is widely found in fruits and vegetables and is an essential nutrient in the human body. Vitamin C is closely associated with some human diseases such as cancer. Many studies have shown that high doses of vitamin C have anti-tumor ability and can target tumor cells in multiple targets. This review will describe vitamin C absorption and its function in cancer treatment. We will review the cellular signaling pathways associated with vitamin C against tumors depending on the different anti-cancer mechanisms. Based on this, we will further describe some applications of the use of vitamin C for cancer treatment in preclinical and clinical trials and the possible adverse events that can occur. Finally, this review also assesses the prospective advantages of vitamin C in oncology treatment and clinical applications.
Collapse
Affiliation(s)
- Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Faquan Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education,Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University.
| |
Collapse
|
12
|
Callaghan CM, Abukhiran IM, Masaadeh A, Van Rheeden RV, Kalen AL, Rodman SN, Petronek MS, Mapuskar KA, George BN, Coleman MC, Goswami PC, Allen BG, Spitz DR, Caster JM. Manipulation of Redox Metabolism Using Pharmacologic Ascorbate Opens a Therapeutic Window for Radio-Sensitization by ATM Inhibitors in Colorectal Cancer. Int J Radiat Oncol Biol Phys 2023; 115:933-944. [PMID: 36228747 PMCID: PMC9974877 DOI: 10.1016/j.ijrobp.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Ataxia telangiectasia mutated kinase (ATM) inhibitors are potent radiosensitizers that regulate DNA damage responses and redox metabolism, but they have not been translated clinically because of the potential for excess normal tissue toxicity. Pharmacologic ascorbate (P-AscH-; intravenous administration achieving mM plasma concentrations) selectively enhances H2O2-induced oxidative stress and radiosensitization in tumors while acting as an antioxidant and mitigating radiation damage in normal tissues including the bowel. We hypothesized that P-AscH- could enhance the therapeutic index of ATM inhibitor-based chemoradiation by simultaneously enhancing the intended effects of ATM inhibitors in tumors and mitigating off-target effects in adjacent normal tissues. METHODS AND MATERIALS Clonogenic survival was assessed in human (human colon tumor [HCT]116, SW480, HT29) and murine (CT26, MC38) colorectal tumor lines and normal cells (human umbilical vein endothelial cell, FHs74) after radiation ± DNA repair inhibitors ± P-AscH-. Tumor growth delay was assessed in mice with HCT116 or MC38 tumors after fractionated radiation (5 Gy × 3) ± the ATM inhibitor KU60019 ± P-AscH-. Intestinal injury, oxidative damage, and transforming growth factor β immunoreactivity were quantified using immunohistochemistry after whole abdominal radiation (10 Gy) ± KU60019 ± P-AscH-. Cell cycle distribution and ATM subcellular localization were assessed using flow cytometry and immunohistochemistry. The role of intracellular H2O2 fluxes was assessed using a stably expressed doxycycline-inducible catalase transgene. RESULTS KU60019 with P-AscH- enhanced radiosensitization in colorectal cancer models in vitro and in vivo by H2O2-dependent oxidative damage to proteins and enhanced DNA damage, abrogation of the postradiation G2 cell cycle checkpoint, and inhibition of ATM nuclear localization. In contrast, concurrent P-AscH- markedly reduced intestinal toxicity and oxidative damage with KU60019. CONCLUSIONS We provide evidence that redox modulating drugs, such as P-AscH-, may facilitate the clinical translation of ATM inhibitors by enhancing tumor radiosensitization while simultaneously protecting normal tissues.
Collapse
Affiliation(s)
- Cameron M Callaghan
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Ibrahim M Abukhiran
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, Iowa
| | - Amr Masaadeh
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, Iowa
| | | | - Amanda L Kalen
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Samuel N Rodman
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Michael S Petronek
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Kranti A Mapuskar
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Benjamin N George
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Mitchell C Coleman
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Prabhat C Goswami
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Bryan G Allen
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Douglas R Spitz
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Joseph M Caster
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
13
|
Fucoidan/UVC Combined Treatment Exerts Preferential Antiproliferation in Oral Cancer Cells but Not Normal Cells. Antioxidants (Basel) 2022; 11:antiox11091797. [PMID: 36139871 PMCID: PMC9495684 DOI: 10.3390/antiox11091797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/29/2022] Open
Abstract
Combined treatment is a promising anticancer strategy for improving antiproliferation compared with a single treatment but is limited by adverse side effects on normal cells. Fucoidan (FN), a brown-algae-derived polysaccharide safe food ingredient, exhibits preferential function for antiproliferation to oral cancer but not normal cells. Utilizing the preferential antiproliferation, the impacts of FN in regulating ultraviolet C (UVC) irradiation were assessed in oral cancer cells. A combined treatment (UVC/FN) reduced cell viability of oral cancer cells (Ca9-22 and CAL 27) more than single treatments (FN or UVC), i.e., 53.7%/54.6% vs. 71.2%/91.6%, and 89.2%/79.4%, respectively, while the cell viability of UVC/FN treating on non-malignant oral (S–G) was higher than oral cancer cells, ranging from 106.0 to 108.5%. Mechanistically, UVC/FN preferentially generated higher subG1 accumulation and apoptosis-related inductions (annexin V, caspases 3, 8, and 9) in oral cancer cells than single treatments. UVC/FN preferentially generated higher oxidative stress than single treatments, as evidenced by flow cytometry-detecting reactive oxygen species, mitochondrial superoxide, and glutathione. Moreover, UVC/FN preferentially caused more DNA damage (γH2AX and 8-hydroxy-2’-deoxyguanosine) in oral cancer cells than in single treatments. N-acetylcysteine pretreatment validated the oxidative stress effects in these UVC/FN-induced changes. Taken together, FN effectively enhances UVC-triggered antiproliferation to oral cancer cells. UVC/FN provides a promising potential for preferential and synergistic antiproliferation in antioral cancer therapy.
Collapse
|
14
|
Zaher A, Stephens LM, Miller AM, Hartwig SM, Stolwijk JM, Petronek MS, Zacharias ZR, Wadas TJ, Monga V, Cullen JJ, Furqan M, Houtman JCD, Varga SM, Spitz DR, Allen BG. Pharmacological ascorbate as a novel therapeutic strategy to enhance cancer immunotherapy. Front Immunol 2022; 13:989000. [PMID: 36072595 PMCID: PMC9444023 DOI: 10.3389/fimmu.2022.989000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.
Collapse
Affiliation(s)
- Amira Zaher
- Cancer Biology Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Laura M. Stephens
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Ann M. Miller
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Stacey M. Hartwig
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Jeffrey M. Stolwijk
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Michael S. Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Zeb R. Zacharias
- Human Immunology Core & Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Thaddeus J. Wadas
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Joseph J. Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Steven M. Varga
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bryan G. Allen,
| |
Collapse
|
15
|
Petronek MS, Li M, Sarkaria J, Schultz M, Allen B. Ascorbate Preferentially Stimulates Gallium-67 Uptake in Glioblastoma Cells. JOURNAL OF NUCLEAR MEDICINE & RADIATION THERAPY 2022; 13:R-67453. [PMID: 39118968 PMCID: PMC11308792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Gallium is a tri-valent p-block metal that closely mimics tri-valent iron. Gallium is internalized into cells via transferrin receptor-mediated endocytosis. Both Ga-67 and Ga-68 are radionuclides that can be radiolabeled to various bioactive compounds for clinical imaging procedures to visualize tumors and sites of inflammation. High-dose ascorbate (pharmacological ascorbate) is an emergent glioblastoma therapy that enhances cancer cell-killing through iron-metabolic perturbations. We hypothesized that pharmacological ascorbate treatments might alter Ga-67 uptake in glioblastoma cells. We evaluated the in vitro ability of pharmacological ascorbate to alter gallium uptake in patient-derived glioblastoma cells with variable genetic backgrounds by co-incubating cells with Ga-67 ± pharmacological ascorbate. Surprisingly, we observed increased basal gallium uptake in the glioblastoma cells compared to normal human astrocytes. Further, pharmacological ascorbate treatment stimulated gallium uptake in glioblastoma cells while not affecting uptake in normal human astrocytes. This effect appears to be related to transient increases in transferrin receptor expression. Finally, pharmacological ascorbate treatment appears to stimulate gallium uptake in an iron metabolism-dependent manner. Further mechanistic experiments are required to evaluate the translational utility of ascorbate to impact gallium tumor imaging.
Collapse
Affiliation(s)
| | - M. Li
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
| | - J.N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic; Rochester, MN, USA
| | - M.K. Schultz
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
- Department of Radiology, University of Iowa; Iowa City, IA, USA
| | - B.G. Allen
- Department of Radiation Oncology, University of Iowa; Iowa City, IA, USA
| |
Collapse
|