1
|
Salmani-Zarchi H, Mousavi-Sagharchi SMA, Sepahdoost N, Ranjbar-Jamalabadi M, Gross JD, Jooya H, Samadi A. Antimicrobial Feature of Nanoparticles in the Antibiotic Resistance Era: From Mechanism to Application. Adv Biomed Res 2024; 13:113. [PMID: 39717242 PMCID: PMC11665187 DOI: 10.4103/abr.abr_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 12/25/2024] Open
Abstract
The growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications. In recent years, NPs have been used as antibiotics to overcome drug resistance or as drug carriers with antimicrobial features. They can also serve as antimicrobial coatings for implants in different body areas. The antimicrobial feature of NPs is based on different mechanisms. For example, the oxidative functions of NPs can inhibit nucleic acid replication and destroy the microbial cell membrane as well as interfere with their cellular functions and biochemical cycles. On the other hand, NPs can disrupt the pathogens' lifecycle by interrupting vital points of their life, such as virus uncoating and entry into human cells. Many types of NPs have been tested by different scientists for these purposes. Silver, gold, copper, and titanium have shown the most ability to inhibit and remove pathogens inside and outside the body. In this review, the authors endeavor to comprehensively describe the antimicrobial features of NPs and their applications for different biomedical goals.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nafise Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdieh Ranjbar-Jamalabadi
- Department of Polymer Engineering, Faculty of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jeffrey D. Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, Nevada, USA
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
2
|
Zúñiga-Miranda J, Vaca-Vega D, Vizuete K, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Barba-Ostria C, Coyago-Cruz E, Debut A, Guamán LP. Green Synthesis of Silver Oxide Nanoparticles from Mauritia flexuosa Fruit Extract: Characterization and Bioactivity Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1875. [PMID: 39683263 DOI: 10.3390/nano14231875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024]
Abstract
The increasing prevalence of multidrug-resistant (MDR) pathogens, persistent biofilms, oxidative stress, and cancerous cell proliferation poses significant challenges in healthcare and environmental settings, highlighting the urgent need for innovative and sustainable therapeutic solutions. The exploration of nanotechnology, particularly the use of green-synthesized nanoparticles, offers a promising avenue to address these complex biological challenges due to their multifunctional properties and biocompatibility. Utilizing a green synthesis approach, Mauritia flexuosa Mf-Ag2ONPs were synthesized and characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy coupled with scanning electron microscopy (EDS-SEM), UV-Vis spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The Mf-Ag2ONPs exhibited potent antibacterial effects against both non-resistant and MDR bacterial strains, with minimum inhibitory concentrations (MICs) ranging from 11.25 to 45 µg/mL. Mf-Ag2ONPs also demonstrated significant antifungal efficacy, particularly against Candida glabrata, with an MIC of 5.63 µg/mL. Moreover, the nanoparticles showed strong biofilm inhibition capabilities and substantial antioxidant properties, underscoring their potential to combat oxidative stress. Additionally, Mf-Ag2ONPs exhibited pronounced anticancer properties against various cancer cell lines, displaying low IC50 values across various cancer cell lines while maintaining minimal hemolytic activity at therapeutic concentrations. These findings suggest that Mf-Ag2ONPs synthesized via an eco-friendly approach offer a promising alternative for biomedical applications, including antimicrobial, antifungal, antioxidant, and anticancer therapies, warranting further in vivo studies to fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - David Vaca-Vega
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología, Universidad Politécnica Salesiana, Quito 170143, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
- Departamento de Ciencias de la Vida y Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Linda P Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
3
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
4
|
El-Zahed MM, Abou-Dobara MI, El-Khodary MM, Mousa MMA. Antimicrobial activity and nanoremediation of heavy metals using biosynthesized CS/GO/ZnO nanocomposite by Bacillus subtilis ATCC 6633 alone or immobilized in a macroporous cryogel. Microb Cell Fact 2024; 23:278. [PMID: 39402571 PMCID: PMC11475717 DOI: 10.1186/s12934-024-02535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health. RESULTS The present study highlighted a simple and cost-effective approach to biosynthesize a chitosan/graphene oxide/zinc oxide nanocomposite (CS/GO/ZnO) alone and immobilized in a macroporous cryogel as a new antimicrobial agent. Bacillus subtilis ATCC 6633 was used as a safe and efficient bio-nano-factory during biosynthesis. The formation of CS/GO/ZnO was confirmed and characterized using different analyses including ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), selective area diffraction pattern (SADP), Zeta analyses, scanning electron microscope (SEM) and transmission electron microscopy (TEM). GO combined with ZnO NPs successfully and displayed an adsorption peak at 358 nm. The XRD results showed the crystalline composition of the loaded ZnO NPs on GO sheets. FTIR spectrum confirmed the presence of proteins during the synthesis which act as stabilizing and capping agents. The nanocomposite has a high negative surface charge (-32.8 ± 5.7 mV) which increases its stability. SEM and TEM showing the size of biosynthesized ZnO-NPs was in the range of 40-50 nm. The CS/GO/ZnO alone or immobilized in cryogel revealed good antimicrobial activities against B. cereus ATCC 14,579, Escherichia coli ATCC 25,922, and Candida albicans ATCC 10,231 in a dose-dependent manner. The CS/GO/ZnO cryogel revealed higher antimicrobial activity than GO/ZnO nanocomposite and standard antibiotics (amoxicillin and miconazole) with inhibition zones averages of 24.33 ± 0.12, 15.67 ± 0.03, and 17.5 ± 0.49 mm, respectively. The MIC values of the prepared nanocomposite against B. cereus, E. coli, and C. albicans were 80, 80, and 90 µg/ml compared to standard drugs (90, 120 and 150 µg/ml, respectively). According to the TEM ultrastructure studies of nanocomposite-treated microbes, treated cells had severe deformities and morphological alterations compared to the untreated cells including cell wall distortion, the separation between the cell wall and plasma membrane, vacuoles formation moreover complete cell lyses were also noted. In the cytotoxicity test of CS/GO/ZnO alone and its cryogel, there was a significant reduction (p˂0.05) in cell viability of WI-38 normal lung cell line after the concentration of 209 and 164 µg/ml, respectively. It showed the low toxic effect of the nanocomposite and its cryogel on the WI-38 line which implies its safety. In addition, water treatment with the CS/GO/ZnO cryogel decreased turbidity (0.58 NTU), total coliform (2 CFU/100 ml), fecal coliform (1 CFU/100 ml), fecal Streptococcus (2 CFU/100 ml), and heterotrophic plate counts (53 CFU/1 ml) not only in comparison with the chlorine-treated samples (1.69 NTU, 4 CFU/100 ml, 6 CFU/100 ml, 57 CFU/100 ml, and 140 CFU/1 ml, respectively) but also with the raw water samples (6.9 NTU, 10800 CFU/100 ml, 660 CFU/100 ml, 800 CFU/100 ml, and 4400 CFU/1 ml, respectively). Moreover, cryogel significantly decreased the concentration of different heavy metals, especially cobalt compared to chlorine (0.004 ppm, 0.002 ppm, and 0.001 ppm for raw water, chlorine-treated, and cryogel-treated groups, respectively) which helped in the reduction of their toxic effects. CONCLUSION This study provides an effective, promising, safe, and alternative nanocomposite to treat different human and animal pathogenic microbes that might be used in different environmental, industrial, and medical applications.
Collapse
Affiliation(s)
- Mohamed M El-Zahed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Mohamed I Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Marwa M El-Khodary
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohamed M A Mousa
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| |
Collapse
|
5
|
Algadi H, Alhoot MA, Al-Maleki AR, Purwitasari N. Effects of Metal and Metal Oxide Nanoparticles against Biofilm-Forming Bacteria: A Systematic Review. J Microbiol Biotechnol 2024; 34:1748-1756. [PMID: 39099204 PMCID: PMC11473618 DOI: 10.4014/jmb.2403.03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Biofilm formation by bacteria poses a significant challenge across diverse industries, displaying resilience against conventional antimicrobial agents. Nanoparticles emerge as a promising alternative for addressing biofilm-related issues. This review aims to assess the efficacy of metal and metal oxide nanoparticles in inhibiting or disrupting biofilm formation by various bacterial species. It delineates trends, identifies gaps, and outlines avenues for future research, emphasizing best practices and optimal nanoparticles for biofilm prevention and eradication. Additionally, it underscores the potential of nanoparticles as substitutes for traditional antibiotics in healthcare and combating antibiotic resistance. A systematic literature search, encompassing Web of Science, PubMed, and Google Scholar from 2015 to 2023, yielded 48 publications meeting the review criteria. These studies employed diverse methods to explore the antibacterial activity of nanoparticles against biofilm-forming bacteria strains. The implications of this study are profound, offering prospects for novel antimicrobial agents targeting biofilm-forming bacteria, often resistant to conventional antibiotics. In conclusion, nanoparticles present a promising frontier in countering biofilm-forming bacteria. This review delivers a structured analysis of current research, providing insights into the potential and challenges of nanoparticle utilization against biofilm-related challenges. While nanoparticles exhibit inherent antimicrobial properties with applications spanning healthcare, agriculture, and industries, the review acknowledges limitations such as the narrow scope of tested nanoparticles and the imperative need for extensive research on long-term toxicity and environmental impacts.
Collapse
Affiliation(s)
- Hend Algadi
- Postgraduate Center (PGC), Management & Science University (MSU), Shah Alam 40100, Selangor, Malaysia
| | - Mohammed Abdelfatah Alhoot
- School of Graduate Studies (SGS), Management & Science University (MSU), Shah Alam 40100, Selangor, Malaysia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Neny Purwitasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|
6
|
Nimrawi S, Gannett P, Kwon YM. Inorganic nanoparticles incorporated with transdermal drug delivery systems. Expert Opin Drug Deliv 2024; 21:1349-1362. [PMID: 39215444 DOI: 10.1080/17425247.2024.2399710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Transdermal drug delivery (TDD) is becoming more recognized as a noninvasive method particularly suitable for vulnerable populations. TDD offers an alternative to oral drug delivery, bypassing issues related to poor absorption and metabolism. However, the application of TDD is limited to a few drugs due to the skin's barrier. Various techniques, including passive methods like nanoparticles (NPs), are being explored to enhance drug permeability through the skin. AREAS COVERED This review shows the benefit of incorporating inorganic NPs with TDD in improving drug delivery through the skin. Despite the potential of these techniques, there are currently only a few research studies that utilize them. This review addresses the scarcity of research incorporating inorganic NPs with TDD. It also aims to summarize both inorganic NPs and TDD in the pharmaceutical industry, highlighting the advantages of incorporating these novel drug delivery systems with each other. EXPERT OPINION Given the potential benefits of incorporating inorganic NPs into TDD systems, there is a need for increased research and attention in this area. The review encourages scientists to address the existing research gap and explore the advantages of combining these innovative drug delivery systems to advance the field.
Collapse
Affiliation(s)
- Sukaina Nimrawi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Peter Gannett
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Young M Kwon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
7
|
Shanmugam R, Tharani M, Abullais SS, Patil SR, Karobari MI. Black seed assisted synthesis, characterization, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles. BMC Complement Med Ther 2024; 24:241. [PMID: 38902620 PMCID: PMC11191246 DOI: 10.1186/s12906-024-04552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Iron nanoparticles comprise a significant class of inorganic nanoparticles, which discover applications in various zones by prudence of their few exciting properties. This study achieved the green synthesis of iron oxide nanoparticles (IONPs) by black cumin seed (Nigella sativa) extract, which acts as a reducing and capping agent. The iron nanoparticles and black cumin extract were synthesized in three different concentrations: (01:01, 02:04,01:04). UV-visible spectroscopy, XRD, FTIR, and AFM characterized the synthesized iron oxide nanoparticles. UV-visible spectra show the maximum absorbance peak of 01:01 concentration at 380 nm. The other concentrations, such as 02:04, peaked at 400 nm and 01:04 at 680 nm, confirming the formation of iron oxide nanoparticles. AFM analysis reveals the spherical shape of iron oxide nanoparticles. The XRD spectra reveal the (fcc) cubic crystal structure of the iron oxide nanoparticles. The FTIR analysis's peaks at 457.13, 455.20, and 457.13 cm-1 depict the characteristic iron nanoparticle synthesis. The black cumin extract-mediated iron oxide nanoparticles show substantial antibacterial, antifungal, antioxidant and anti-inflammatory activity in a dose-dependent manner.
Collapse
Affiliation(s)
- Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - M Tharani
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Shahabe Saquib Abullais
- Department of Periodontics, College of Dentistry, King Khalid University, Abha, 62529, Saudi Arabia
| | - Santosh R Patil
- Department of Oral Medicine and Radiology, Chhattisgarh Dental College & Research Institute, Chhattisgarh, India
- Department of Dental Research, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Mohmed Isaqali Karobari
- Department of Dental Research, Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
8
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Habeeb Naser I, Ali Naeem Y, Ali E, Yarab Hamed A, Farhan Muften N, Turky Maan F, Hussein Mohammed I, Mohammad Ali Khalil NA, Ahmad I, Abed Jawad M, Elawady A. Revolutionizing Infection Control: Harnessing MXene-Based Nanostructures for Versatile Antimicrobial Strategies and Healthcare Advancements. Chem Biodivers 2024; 21:e202400366. [PMID: 38498805 DOI: 10.1002/cbdv.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
The escalating global health challenge posed by infections prompts the exploration of innovative solutions utilizing MXene-based nanostructures. Societally, the need for effective antimicrobial strategies is crucial for public health, while scientifically, MXenes present promising properties for therapeutic applications, necessitating scalable production and comprehensive characterization techniques. Here we review the versatile physicochemical properties of MXene materials for combatting microbial threats and their various synthesis methods, including etching and top-down or bottom-up techniques. Crucial characterization techniques such as XRD, Raman spectroscopy, SEM/TEM, FTIR, XPS, and BET analysis provide insightful structural and functional attributes. The review highlights MXenes' diverse antimicrobial mechanisms, spanning membrane disruption and oxidative stress induction, demonstrating efficacy against bacterial, viral, and fungal infections. Despite translational hurdles, MXene-based nanostructures offer broad-spectrum antimicrobial potential, with applications in drug delivery and diagnostics, presenting a promising path for advancing infection control in global healthcare.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001, Hillah, Babil, Iraq
| | - Youssef Ali Naeem
- Department of Medical Laboratories Technology, Al-Manara College for Medical Sciences, Maysan, Iraq
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | | | - Nafaa Farhan Muften
- Department of Medical Laboratories Technology, Mazaya University College, Iraq
| | - Fadhil Turky Maan
- College of Health and Medical Technologies, Al-Esraa University, Baghdad, Iraq
| | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
10
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
11
|
Summonte S, Sanchez Armengol E, Ricci F, Sandmeier M, Hock N, Güclü-Tuncyüz A, Bernkop-Schnürch A. Phosphatase-degradable nanoparticles providing sustained drug release. Int J Pharm 2024; 654:123983. [PMID: 38460768 DOI: 10.1016/j.ijpharm.2024.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
AIM The study aimed to develop enzyme-degradable nanoparticles comprising polyphosphates and metal cations providing sustained release of the antibacterial drug ethacridine (ETH). METHODS Calcium polyphosphate (Ca-PP), zinc polyphosphate (Zn-PP) and iron polyphosphate nanoparticles (Fe-PP NPs) were prepared by co-precipitation of sodium polyphosphate with cations and ETH. Developed nanocarriers were characterized regarding particle size, PDI, zeta potential, encapsulation efficiency and drug loading. Toxicological profile of nanocarriers was assessed via hemolysis assay and cell viability on human blood erythrocytes and HEK-293 cells, respectively. The enzymatic degradation of NPs was evaluated in presence of alkaline phosphatase (ALP) monitoring the release of monophosphate, shift in zeta potential and particle size as well as drug release. The antibacterial efficacy against Escherichia coli was determined via microdilution assay. RESULTS NPs were obtained in a size range between 300 - 480 nm displaying negative zeta potential values. Encapsulation efficiency was in the range of 83.73 %- 95.99 %. Hemolysis assay underlined sufficient compatibility of NPs with blood cells, whereas drug and NPs showed a concentration dependent effect on HEK-293 cells viability. Ca- and Zn-PP NPs exhibited remarkable changes in zeta potential, particle size, monophosphate and drug release upon incubation with ALP, compared to Fe-PP NPs showing only minor differences. The released ETH from Ca- and Zn-PP nanocarriers retained the antibacterial activity against E. coli, whereas no antibacterial effect was observed with Fe-PP NPs. CONCLUSION Polyphosphate nanoparticles cross-linked with divalent cations and ETH hold promise for sustained drug delivery triggered by ALP for parental administration.
Collapse
Affiliation(s)
- Simona Summonte
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Eva Sanchez Armengol
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Fabrizio Ricci
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ayse Güclü-Tuncyüz
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| |
Collapse
|
12
|
Almutleb ES, Ramachandran S, Khan AA, El-Hiti GA, Alanazi SA. Synergistic Effect of Nilavembu Choornam-Gold Nanoparticles on Antibiotic-Resistant Bacterial Susceptibility and Contact Lens Contamination-Associated Infectious Pathogenicity. Int J Mol Sci 2024; 25:2115. [PMID: 38396792 PMCID: PMC10889799 DOI: 10.3390/ijms25042115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Antibiotic-resistant bacterial colonies mitigate rapid biofilm formation and have complex cell wall fabrications, making it challenging to penetrate drugs across their biofilm barriers. The objective of this study was to investigate the antibacterial susceptibility of antibiotic-resistant bacteria and contact lens barrenness. Nilavembu Choornam-Gold Nanoparticles (NC-GNPs) were synthesized using NC polyherbal extract and characterized by UV-visible spectrophotometer, SEM-EDX, XRD, Zeta sizer, FTIR, and TEM analysis. Contact lenses with overnight cultures of antibiotic-resistant bacteria K. pneumoniae and S. aureus showed significant differences in growth, biofilm formation, and infection pathogenicity. The NC-GNPs were observed in terms of size (average size is 57.6 nm) and surface chemistry. A zone of inhibition was calculated for K. pneumoniae 18.8 ± 1.06, S. aureus 23.6 ± 1.15, P. aeruginosa 24.16 ± 0.87, and E. faecalis 24.5 ± 1.54 mm at 24 h of NC-GNPs alone treatment. In electron microscopy studies, NC-GNP-treated groups showed nuclear shrinkage, nuclear disintegration, degeneration of cell walls, and inhibited chromosomal division. In contrast, normal bacterial colonies had a higher number of cell divisions and routinely migrated toward cell multiplications. NC-GNPs exhibited antibacterial efficacy against antibiotic-resistant bacteria when compared to NC extract alone. We suggest that NC-GNPs are highly valuable to the population of hospitalized patients and other people to reduce the primary complications of contact lens contamination-oriented microbial infection and the therapeutic efficiency of antibiotic-resistant bacterial pathogenicity.
Collapse
Affiliation(s)
| | - Samivel Ramachandran
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (E.S.A.); (A.A.K.); (G.A.E.-H.); (S.A.A.)
| | | | | | | |
Collapse
|
13
|
Chatterjee P, Chauhan N, Jain U. Confronting antibiotic-resistant pathogens: Distinctive drug delivery potentials of progressive nanoparticles. Microb Pathog 2024; 187:106499. [PMID: 38097117 DOI: 10.1016/j.micpath.2023.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Antimicrobial resistance arises over time, usually due to genetic modifications. Global observations of high resistance rates to popular antibiotics used to treat common bacterial diseases, such as diarrhea, STIs, sepsis, and urinary tract infections, indicate that our supply of effective antibiotics is running low. The mechanisms of action of several antibiotic groups are covered in this review. Antimicrobials disrupt the development and metabolism of bacteria, leading to their eventual death. However, in recent years, microorganisms become resistant to the drugs. Bacteria encode resistant genes against antibiotics and inhibit the function of antibiotics by reducing the uptake of drugs, modifying the enzyme's active site, synthesizing enzymes to degrade antibiotics, and changing the structure of ribosomal subunits. Additionally, the methods of action of resistant bacteria against different kinds of antibiotics as well as their modes of action are discussed. Besides, the resistant pathogenic bacteria which get the most priority by World Health Organisation (WHO) for synthesizing new drugs, have also been incorporated. To overcome antimicrobial resistance, nanomaterials are used to increase the efficacy of antimicrobial drugs. Metallic, inorganic, and polymer-based nanoparticles once conjugated with antibacterial drugs, exhibit synergistic effects by increasing the efficacy of the drugs by inhibiting bacterial growth. Nanomaterial's toxic properties are proportional to their concentrations. Higher concentration nanomaterials are more toxic to the cells. In this review, the toxic properties of nanomaterials on lung cells, lymph nodes, and neuronal cells are also summarized.
Collapse
Affiliation(s)
- Pallabi Chatterjee
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India.
| |
Collapse
|
14
|
Natarajan Sankar H, Shanmugam R, Anandan J. Green Synthesis of Euphorbia tirucalli-Mediated Titanium Dioxide Nanoparticles Against Wound Pathogens. Cureus 2024; 16:e53939. [PMID: 38469022 PMCID: PMC10925819 DOI: 10.7759/cureus.53939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Background Wound infections caused by pathogens present a considerable global health challenge, resulting in extended healing durations, elevated healthcare expenses, and potential fatalities. Conventional approaches to managing wound pathogens have limitations such as antibiotic resistance, toxicity and allergic reactions. Consequently, there is a rising interest in exploring alternative strategies for preventing and treating wound infections. Titanium dioxide nanoparticles (TiO2NPs) have gained attention for their potential in wound healing, attributed to their distinctive properties, including antimicrobial and anti-inflammatory capabilities. Methods TiO2NPs synthesized through Euphorbia tirucalli were examined for their antibacterial potential against wound pathogens, using the Kirby-Bauer agar-well diffusion method and time-kill curve assay. Furthermore, the cytotoxic effect of the synthesized nanoparticles was evaluated through a brine shrimp lethality assay. Results Green-synthesized TiO2NPs demonstrated potent antimicrobial activity against tested wound pathogens, displaying a zone of inhibition against Pseudomonas aeruginosa (11 mm) and Escherichia coli (10 mm) at the highest concentration of 100 μg/mL. In the time-kill curve assay, the prepared TiO2NPs showed significant bactericidal activity against Pseudomonas aeruginosa followed by Escherichia coli. In the brine shrimp lethality assay, at the lowest concentration of 5 μg/mL of the prepared nanoparticles, 100% of the nauplii remained alive after 48 hours. Conclusion The results indicate that TiO2NPs synthesized using Euphorbia tirucalli extract exhibit potent antimicrobial activity against the tested wound pathogens. Moreover, the prepared nanoparticles exhibit lower toxicity, suggesting their potential use as an alternative to commercially available synthetic drugs.
Collapse
Affiliation(s)
- Haritha Natarajan Sankar
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Jayasree Anandan
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
15
|
Jiang H, Li L, Li Z, Chu X. Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomed Microdevices 2024; 26:12. [PMID: 38261085 PMCID: PMC10806003 DOI: 10.1007/s10544-023-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
Collapse
Affiliation(s)
- Hao Jiang
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xiang Chu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Emergency, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
16
|
Scoffone VC, Barbieri G, Irudal S, Trespidi G, Buroni S. New Antimicrobial Strategies to Treat Multi-Drug Resistant Infections Caused by Gram-Negatives in Cystic Fibrosis. Antibiotics (Basel) 2024; 13:71. [PMID: 38247630 PMCID: PMC10812592 DOI: 10.3390/antibiotics13010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
People with cystic fibrosis (CF) suffer from recurrent bacterial infections which induce inflammation, lung tissue damage and failure of the respiratory system. Prolonged exposure to combinatorial antibiotic therapies triggers the appearance of multi-drug resistant (MDR) bacteria. The development of alternative antimicrobial strategies may provide a way to mitigate antimicrobial resistance. Here we discuss different alternative approaches to the use of classic antibiotics: anti-virulence and anti-biofilm compounds which exert a low selective pressure; phage therapies that represent an alternative strategy with a high therapeutic potential; new methods helping antibiotics activity such as adjuvants; and antimicrobial peptides and nanoparticle formulations. Their mechanisms and in vitro and in vivo efficacy are described, in order to figure out a complete landscape of new alternative approaches to fight MDR Gram-negative CF pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.B.); (S.I.); (G.T.)
| |
Collapse
|
17
|
Huynh PT, Le Tran KT, Nguyen TTH, Lam VQ, Phan NTK, Ngo TVK. Preparation and characterization of spiked gold nanobipyramids and its antibacterial effect on methicillin-resistant Staphylococcus aureus and methicillin-sensitive Staphylococcus aureus. J Genet Eng Biotechnol 2023; 21:121. [PMID: 37966622 PMCID: PMC10651629 DOI: 10.1186/s43141-023-00589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND This paper reports the preparation of a new family of spiked gold nanoparticles, spiked gold nanobipyramids (SNBPs). This protocol includes the process to synthesize gold nanobipyramids (NBPs) using combined seed-mediated and microwave-assisted method and procedure to form spikes on whole surface of gold nanobipyramid. We also evaluated the antibacterial activity against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in various concentrations of SNBPs and NBPs by well diffusion assay, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) determination. The effect of SNBPs on exposed bacteria was observed by scanning electron microscopy. RESULTS The UV-Vis of purified NBPs exhibited two absorption bands located at 550 nm and 849 nm with yield of bipyramidal particles more than 90%. The average size of NBPs was 76.33 ± 10.11 nm in length and 26.57 ± 2.25 nm in diameter, respectively, while SNBPs were prolongated in length and achieved 182.37 ± 21.74 nm with multi-branches protruding whole surface areas. In antibacterial evaluations, SNBPs and NBPs showed antibacterial activity with MIC of 6.25 μl/ml and 12.5 μl/ml, respectively, for MSSA while 12.5 μl/ml and 25 μl/ml, respectively, for MRSA. Besides, MBC values of SNBPs and NBPs were found to be 12.5 μl/ml and 25 μl/ml, respectively, against MSSA while 25 μl/ml and 50 μl/ml, respectively, against MRSA. Furthermore, scanning electron microscopy observation showed the mechanism that SNBPs damaged the outer membrane, released cytoplasm, and altered the normal morphology of MRSA and MSSA, leading to bacterial death. CONCLUSIONS This report suggests that these SNBPs are potential antibacterial agents that can be applied as antibacterial materials to inhibit the growth of human bacterial pathogen infections related to antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Phat Trong Huynh
- Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, 700000, Vietnam.
- Faculty of Physics and Engineering Physics, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| | - Khanh Thi Le Tran
- Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, 700000, Vietnam
| | | | - Vinh Quang Lam
- Faculty of Physics and Engineering Physics, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Ngan Thi Kim Phan
- Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, 700000, Vietnam
| | - Thanh Vo Ke Ngo
- Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
18
|
Rajasekaran J, Viswanathan P. Anti-bacterial and antibiofilm properties of seaweed polysaccharide-based nanoparticles. AQUACULTURE INTERNATIONAL 2023; 31:2799-2823. [DOI: 10.1007/s10499-023-01111-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 12/19/2024]
|
19
|
Zhang Y, Zhu Y, Ma P, Wu H, Xiao D, Zhang Y, Sui X, Zhang L, Dong A. Functional carbohydrate-based hydrogels for diabetic wound therapy. Carbohydr Polym 2023; 312:120823. [PMID: 37059550 DOI: 10.1016/j.carbpol.2023.120823] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Diabetes wound are grave and universal complications of diabetes. Owing to poor treatment course, high amputation rate and mortality, diabetes wound treatment and care have become a global challenge. Wound dressings have received much attention due to their ease of use, good therapeutic effect, and low costs. Among them, carbohydrate-based hydrogels with excellent biocompatibility are considered to be the best candidates for wound dressings. Based on this, we first systematically summarized the problems and healing mechanism of diabetes wounds. Next, common treatment methods and wound dressings were discussed, and the application of various carbohydrate-based hydrogels and their corresponding functionalization (antibacterial, antioxidant, autoxidation and bioactive substance delivery) in the treatment of diabetes wounds were emphatically introduced. Ultimately, the future development of carbohydrate-based hydrogel dressings was proposed. This review aims to provide a deeper understanding of wound treatment and theoretical support for the design of hydrogel dressings.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
20
|
Islam MS, Rahman MT. A Comprehensive Review on Bacterial Vaccines Combating Antimicrobial Resistance in Poultry. Vaccines (Basel) 2023; 11:vaccines11030616. [PMID: 36992200 DOI: 10.3390/vaccines11030616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Bacterial vaccines have become a crucial tool in combating antimicrobial resistance (AMR) in poultry. The overuse and misuse of antibiotics in poultry farming have led to the development of AMR, which is a growing public health concern. Bacterial vaccines are alternative methods for controlling bacterial diseases in poultry, reducing the need for antibiotics and improving animal welfare. These vaccines come in different forms including live attenuated, killed, and recombinant vaccines, and they work by stimulating the immune system to produce a specific response to the target bacteria. There are many advantages to using bacterial vaccines in poultry, including reduced use of antibiotics, improved animal welfare, and increased profitability. However, there are also limitations such as vaccine efficacy and availability. The use of bacterial vaccines in poultry is regulated by various governmental bodies and there are economic considerations to be taken into account, including costs and return on investment. The future prospects for bacterial vaccines in poultry are promising, with advancements in genetic engineering and vaccine formulation, and they have the potential to improve the sustainability of the poultry industry. In conclusion, bacterial vaccines are essential in combating AMR in poultry and represent a crucial step towards a more sustainable and responsible approach to poultry farming.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
21
|
Zhou Z, Kai M, Wang S, Wang D, Peng Y, Yu Y, Gao W, Zhang L. Emerging nanoparticle designs against bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1881. [PMID: 36828801 DOI: 10.1002/wnan.1881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/26/2023]
Abstract
The rise of antibiotic resistance has caused the prevention and treatment of bacterial infections to be less effective. Therefore, researchers turn to nanomedicine for novel and effective antibacterial therapeutics. The effort resulted in the first-generation antibacterial nanoparticles featuring the ability to improve drug tolerability, circulation half-life, and efficacy. Toward developing the next-generation antibacterial nanoparticles, researchers have integrated design elements that emphasize physical, broad-spectrum, biomimetic, and antivirulence mechanisms. This review highlights four emerging antibacterial nanoparticle designs: inorganic antibacterial nanoparticles, responsive antibacterial nanocarriers, virulence nanoscavengers, and antivirulence nanovaccines. Examples in each design category are selected and reviewed, and their structure-function relationships are discussed. These emerging designs open the door to nontraditional antibacterial nanomedicines that rely on mechano-bactericidal, function-driven, nature-inspired, or virulence-targeting mechanisms to overcome antibiotic resistance for more effective antibacterial therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Mingxuan Kai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Shuyan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Yifei Peng
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Shabatina TI, Vernaya OI, Melnikov MY. Hybrid Nanosystems of Antibiotics with Metal Nanoparticles-Novel Antibacterial Agents. Molecules 2023; 28:molecules28041603. [PMID: 36838591 PMCID: PMC9959110 DOI: 10.3390/molecules28041603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the last few decades. Nanoscale inorganic materials (metals and metal oxides) with antimicrobial potential are a promising solution to this problem. Here we discuss possible mechanisms of pathogenic microorganisms' resistance to antibiotics, proposed mechanisms of action of inorganic nanoparticles on bacterial cells, and the possibilities and benefits of their combined use with antibacterial drugs. The prospects of using metal and metal oxide nanoparticles as carriers in targeted delivery systems for antibacterial compositions are also discussed.
Collapse
Affiliation(s)
- Tatyana I. Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
- Correspondence:
| | - Olga I. Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
| | - Mikhail Y. Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
23
|
Wang C, Yang Y, Cao Y, Liu K, Shi H, Guo X, Liu W, Hao R, Song H, Zhao R. Nanocarriers for the delivery of antibiotics into cells against intracellular bacterial infection. Biomater Sci 2023; 11:432-444. [PMID: 36503914 DOI: 10.1039/d2bm01489k] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The barrier function of host cells enables intracellular bacteria to evade the lethality of the host immune system and antibiotics, thereby causing chronic and recurrent infections that seriously threaten human health. Currently, the main clinical strategy for the treatment of intracellular bacterial infections involves the use of long-term and high-dose antibiotics. However, insufficient intracellular delivery of antibiotics along with various resistance mechanisms not only weakens the efficacy of current therapies but also causes serious adverse drug reactions, further increasing the disease and economic burden. Improving the delivery efficiency, intracellular accumulation, and action time of antibiotics remains the most economical and effective way to treat intracellular bacterial infections. The rapid development of nanotechnology provides a strategy to efficiently deliver antibiotics against intracellular bacterial infections into cells. In this review, we summarize the types of common intracellular pathogens, the difficulties faced by antibiotics in the treatment of intracellular bacterial infections, and the research progress of several types of representative nanocarriers for the delivery of antibiotics against intracellular bacterial infections that have emerged in recent years. This review is expected to provide a reference for further elucidating the intracellular transport mechanism of nanocarrier-drug complexes, designing safer and more effective nanocarriers and establishing new strategies against intracellular bacterial infection.
Collapse
Affiliation(s)
- Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Kaixin Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Hua Shi
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| |
Collapse
|
24
|
Paul S, Sen B, Basak N, Chakraborty N, Bhakat K, Das S, Islam E, Mondal S, Abbas SJ, Ali SI. Zn 3Sb 4O 6F 6 and KI-Doped Zn 3Sb 4O 6F 6: A Metal Oxyfluoride System for Photocatalytic Activity, Knoevenagel Condensation, and Bacterial Disinfection. Inorg Chem 2023; 62:1032-1046. [PMID: 36598860 DOI: 10.1021/acs.inorgchem.2c04006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zn3Sb4O6F6 crystallites were synthesized by a pH-regulated hydrothermal synthetic approach, while doping on Zn3Sb4O6F6 by KI was performed by the "incipient wetness impregnation technique." The effect of KI in Zn3Sb4O6F6 is found with the changes in morphology in the doped compound, i.e., needle-shaped particles with respect to the irregular cuboid and granular shaped in the pure compound. Closer inspection of the powder diffraction pattern of doped compounds also reveals the shifting of Braggs' peaks toward a lower angle and the difference in cell parameters compared to the pure compound. Both metal oxyfluoride comprising lone pair elements and their doped compounds have been successfully applied as photocatalysts for methylene blue dye degradation. Knoevenagel condensation reactions were performed using Zn3Sb4O6F6 as the catalyst and confirmed 99% yield even at 60 °C temperature under solvent-free conditions. Both pure and KI-doped compounds were tested against several standard bacterial strains, i.e., Enterobacter sp., Escherichia coli, Staphylococcus sp., Salmonella sp., Bacillus sp., Proteous sp., Pseudomonas sp., and Klebsiella sp. by the "disk diffusion method" and their antimicrobial activities were confirmed.
Collapse
Affiliation(s)
- Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Nirman Chakraborty
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata700032, West BengalIndia
| | - Kiron Bhakat
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Swastik Mondal
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata700032, West BengalIndia
| | - Sk Jahir Abbas
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| |
Collapse
|
25
|
Tabcheh J, Vergalli J, Davin-Régli A, Ghanem N, Pages JM, Al-Bayssari C, Brunel JM. Rejuvenating the Activity of Usual Antibiotics on Resistant Gram-Negative Bacteria: Recent Issues and Perspectives. Int J Mol Sci 2023; 24:1515. [PMID: 36675027 PMCID: PMC9864949 DOI: 10.3390/ijms24021515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance continues to evolve and spread beyond all boundaries, resulting in an increase in morbidity and mortality for non-curable infectious diseases. Due to the failure of conventional antimicrobial therapy and the lack of introduction of a novel class of antibiotics, novel strategies have recently emerged to combat these multidrug-resistant infectious microorganisms. In this review, we highlight the development of effective antibiotic combinations and of antibiotics with non-antibiotic activity-enhancing compounds to address the widespread emergence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Jinane Tabcheh
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
- Faculty of Science 3, Lebanese University, Michel Slayman Tripoli Campus, Tripoli 1352, Lebanon
| | - Julia Vergalli
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Anne Davin-Régli
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Noha Ghanem
- Faculty of Science 3, Lebanese University, Michel Slayman Tripoli Campus, Tripoli 1352, Lebanon
| | - Jean-Marie Pages
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Charbel Al-Bayssari
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut P.O. Box 55251, Lebanon
| | | |
Collapse
|
26
|
Kong J, Zhang J, Shen M, Zhang S, Shen P, Ren C. Preparation of manganese(II) oxide doped zinc oxide nanocomposites with improved antibacterial activity via ROS. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Lai MJ, Huang YW, Chen HC, Tsao LI, Chang Chien CF, Singh B, Liu BR. Effect of Size and Concentration of Copper Nanoparticles on the Antimicrobial Activity in Escherichia coli through Multiple Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213715. [PMID: 36364491 PMCID: PMC9656174 DOI: 10.3390/nano12213715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 05/27/2023]
Abstract
Metal and metal oxide nanoparticles, including copper nanoparticles (CuNPs), display antimicrobial activities and are regarded as promising microorganism inhibitors. Here, we explored the antimicrobial activity of CuNPs in Escherichia coli (E. coli) using two particle sizes (20 and 60 nm) and five concentrations (1, 5, 10, 50 and 100 μg/mL). The result showed a concentration-dependent trend of bactericidal activities for both size groups, with 20 nm particles more effective than 60 nm particles at low concentrations. The membrane disruption caused by CuNPs was confirmed by electron microscopy, PI staining and protein leaking analysis. However, the results of reactive oxygen species generation and genomic DNA damage revealed that the size and concentration of CuNPs were factors affecting the induction of multiple bactericidal mechanisms simultaneously on different scales. Further results of annexin V-PI staining supported this hypothesis by showing the shifting composition of the early-, late- and non-apoptotic dead cells across the CuNP groups. Many CuNP treatment groups were rescued when four mammalian modulators-wortmannin, necrosulfonamide, Z-VAD-FMK, and SBI-0206965-were applied separately. The results suggest the possible existence of bacterial programmed cell death pathways in E. coli which could be triggered by CuNP treatments.
Collapse
Affiliation(s)
- Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Hsuan-Chun Chen
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Li-I Tsao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Chih-Fang Chang Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100229, Taiwan
| | - Bhaskar Singh
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Betty Revon Liu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
28
|
Chen H, Zhang Y, Yu T, Song G, Xu T, Xin T, Lin Y, Han B. Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics 2022; 14:2250. [PMID: 36297683 PMCID: PMC9612159 DOI: 10.3390/pharmaceutics14102250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is a dysbiotic biofilm-induced and host-mediated inflammatory disease of tooth supporting tissues that leads to progressive destruction of periodontal ligament and alveolar bone, thereby resulting in gingival recession, deep periodontal pockets, tooth mobility and exfoliation, and aesthetically and functionally compromised dentition. Due to the improved biopharmaceutical and pharmacokinetic properties and targeted and controlled drug release, nano-based drug delivery systems have emerged as a promising strategy for the treatment of periodontal defects, allowing for increased efficacy and safety in controlling local inflammation, establishing a regenerative microenvironment, and regaining bone and attachments. This review provides an overview of nano-based drug delivery systems and illustrates their practical applications, future prospects, and limitations in the field of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
29
|
Highly Stable Core-Shell Nanocolloids: Synergy between Nano-Silver and Natural Polymers to Prevent Biofilm Formation. Antibiotics (Basel) 2022; 11:antibiotics11101396. [PMID: 36290054 PMCID: PMC9598106 DOI: 10.3390/antibiotics11101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Active investment in research time in the development and study of novel unconventional antimicrobials is trending for several reasons. First, it is one of the ways which might help to fight antimicrobial resistance and bacterial contamination due to uncontrolled biofilm growth. Second, minimizing harmful environmental outcomes due to the overuse of toxic chemicals is one of the highest priorities nowadays. We propose the application of two common natural compounds, chitosan and tannic acid, for the creation of a highly crosslinked polymer blend with not only intrinsic antimicrobial properties but also reducing and stabilizing powers. Thus, the fast and green synthesis of fine spherically shaped Ag nanoparticles and further study of the composition and properties of the colloids took place. A positively charged core-shell nanocomposition, with an average size in terms of the metal core of 17 ± 4 nm, was developed. Nanoantimicrobials were characterized by several spectroscopic (UV-vis and FTIR) and microscopic (transmission and scanning electron microscopies) techniques. The use of AgNPs as a core and an organic polymer blend as a shell potentially enable a synergistic long-lasting antipathogen effect. The antibiofilm potential was studied against the food-borne pathogens Salmonella enterica and Listeria monocytogenes. The antibiofilm protocol efficiency was evaluated by performing crystal violet assay and optical density measurements, direct visualization by confocal laser scanning microscopy and morphological studies by SEM. It was found that the complex nanocomposite has the ability to prevent the growth of biofilm. Further investigation for the potential application of this stable composition in food packaging will be carried out.
Collapse
|
30
|
Vukoja D, Vlainić J, Ljolić Bilić V, Martinaga L, Rezić I, Brlek Gorski D, Kosalec I. Innovative Insights into In Vitro Activity of Colloidal Platinum Nanoparticles against ESBL-Producing Strains of Escherichia coli and Klebsiella pneumoniae. Pharmaceutics 2022; 14:pharmaceutics14081714. [PMID: 36015339 PMCID: PMC9413765 DOI: 10.3390/pharmaceutics14081714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Growing morbidity and mortality rates due to increase in the number of infections caused by MDR (multi-drug resistant) microorganisms are becoming some of the foremost global health issues. Thus, the need to search for and find novel approaches to fight AMR (antimicrobial resistance) has become obligatory. This study aimed to determine the antimicrobial properties of commercially purchased colloidal platinum nanoparticles by examining the existence and potency of their antibacterial effects and investigating the mechanisms by means of which they express these activities. Antimicrobial properties were investigated with respect to standard laboratory ATCC (American Type Cell Culture) and clinical extended-spectrum beta-lactamase (ESBL)-producing strains of Escherichia (E.) coli and Klebsiella (K.) pneumoniae. Standard microbiological methods of serial microdilution, modulation of microbial cell death kinetics (“time–kill” assays), and biofilm inhibition were used. Bacterial cell wall damage and ROS (reactive oxygen species) levels were assessed in order to explore the mechanisms of platinum nanoparticles’ antibacterial activities. Platinum nanoparticles showed strong antibacterial effects against all tested bacterial strains, though their antibacterial effects were found to succumb to time kinetics. Antibiofilm activity was modest overall and significantly effective only against E. coli strains. By measuring extracellular DNA/RNA and protein concentrations, induced bacterial cell wall damage could be assumed. The determination of ROS levels induced by platinum nanoparticles revealed their possible implication in antibacterial activity. We conclude that platinum nanoparticles exhibit potent antibacterial effects against standard laboratory and resistant strains of E. coli and K. pneumoniae. Both, cell wall damage and ROS induction could have important role as mechanisms of antibacterial activity, and, require further investigation.
Collapse
Affiliation(s)
- Damir Vukoja
- Internal Medicine Clinic, University Hospital Dubrava, 10000 Zagreb, Croatia
- Institute for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
- Correspondence: (J.V.); (I.K.)
| | - Vanja Ljolić Bilić
- Institute for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Lela Martinaga
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Diana Brlek Gorski
- Croatian Institute of Public Health, Rockefeller Str. 7, 10000 Zagreb, Croatia
| | - Ivan Kosalec
- Institute for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (J.V.); (I.K.)
| |
Collapse
|
31
|
Li DF, Yang MF, Xu HM, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Wang JY, Liang YJ, Yao J, Wang LS. Nanoparticles for oral delivery: targeted therapy for inflammatory bowel disease. J Mater Chem B 2022; 10:5853-5872. [PMID: 35876136 DOI: 10.1039/d2tb01190e] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a group of chronic and idiopathic gastrointestinal (GI) disorders, inflammatory bowel disease (IBD) is characterized by recurrent intestinal mucosal inflammation. Oral administration is critical for the treatment of IBD. Unfortunately, it is difficult to target the bowel located in the GI tract due to multiple physical barriers. The unique physicochemical properties of nanoparticle-based drug delivery systems (DDSs) and their enhanced permeability and retention effects in the inflamed bowel, render nanomedicines to be used to implement precise drug delivery at diseased sites in IBD therapy. In this review, we described the pathophysiological features of IBD, and designed strategies to exploit these features for intestinal targeting. In addition, we introduced the types of currently developed nano-targeted carriers, including synthetic nanoparticle-based and emerging naturally derived nanoparticles (e.g., extracellular vesicles and plant-derived nanoparticles). Moreover, recent developments in targeted oral nanoparticles for IBD therapy were also highlighted. Finally, we presented challenges associated with nanotechnology and potential directions for future IBD treatment.
Collapse
Affiliation(s)
- De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026, Guangdong, China.
| | - Yu-Jie Liang
- Shenzhen Kangning Hospital, No. 1080, Cuizu Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
32
|
Marinescu L, Ficai D, Ficai A, Oprea O, Nicoara AI, Vasile BS, Boanta L, Marin A, Andronescu E, Holban AM. Comparative Antimicrobial Activity of Silver Nanoparticles Obtained by Wet Chemical Reduction and Solvothermal Methods. Int J Mol Sci 2022; 23:ijms23115982. [PMID: 35682664 PMCID: PMC9180968 DOI: 10.3390/ijms23115982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
The synthesis of nanoparticles from noble metals has received high attention from researchers due to their unique properties and their wide range of applications. Silver nanoparticles (AgNPs), in particular, show a remarkable inhibitory effect against microorganisms and viruses. Various methods have been developed to obtain AgNPs, however the stability of such nanostructures over time is still challenging. Researchers attempt to obtain particular shapes and sizes in order to tailor AgNPs properties for specific areas, such as biochemistry, biology, agriculture, electronics, medicine, and industry. The aim of this study was to design AgNPs with improved antimicrobial characteristics and stability. Two different wet chemical routes were considered: synthesis being performed (i) reduction method at room temperatures and (ii) solvothermal method at high temperature. Here, we show that the antimicrobial properties of the obtained AgNPs, are influenced by their synthesis route, which impact on the size and shape of the structures. This work analyses and compares the antimicrobial properties of the obtained AgNPs, based on their structure, sizes and morphologies which are influenced, in turn, not only by the type or quantities of precursors used but also by the temperature of the reaction. Generally, AgNPs obtained by solvothermal, at raised temperature, registered better antimicrobial activity as compared to NPs obtained by reduction method at room temperature.
Collapse
Affiliation(s)
- Liliana Marinescu
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (O.O.); (A.I.N.); (B.S.V.)
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (O.O.); (A.I.N.); (B.S.V.)
| | - Anton Ficai
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (O.O.); (A.I.N.); (B.S.V.)
- Academy of Romanian Scientists, Ilfov Street 3, 050054 Bucharest, Romania
| | - Ovidiu Oprea
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (O.O.); (A.I.N.); (B.S.V.)
- Academy of Romanian Scientists, Ilfov Street 3, 050054 Bucharest, Romania
| | - Adrian Ionut Nicoara
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (O.O.); (A.I.N.); (B.S.V.)
| | - Bogdan Stefan Vasile
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (O.O.); (A.I.N.); (B.S.V.)
| | - Laura Boanta
- Department of Hydraulics, Hydraulic Machinery and Environmental Engineering, Faculty of Power Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania; (L.B.); (A.M.)
| | - Alexandru Marin
- Department of Hydraulics, Hydraulic Machinery and Environmental Engineering, Faculty of Power Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania; (L.B.); (A.M.)
| | - Ecaterina Andronescu
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, Gh Polizu Street 1-7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (O.O.); (A.I.N.); (B.S.V.)
- Academy of Romanian Scientists, Ilfov Street 3, 050054 Bucharest, Romania
- Correspondence:
| | - Alina-Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, District 5, 77206 Bucharest, Romania;
| |
Collapse
|
33
|
Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents. Polymers (Basel) 2022; 14:polym14081599. [PMID: 35458353 PMCID: PMC9026340 DOI: 10.3390/polym14081599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
The rising threats to worldwide security (affecting the military, first responders, and civilians) urge us to develop efficient and versatile technological solutions to protect human beings. Soldiers, medical personnel, firefighters, and law enforcement officers should be adequately protected, so that their exposure to biological warfare agents (BWAs) is minimized, and infectious microorganisms cannot be spread so easily. Current bioprotective military garments include multilayered fabrics integrating activated carbon as a sorptive agent and a separate filtrating layer for passive protection. However, secondary contaminants emerge following their accumulation within the carbon filler. The clothing becomes too heavy and warm to wear, not breathable even, preventing the wearer from working for extended hours. Hence, a strong need exists to select and/or create selectively permeable layered fibrous structures with bioactive agents that offer an efficient filtering capability and biocidal skills, ensuring lightweightness, comfort, and multifunctionality. This review aims to showcase the main possibilities and trends of bioprotective textiles, focusing on metal-organic frameworks (MOFs), inorganic nanoparticles (e.g., ZnO-based), and organic players such as chitosan (CS)-based small-scale particles and plant-derived compounds as bioactive agents. The textile itself should be further evaluated as the foundation for the barrier effect and in terms of comfort. The outputs of a thorough, standardized characterization should dictate the best elements for each approach.
Collapse
|
34
|
Shi Y, Bergs C, Abdelbary MM, Pich A, Conrads G. Isoeugenol-functionalized nanogels inhibit peri-implantitis associated bacteria in vitro. Anaerobe 2022; 75:102552. [DOI: 10.1016/j.anaerobe.2022.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
|