1
|
Guan T, Lu Z, Tai R, Guo S, Zhang Z, Deng S, Ye J, Chi K, Zhang B, Chen H, Deng Z, Ke Y, Huang A, Chen P, Wang C, Ou C. Silicified curcumin microspheres Combats cardiovascular diseases via Nrf2/HO-1 pathway. Bioact Mater 2025; 49:378-398. [PMID: 40144796 PMCID: PMC11937612 DOI: 10.1016/j.bioactmat.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Diabetes and chemotherapy frequently give rise to severe cardiovascular complications, including chemotherapy-induced cardiotoxicity and diabetes-associated vascular remodeling. Nevertheless, the precise epidemiological features of these cardiovascular ailments remain incompletely elucidated, resulting in a dearth of effective therapeutic strategies in clinical settings. To tackle this intricate challenge, we have delved extensively into database resources, conducted comprehensive analyses of pertinent epidemiological data, and designed silicified curcumin (Si/Cur) microspheres as a novel therapeutic approach for cardiovascular diseases. By harnessing the alkaline microenvironment generated by silicon (Si), Si/Cur markedly elevates the bioavailability of curcumin (Cur). Further investigations have elucidated that Si/Cur exerts its therapeutic actions primarily via the Nrf2/HO-1 signaling pathway, effectively suppressing vascular remodeling and mitigating myocardial injury, thus disrupting the vicious cycle of persistent cardiovascular damage. In conclusion, this study integrates clinical cohort research to dissect epidemiological characteristics, directs the design and application of biomaterials, and paves the way for a novel and efficacious therapeutic avenue for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianwang Guan
- Guangdong Engineering Research Center of Boron Neutron Therapy and Application in Malignant Tumors, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Engineering Research Center for Innovative Boron Drugs and Novel Radioimmune Drugs, Cancer Center, The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong, 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
| | - Zhenxing Lu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Rundong Tai
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuai Guo
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Zhaowenbin Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shaohui Deng
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Jujian Ye
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kaiyi Chi
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510182, China
| | - Binghua Zhang
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, China
| | - Huiwan Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhilin Deng
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Yushen Ke
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Andong Huang
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, China
| | - Peier Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Caiwen Ou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| |
Collapse
|
2
|
Marcos-Ríos D, Rochano-Ortiz A, San Sebastián-Jaraba I, Fernández-Gómez MJ, Méndez-Barbero N, Oller J. Mitochondrial Dysfunction: A New Hallmark in Hereditable Thoracic Aortic Aneurysm Development. Cells 2025; 14:618. [PMID: 40277943 DOI: 10.3390/cells14080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Thoracic aortic aneurysms (TAAs) pose a significant health burden due to their asymptomatic progression, often culminating in life-threatening aortic rupture, and due to the lack of effective pharmacological treatments. Risk factors include elevated hemodynamic stress on the ascending aorta, frequently associated with hypertension and hereditary genetic mutations. Among the hereditary causes, Marfan syndrome is the most prevalent, characterized as a connective tissue disorder driven by FBN1 mutations that lead to life-threatening thoracic aortic ruptures. Similarly, mutations affecting the TGF-β pathway underlie Loeys-Dietz syndrome, while mutations in genes encoding extracellular or contractile apparatus proteins, such as ACTA2, are linked to non-syndromic familial TAA. Despite differences in genetic origin, these hereditary conditions share central pathophysiological features, including aortic medial degeneration, smooth muscle cell dysfunction, and extracellular remodeling, which collectively weaken the aortic wall. Recent evidence highlights mitochondrial dysfunction as a crucial contributor to aneurysm formation in Marfan syndrome. Disruption of the extracellular matrix-mitochondrial homeostasis axis exacerbates aortic wall remodeling, further promoting aneurysm development. Beyond its structural role in maintaining vascular integrity, the ECM plays a pivotal role in supporting mitochondrial function. This intricate relationship between extracellular matrix integrity and mitochondrial homeostasis reveals a novel dimension of TAA pathophysiology, extending beyond established paradigms of extracellular matrix remodeling and smooth muscle cell dysfunction. This review summarizes mitochondrial dysfunction as a potential unifying mechanism in hereditary TAA and explores how understanding mitochondrial dysfunction, in conjunction with established mechanisms of TAA pathogenesis, opens new avenues for developing targeted treatments to address these life-threatening conditions. Mitochondrial boosters could represent a new clinical opportunity for patients with hereditary TAA.
Collapse
Affiliation(s)
- Daniel Marcos-Ríos
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Antonio Rochano-Ortiz
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Irene San Sebastián-Jaraba
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María José Fernández-Gómez
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Nerea Méndez-Barbero
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X el Sabio (UAX), Villanueva de la Cañada, 28691 Madrid, Spain
| | - Jorge Oller
- Laboratory of Vascular Pathology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X el Sabio (UAX), Villanueva de la Cañada, 28691 Madrid, Spain
| |
Collapse
|
3
|
Wang Z, Sun W, Zhang K, Ke X, Wang Z. New insights into the relationship of mitochondrial metabolism and atherosclerosis. Cell Signal 2025; 127:111580. [PMID: 39732307 DOI: 10.1016/j.cellsig.2024.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Zexun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China
| | - Wangqing Sun
- Department of Radiology, Yixing Tumor Hospital, Yixing 214200, China
| | - Kai Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Xianjin Ke
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
4
|
Ma J, Wang Y, Xu W, Wang H, Wan Z, Guo J. Macrophage pyroptosis in atherosclerosis: therapeutic potential. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39953798 DOI: 10.3724/abbs.2025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the accumulation of lipid-rich plaques in arterial walls, leading to cardiovascular events such as myocardial infarction and stroke. Macrophage pyroptosis, a form of programmed cell death driven by the NLRP3 inflammasome and caspase-1 activation, plays a critical role in the progression and destabilization of atherosclerotic plaques. This review explores the molecular mechanisms underlying macrophage pyroptosis and their significant contributions to AS pathogenesis. Recent advancements have highlighted the therapeutic potential of targeting key components of the pyroptotic pathway, including the use of nanotechnology to increase drug delivery specificity. These strategies are promising for reducing inflammation, stabilizing plaques, and mitigating the clinical impact of AS. Future studies should focus on translating these findings into clinical applications to develop effective treatments that can halt or reverse AS progression by modulating macrophage pyroptosis.
Collapse
Affiliation(s)
- Jianying Ma
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou 434020, China
| | - Yixian Wang
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Wenna Xu
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Hanjing Wang
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhengdong Wan
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
5
|
Cheng WH, Wang Y. Inflammatory Pathways in Coronary Artery Disease: Which Ones to Target for Secondary Prevention? Cells 2025; 14:153. [PMID: 39936945 PMCID: PMC11817712 DOI: 10.3390/cells14030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Coronary artery disease (CAD), the build-up of atherosclerotic plaques on the wall of blood vessels, causes adverse cardiovascular events. Secondary prevention focuses on treating patients with existing plaques to prevent disease progression. Recent studies have shown that inflammation is an independent risk factor that drives disease progression, and targeting inflammation could be an effective therapeutic strategy for secondary prevention. In this review, we highlighted the roles of several inflammatory pathways in rupture and erosion, two major processes through which established plaques lead to adverse cardiovascular events. In the past 15 years, numerous clinical trials have tested the therapeutic potential of targeting these pathways, including neutralizing inflammatory cytokines and blocking signaling transduction of the inflammatory pathways. Only colchicine was approved for clinical use in patients with CAD. This is primarily due to the multifaceted roles of inflammatory pathways in disease progression. Commonly used pre-clinical models provided robust information for the onset of early disease but limited understanding of the inflammatory network in established plaques. This review will summarize lessons learned from successful and failed clinical trials to advocate for assessing inflammation in established plaques before designing therapeutics for secondary prevention.
Collapse
Affiliation(s)
- Wan-Hei Cheng
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
6
|
Lin WY, Dong YL, Lin Y, Sunchuri D, Guo ZL. Potential role of G protein‑coupled receptor 124 in cardiovascular and cerebrovascular disease (Review). Exp Ther Med 2025; 29:2. [PMID: 39534284 PMCID: PMC11552082 DOI: 10.3892/etm.2024.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptor 124 (GPR124) has a key role in regulating the proliferation and differentiation of endothelial cells, activating inflammatory bodies and promoting angiogenesis and other processes, thus affecting various pathological and physiological processes in the body. GPR124 is vital for promoting the development of the nervous system and maintaining the stability of the blood-brain barrier, and is also associated with cardiovascular and cerebrovascular diseases and cancer. This article will elaborate on the biological information regarding GPR124 published in recent years and its possible related signaling pathways in the field of diseases and provide a reference for further revealing the role of GPR124 in the occurrence and development of diseases.
Collapse
Affiliation(s)
- Wan-Yun Lin
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yu-Lei Dong
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yang Lin
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Diwas Sunchuri
- School of International Education, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Zhu-Ling Guo
- Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- School of Dentistry, Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
7
|
Liu J, Xu S, Gao B, Yuan M, Zhong L, Guo R. Protective effect of SERCA2a-SUMOylation by SUMO-1 on diabetes-induced atherosclerosis and aortic vascular injury. Mol Cell Biochem 2025; 480:279-293. [PMID: 38438822 DOI: 10.1007/s11010-024-04953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024]
Abstract
Diabetes is a major risk factor for cardiovascular disease. However, the exact mechanism by which diabetes contributes to vascular damage is not fully understood. The aim of this study was to investigate the role of SUMO-1 mediated SERCA2a SUMOylation in the development of atherosclerotic vascular injury associated with diabetes mellitus. ApoE-/- mice were treated with streptozotocin (STZ) injection combined with high-fat feeding to simulate diabetic atherosclerosis and vascular injury. Human aortic vascular smooth muscle cells (HAVSMCs) were treated with high glucose (HG, 33.3 mM) and palmitic acid (PA, 200 µM) for 24 h to mimic a model of diabetes-induced vascular injury in vitro. Aortic vascular function, phenotypic conversion, migration, proliferation, intracellular Ca2+ concentration, the levels of small ubiquitin-like modifier type 1 (SUMO1), SERCA2a and SUMOylated SERCA2a were detected. Diabetes-induced atherosclerotic mice presented obvious atherosclerotic plaques and vascular injury, companied by significantly lower levels of SUMO1 and SERCA2a in aorta. HG and PA treatment in HAVSMCs reduced the expressions of SUMO1, SERCA2a and SUMOylated SERCA2a, facilitated the HAVSMCs phenotypic transformation, proliferation and migration, attenuated the Ca2+ transport, and increased the resting intracellular Ca2+ concentration. We also confirmed that SUMO1 directly bound to SERCA2a in HAVSMCs. Overexpression of SUMO1 restored the function and phenotypic contractile ability of HAVSMCs by upregulating SERCA2a SUMOylation, thereby alleviating HG and PA-induced vascular injury. These observations suggest an essential role of SUMO1 to protect diabetes-induced atherosclerosis and aortic vascular injury by the regulation of SERCA2a-SUMOylation and calcium homeostasis.
Collapse
MESH Headings
- Animals
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- SUMO-1 Protein/metabolism
- Sumoylation
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Humans
- Aorta/pathology
- Aorta/metabolism
- Male
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Knockout, ApoE
Collapse
Affiliation(s)
- Jinlin Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shifang Xu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bin Gao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Meng Yuan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China.
| |
Collapse
|
8
|
Xiong J, Chen G, Lin B, Zhong L, Jiang X, Lu H. Integrative analysis of single-Cell RNA sequencing and experimental validation in the study of abdominal aortic aneurysm progression. Gene 2024; 929:148820. [PMID: 39103059 DOI: 10.1016/j.gene.2024.148820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a complex vascular disorder characterized by the progressive dilation of the abdominal aorta, with a high risk of rupture and mortality. Understanding the cellular interactions and molecular mechanisms underlying AAA development is critical for identifying potential therapeutic targets. METHODS This study utilized datasets GSE197748, GSE164678 and GSE183464 from the GEO database, encompassing bulk and single-cell RNA sequencing data from AAA and control samples. We performed principal component analysis, differential expression analysis, and functional enrichment analysis to identify key pathways involved in AAA. Cell-cell interactions were investigated using CellPhoneDB, focusing on fibroblasts, vascular smooth muscle cells (VSMCs), and macrophages. We further validated our findings using a mouse model of AAA induced by porcine pancreatic enzyme infusion, followed by gene expression analysis and co-immunoprecipitation experiments. RESULTS Our analysis revealed significant alterations in gene expression profiles between AAA and control samples, with a pronounced immune response and cell adhesion pathways being implicated. Single-cell RNA sequencing data highlighted an increased proportion of pro-inflammatory macrophages, along with changes in the composition of fibroblasts and VSMCs in AAA. CellPhoneDB analysis identified critical ligand-receptor interactions, notably collagen type I alpha 1 chain (COL1A1)/COL1A2-CD18 and thrombospondin 1 (THBS1)-CD3, suggesting complex communication networks between fibroblasts and VSMCs. In vivo experiments confirmed the upregulation of these genes in AAA mice and demonstrated the functional interaction between COL1A1/COL1A2 and CD18. CONCLUSION The interaction between fibroblasts and VSMCs, mediated by specific ligand-receptor pairs such as COL1A1/COL1A2-CD18 and THBS1-CD3, plays a pivotal role in AAA pathogenesis.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Mice
- Single-Cell Analysis/methods
- Humans
- Sequence Analysis, RNA/methods
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Macrophages/metabolism
- Disease Progression
- Fibroblasts/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Disease Models, Animal
- Male
- Mice, Inbred C57BL
- Gene Expression Profiling/methods
- Cell Communication/genetics
- Collagen Type I/genetics
- Collagen Type I/metabolism
Collapse
Affiliation(s)
- Jie Xiong
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China
| | - Guojun Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Beiyou Lin
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China
| | - Lintao Zhong
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China
| | - Xiaofei Jiang
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China.
| | - Hongyun Lu
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China.
| |
Collapse
|
9
|
Zhang Y, Zhang L, Jia Y, Fang J, Zhang S, Hou X. Screening of potential regulatory genes in carotid atherosclerosis vascular immune microenvironment. PLoS One 2024; 19:e0307904. [PMID: 39652562 PMCID: PMC11627393 DOI: 10.1371/journal.pone.0307904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/13/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Immune microenvironment is one of the essential characteristics of carotid atherosclerosis (CAS), which cannot be reversed by drug therapy alone. Thus, there is a pressing need to develop novel immunoregulatory strategies to delay this pathological process that drives cardiovascular-related diseases. This study aimed to detect changes in the immune microenvironment of vascular tissues at various stages of carotid atherosclerosis, as well as cluster and stratify vascular tissue samples based on the infiltration levels of immune cell subtypes to distinguish immune phenotypes and identify potential hub genes regulating the immune microenvironment of carotid atherosclerosis. MATERIALS AND METHODS RNA sequencing datasets for CAS vascular tissue and healthy vascular tissue (GSE43292 and GSE28829) were downloaded from the Gene Expression Omnibus (GEO) database. To begin, the immune cell subtype infiltration level of all samples in both GSE43292 and GSE28829 cohorts was assessed using the ssGSEA algorithm. Following this, consensus clustering was performed to stratify CAS samples into different clusters. Finally, hub genes were identified using the maximum neighborhood component algorithm based on the construction of interaction networks, and their diagnostic efficiency was evaluated. RESULTS Compared to the controls, a higher number of immune cell subtypes were enriched in CAS samples with higher immune scores in the GSE43292 cohort. Advanced CAS was characterized by high immune cell infiltration, whereas early CAS was characterized by low immune cell infiltration in the GSE28829 cohort. Moreover, CAS progression may be related to the immune response pathway. Biological processes associated with muscle cell development may impede the progression of CAS. Finally, the hub genes PTPRC, ACTN2, ACTC1, LDB3, MYOZ2, and TPM2 had satisfactory efficacy in the diagnosis and prediction of high and low immune cell infiltration in CAS and distinguishing between early and advanced CAS samples. CONCLUSION The enrichment of immune cells in vascular tissues is a primary factor driving pathological changes in CAS. Additionally, CAS progression may be related to the immune response pathway. Biological processes linked to muscle cell development may delay the progression of CAS. PTPRC, ACTN2, ACTC1, LDB3, MYOZ2, and TPM2 may regulate the immune microenvironment of CAS and participate in the occurrence and progression of the disease.
Collapse
Affiliation(s)
- Yi Zhang
- Heibei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Lingmin Zhang
- Teaching and Research Office of Typhoon Fever Theory at the School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Yunfang Jia
- Teaching and Research Office of Traditional Chinese Medicine History and Literature at the School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Jing Fang
- Teaching and Research Office of Internal Canon of Medicine at the School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Shuancheng Zhang
- Teaching and Research Office of Internal Canon of Medicine at the School of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Xianming Hou
- Heibei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
10
|
Van Linthout S. Shared Mechanisms in Cancer and Cardiovascular Disease: S100A8/9 and the NLRP3 Inflammasome: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024:S2666-0873(24)00370-3. [PMID: 40260700 DOI: 10.1016/j.jaccao.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 04/24/2025] Open
Abstract
Inflammation and a dysregulated immune system are common denominators in cancer and cardiovascular disease (CVD). The Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) highlighted the convergence of interleukin (IL)-1β biology in cancer and CVD, and the potential of anti-IL-1β drugs for the treatment of both disease entities. Accumulating evidence further supports the role of the innate immunity members and IL-1β activators, S100A8/9 and the NLRP3 inflammasome, in both cancer and CVD. This review outlines the common involvement of S100A8/9 and the NLRP3 inflammasome, in cancer and CVD. Specifically, their time-, cell-, and context-dependent actions and hereto-related dichotomous role in different cancers and CVD are addressed, highlighting the need for further insights to allow tailored therapies.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Yin Z, Zhang J, Shen Z, Qin J, Wan J, Wang M. Regulated vascular smooth muscle cell death in vascular diseases. Cell Prolif 2024; 57:e13688. [PMID: 38873710 PMCID: PMC11533065 DOI: 10.1111/cpr.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Regulated cell death (RCD) is a complex process that involves several cell types and plays a crucial role in vascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant elements of the medial layer of blood vessels, and their regulated death contributes to the pathogenesis of vascular diseases. The types of regulated VSMC death include apoptosis, necroptosis, pyroptosis, ferroptosis, parthanatos, and autophagy-dependent cell death (ADCD). In this review, we summarize the current evidence of regulated VSMC death pathways in major vascular diseases, such as atherosclerosis, vascular calcification, aortic aneurysm and dissection, hypertension, pulmonary arterial hypertension, neointimal hyperplasia, and inherited vascular diseases. All forms of RCD constitute a single, coordinated cell death system in which one pathway can compensate for another during disease progression. Pharmacologically targeting RCD pathways has potential for slowing and reversing disease progression, but challenges remain. A better understanding of the role of regulated VSMC death in vascular diseases and the underlying mechanisms may lead to novel pharmacological developments and help clinicians address the residual cardiovascular risk in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zican Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Center for Healthy Aging, Wuhan University School of NursingWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of GeriatricsZhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
- Cardiovascular Research Institute, Wuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
12
|
Aroca-Esteban J, Souza-Neto FV, Aguilar-Latorre C, Tribaldo-Torralbo A, González-López P, Ruiz-Simón R, Álvarez-Villareal M, Ballesteros S, de Ceniga MV, Landete P, González-Rodríguez Á, Martín-Ventura JL, de Las Heras N, Escribano Ó, Gómez-Hernández A. Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167327. [PMID: 38945455 DOI: 10.1016/j.bbadis.2024.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.
Collapse
Affiliation(s)
- Javier Aroca-Esteban
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisco V Souza-Neto
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carlota Aguilar-Latorre
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alba Tribaldo-Torralbo
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rubén Ruiz-Simón
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Marta Álvarez-Villareal
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital of Galdakao-Usansolo, Galdakao, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Pedro Landete
- Departmento de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Faculty of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid and CIBERCV, Madrid, Spain
| | - Natalia de Las Heras
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
13
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
14
|
陈 露, 杨 轶, 赵 苗, 李 翰, 孙 文, 石 曌. [Mechanism of tetramethylpyrazine attenuates inflammatory injury in endothelial cells by activating the SIRT1 signaling pathway]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:967-973. [PMID: 39267513 PMCID: PMC11404461 DOI: 10.7499/j.issn.1008-8830.2405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/24/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVES To study the effects and mechanisms of tetramethylpyrazine (TMP) on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human coronary artery endothelial cells (HCAEC). METHODS HCAEC were randomly divided into four groups: the control group (no treatment), the model group (treated with TNF-α, 50 ng/mL for 24 hours), the TMP group (pre-treated with TMP, 80 μg/mL for 12 hours followed by TNF-α treatment for 24 hours), and the SIRT1 inhibitor group (pre-treated with TMP and the specific SIRT1 inhibitor EX527 for 12 hours followed by TNF-α treatment for 24 hours). Cell viability was assessed using the CCK-8 method, lactate dehydrogenase (LDH) activity was measured using an LDH assay kit, reactive oxygen species (ROS) levels were observed using DCFH-DA staining, expression of pyroptosis-related proteins was detected by Western blot, and SIRT1 expression was analyzed using immunofluorescence staining. RESULTS Compared to the control group, the model group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). Compared to the model group, the TMP group exhibited increased cell viability, decreased LDH activity, ROS level and expression of pyroptosis-related proteins, and increased SIRT1 expression (P<0.05). In comparison to the TMP group, the SIRT1 inhibitor group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). CONCLUSIONS TMP may attenuate TNF-α-induced inflammatory injury in HCAEC, which is associated with the inhibition of pyroptosis and activation of the SIRT1 signaling pathway.
Collapse
|
15
|
Xie X, Shen X, Liu Y, Zuo Y, Wang S, Zhou Y, Li X, Wang K, Li B, Wang Z. GSDMB involvement in the pathogenesis of abdominal aortic aneurysm through regulation of macrophage non-canonical pyroptosis. Arch Biochem Biophys 2024; 759:110102. [PMID: 39029644 DOI: 10.1016/j.abb.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a dangerous condition affecting the aorta. Macrophage pyroptosis, phenotypic transformation, and apoptosis of aortic smooth muscle cells (ASMCs) are pivotal mechanisms in AAA pathogenesis. This study explores how Gasdermin B (GSDMB) regulates macrophage non-canonical pyroptosis and its impact on the phenotypic transformation and apoptosis of ASMCs, thereby unveiling the role of GSDMB in AAA pathogenesis. Immunofluorescence analysis was used to assess the expression levels and localization of GSDMB, cysteinyl aspartate-specific protease-4 (Caspase-4), and N-terminal of cleaved GSDMD (N-GSDMD) in AAA tissues. A cell model that mimics macrophage non-canonical pyroptosis was established by treating THP-1 cells with lipopolysaccharide (LPS). THP-1 cells with reduced or increased GSDMB were generated using small interfering RNA (siRNA) or plasmids. Co-culture experiments involving THP-1 cells and HASMCs were conducted to explore the impact of GSDMB on HASMCs. The mitochondrial reactive oxygen species (mtROS) scavenger Mito-TEMPO lowered mtROS levels in THP-1 cells. Our findings revealed that GSDMB was significantly upregulated in AAA macrophages, which was accompanied by robust non-canonical pyroptosis. THP-1 cells showed non-canonical pyroptosis in response to LPS, which was accompanied by an increase in GSDMB. Further research demonstrated that altering GSDMB, either by knockdown or overexpression, can affect macrophage non-canonical pyroptosis as well as the phenotypic transformation and apoptosis of HASMCs. LPS-induced non-canonical pyroptosis in THP-1 cells was associated with an increase in mtROS, whereas Mito-TEMPO effectively decreased non-canonical pyroptosis and the expression of GSDMB. These findings suggest that GSDMB plays a role in AAA macrophage non-canonical pyroptosis, which influences the phenotypic transformation and apoptosis of HASMCs. The mtROS-Dynamin-Related Protein 1 (Drp1) axis is likely to regulate the GSDMB-mediated non-canonical pyroptosis.
Collapse
Affiliation(s)
- Xiaoping Xie
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China
| | - Xiaoyan Shen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China
| | - Su Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China
| | - Yang Zhou
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China
| | - Xu Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China
| | - Kexin Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China.
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 99# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan, 430000, Hubei Province, China.
| |
Collapse
|
16
|
Annink ME, Kraaijenhof JM, Stroes ESG, Kroon J. Moving from lipids to leukocytes: inflammation and immune cells in atherosclerosis. Front Cell Dev Biol 2024; 12:1446758. [PMID: 39161593 PMCID: PMC11330886 DOI: 10.3389/fcell.2024.1446758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the most important cause of morbidity and mortality worldwide. While it is traditionally attributed to lipid accumulation in the vascular endothelium, recent research has shown that plaque inflammation is an important additional driver of atherogenesis. Though clinical outcome trials utilizing anti-inflammatory agents have proven promising in terms of reducing ASCVD risk, it is imperative to identify novel actionable targets that are more specific to atherosclerosis to mitigate adverse effects associated with systemic immune suppression. To that end, this review explores the contributions of various immune cells from the innate and adaptive immune system in promoting and mitigating atherosclerosis by integrating findings from experimental studies, high-throughput multi-omics technologies, and epidemiological research.
Collapse
Affiliation(s)
- Maxim E. Annink
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, Netherlands
| |
Collapse
|
17
|
Guan X, Hu Y, Hao J, Lu M, Zhang Z, Hu W, Li D, Li C. Stress, Vascular Smooth Muscle Cell Phenotype and Atherosclerosis: Novel Insight into Smooth Muscle Cell Phenotypic Transition in Atherosclerosis. Curr Atheroscler Rep 2024; 26:411-425. [PMID: 38814419 DOI: 10.1007/s11883-024-01220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Our work is to establish more distinct association between specific stress and vascular smooth muscle cells (VSMCs) phenotypes to alleviate atherosclerotic plaque burden and delay atherosclerosis (AS) progression. RECENT FINDING In recent years, VSMCs phenotypic transition has received significant interests. Different stresses were found to be associated with VSMCs phenotypic transition. However, the explicit correlation between VSMCs phenotype and specific stress has not been elucidated clearly yet. We discover that VSMCs phenotypic transition, which is widely involved in the progression of AS, is associated with specific stress. We discuss approaches targeting stresses to intervene VSMCs phenotypic transition, which may contribute to develop innovative therapies for AS.
Collapse
Affiliation(s)
- Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenxian Hu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| |
Collapse
|
18
|
Chen P, Li X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol 2024; 15:1430236. [PMID: 39144618 PMCID: PMC11322363 DOI: 10.3389/fphar.2024.1430236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.
Collapse
Affiliation(s)
- Pengfei Chen
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- Shandong Kelun Pharmaceutical Co, Ltd., Binzhou, China
| |
Collapse
|
19
|
Liu HH, Wei W, Wu FF, Cao L, Yang BJ, Fu JN, Li JX, Liang XY, Dong HY, Heng YY, Zhang PF. Sodium tanshinone IIA sulfonate protects vascular relaxation in ApoE-knockout mice by inhibiting the SYK-NLRP3 inflammasome-MMP2/9 pathway. BMC Cardiovasc Disord 2024; 24:354. [PMID: 38992615 PMCID: PMC11241843 DOI: 10.1186/s12872-024-03990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.
Collapse
Affiliation(s)
- Hai-Hua Liu
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Wei Wei
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China.
- Department of Pharmacology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China.
- Department of Clinical Center Laboratory, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China.
| | - Fei-Fei Wu
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Lu Cao
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Bing-Jie Yang
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Jia-Ning Fu
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Jing-Xia Li
- Department of Anesthesia, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Xin-Yue Liang
- Department of Medical Imageology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Hao-Yu Dong
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Yan-Yan Heng
- Department of Nephrology Heping Hospital, Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| | - Peng-Fei Zhang
- Department of Nephrology Heping Hospital, Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| |
Collapse
|
20
|
Chen N, Wu S, Zhi K, Zhang X, Guo X. ZFP36L1 controls KLF16 mRNA stability in vascular smooth muscle cells during restenosis after vascular injury. J Mol Cell Cardiol 2024; 192:13-25. [PMID: 38653384 DOI: 10.1016/j.yjmcc.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The RNA-binding zinc finger protein 36 (ZFP36) family participates in numerous physiological processes including transition and differentiation through post-transcriptional regulation. ZFP36L1 is a member of the ZFP36 family. This study aimed to evaluate the role of ZFP36L1 in restenosis. We found that the expression of ZFP36L1 was inhibited in VSMC-phenotypic transformation induced by TGF-β, PDGF-BB, and FBS and also in the rat carotid injury model. In addition, we found that the overexpression of ZFP36L1 inhibited the proliferation and migration of VSMCs and promoted the expression of VSMC contractile genes; whereas ZFP36L1 interference promoted the proliferation and migration of VSMCs and suppressed the expression of contractile genes. Furthermore, the RNA binding protein immunoprecipitation and double luciferase reporter gene experiments shows that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16. Finally, our research results in the rat carotid balloon injury animal model further confirmed that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16 and further plays a role in vascular injury and restenosis in vivo.
Collapse
Affiliation(s)
- Ningheng Chen
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyong Wu
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Zhi
- Department of Vascular surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xiaoping Zhang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Xueli Guo
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Elishaev M, Li B, Zhou A, Salim K, Leeper NJ, Francis GA, Lai C, Wang Y. Multiplex Imaging for Cell Phenotyping of Early Human Atherosclerosis. J Am Heart Assoc 2024; 13:e034990. [PMID: 38842292 PMCID: PMC11255771 DOI: 10.1161/jaha.123.034990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Previous studies using animal models and cultured cells suggest that vascular smooth muscle cells (SMCs) and inflammatory cytokines are important players in atherogenesis. Validating these findings in human disease is critical to designing therapeutics that target these components. Multiplex imaging is a powerful tool for characterizing cell phenotypes and microenvironments using biobanked human tissue sections. However, this technology has not been applied to human atherosclerotic lesions and needs to first be customized and validated. METHODS AND RESULTS For validation, we created an 8-plex imaging panel to distinguish foam cells from SMC and leukocyte origins on tissue sections of early human atherosclerotic lesions (n=9). The spatial distribution and characteristics of these foam cells were further analyzed to test the association between SMC phenotypes and inflammation. Consistent with previous reports using human lesions, multiplex imaging showed that foam cells of SMC origin outnumbered those of leukocyte origin and were enriched in the deep intima, where the lipids accumulate in early atherogenesis. This new technology also found that apoptosis or the expression of pro-inflammatory cytokines were not more associated with foam cells than with nonfoam cells in early human lesions. More CD68+ SMCs were present among SMCs that highly expressed interleukin-1β. Highly inflamed SMCs showed a trend of increased apoptosis, whereas leukocytes expressing similar levels of cytokines were enriched in regions of extracellular matrix remodeling. CONCLUSIONS The multiplex imaging method can be applied to biobanked human tissue sections to enable proof-of-concept studies and validate theories based on animal models and cultured cells.
Collapse
Affiliation(s)
- Maria Elishaev
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Heart Lung InnovationUniversity of British ColumbiaVancouverBCCanada
| | - Boaz Li
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Heart Lung InnovationUniversity of British ColumbiaVancouverBCCanada
| | - Annie Zhou
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Heart Lung InnovationUniversity of British ColumbiaVancouverBCCanada
| | - Kevin Salim
- British Columbia Children’s Hospital Research InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular SurgeryStanford University School of MedicineStanfordCAUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Gordon A. Francis
- Centre for Heart Lung InnovationUniversity of British ColumbiaVancouverBCCanada
- Department of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Chi Lai
- Centre for Heart Lung InnovationUniversity of British ColumbiaVancouverBCCanada
- Division of Anatomical PathologyProvidence Health Care, St. Paul’s HospitalVancouverBCCanada
| | - Ying Wang
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Centre for Heart Lung InnovationUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
22
|
Di C, Ji M, Li W, Liu X, Gurung R, Qin B, Ye S, Qi R. Pyroptosis of Vascular Smooth Muscle Cells as a Potential New Target for Preventing Vascular Diseases. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07578-w. [PMID: 38822974 DOI: 10.1007/s10557-024-07578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Vascular remodeling is the adaptive response of the vessel wall to physiological and pathophysiological changes, closely linked to vascular diseases. Vascular smooth muscle cells (VSMCs) play a crucial role in this process. Pyroptosis, a form of programmed cell death characterized by excessive release of inflammatory factors, can cause phenotypic transformation of VSMCs, leading to their proliferation, migration, and calcification-all of which accelerate vascular remodeling. Inhibition of VSMC pyroptosis can delay this process. This review summarizes the impact of pyroptosis on VSMCs and the pathogenic role of VSMC pyroptosis in vascular remodeling. We also discuss inhibitors of key proteins in pyroptosis pathways and their effects on VSMC pyroptosis. These findings enhance our understanding of the pathogenesis of vascular remodeling and provide a foundation for the development of novel medications that target the control of VSMC pyroptosis as a potential treatment strategy for vascular diseases.
Collapse
Affiliation(s)
- Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China.
| | - Meng Ji
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Wenjin Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Xiaoyi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Rijan Gurung
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China
| | - Shu Ye
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, Haidian District, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, 100191, China.
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
23
|
Lv Y, Jiang Z, Zhou W, Yang H, Jin G, Wang D, Kong C, Qian Z, Gu Y, Chen S, Zhu L. Low-Shear Stress Promotes Atherosclerosis via Inducing Endothelial Cell Pyroptosis Mediated by IKKε/STAT1/NLRP3 Pathway. Inflammation 2024; 47:1053-1066. [PMID: 38315275 PMCID: PMC11147929 DOI: 10.1007/s10753-023-01960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 02/07/2024]
Abstract
Atherosclerosis is initiated by vascular endothelial dysfunction, and low-shear stress (LSS) of blood flow is a key factor leading to endothelial dysfunction. Growing evidence suggests that endothelial cell pyroptosis plays an important role in the development of atherosclerosis. Studies have shown that low-shear stress can induce endothelial cell pyroptosis, but the exact mechanism remains unclear. Our experiments demonstrated that low-shear stress induced endothelial cell pyroptosis and the phosphorylation of IκB kinase ε (IKKε). IKKε knockdown not only significantly attenuated atherosclerosis lesions of aortic arch areas in ApoE-/- mice fed with high cholesterol diets, but also markedly reduced endothelial cell pyroptosis and NLRP3 expression triggered by low-shear stress. Further mechanism studies showed that IKKε promoted the expression of NLRP3 via activating signal transducer and activator of transcription 1 (STAT1) and the subsequent binding of STAT1 to NLRP3 promoter region. These results suggest that low-shear stress plays a pro-atherosclerotic role by promoting endothelial cell pyroptosis through the IKKε/STAT1/NLRP3 pathway, which provides new insights into the formation of atherosclerosis.
Collapse
MESH Headings
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Pyroptosis/immunology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- Phosphorylation/immunology
- Mice, Knockout, ApoE
- Gene Knockdown Techniques
- Human Umbilical Vein Endothelial Cells
- Cholesterol, Dietary/administration & dosage
- Cholesterol, Dietary/adverse effects
- Humans
- Animals
- Mice
- Mice, Inbred C57BL
- Signal Transduction/immunology
- STAT1 Transcription Factor/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Stress, Mechanical
- Aorta/cytology
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
Collapse
Affiliation(s)
- Yifei Lv
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Zihao Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Wenying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Hongfeng Yang
- Department of Intensive Care Unit, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Guozhen Jin
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Dongchen Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Chaohua Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Zhiyuan Qian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
24
|
Liu Y, Kong Y, Yan Y, Hui P. Explore the value of carotid ultrasound radiomics nomogram in predicting ischemic stroke risk in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1357580. [PMID: 38706699 PMCID: PMC11066235 DOI: 10.3389/fendo.2024.1357580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background and objective Type 2 Diabetes Mellitus (T2DM) with insulin resistance (IR) is prone to damage the vascular endothelial, leading to the formation of vulnerable carotid plaques and increasing ischemic stroke (IS) risk. The purpose of this study is to develop a nomogram model based on carotid ultrasound radiomics for predicting IS risk in T2DM patients. Methods 198 T2DM patients were enrolled and separated into study and control groups based on IS history. After manually delineating carotid plaque region of interest (ROI) from images, radiomics features were identified and selected using the least absolute shrinkage and selection operator (LASSO) regression to calculate the radiomics score (RS). A combinatorial logistic machine learning model and nomograms were created using RS and clinical features like the triglyceride-glucose index. The three models were assessed using area under curve (AUC) and decision curve analysis (DCA). Results Patients were divided into the training set and the testing set by the ratio of 0.7. 4 radiomics features were selected. RS and clinical variables were all statically significant in the training set and were used to create a combination model and a prediction nomogram. The combination model (radiomics + clinical nomogram) had the largest AUC in both the training set and the testing set (0.898 and 0.857), and DCA analysis showed that it had a higher overall net benefit compared to the other models. Conclusions This study created a carotid ultrasound radiomics machine-learning-based IS risk nomogram for T2DM patients with carotid plaques. Its diagnostic performance and clinical prediction capabilities enable accurate, convenient, and customized medical care.
Collapse
Affiliation(s)
| | | | | | - Pinjing Hui
- Department of Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
25
|
Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, Jin W, Gong Q, Liu L, Guo J. Ferroptosis: a potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:331-344. [PMID: 38327187 PMCID: PMC10984869 DOI: 10.3724/abbs.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation, which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and progression are not entirely understood. This review systematically summarizes the interactions between AS and ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Chengyi Li
- School of MedicineYangtze UniversityJingzhou434020China
| | - Ran Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Zhenyu Xiong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Xue Bao
- School of MedicineYangtze UniversityJingzhou434020China
| | - Sijia Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat-Sen UniversityGuangzhou510120China
| | - Haotian Zeng
- Department of GastroenterologyShenzhen People’s HospitalThe Second Clinical Medical CollegeJinan UniversityShenzhen518000China
| | - Wei Jin
- Department of Second Ward of General PediatricsSuizhou Central HospitalHubei University of MedicineSuizhou441300China
| | - Quan Gong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Lian Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Jiawei Guo
- School of MedicineYangtze UniversityJingzhou434020China
| |
Collapse
|
26
|
Liu P, Wang Y, Tian K, Bai X, Wang Y, Wang Y. Artesunate inhibits macrophage-like phenotype switching of vascular smooth muscle cells and attenuates vascular inflammatory injury in atherosclerosis via NLRP3. Biomed Pharmacother 2024; 172:116255. [PMID: 38325261 DOI: 10.1016/j.biopha.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Inflammation is one of the main pathogenic factors of atherosclerosis (AS), and the phenotypic transformation of macrophages in human vascular smooth muscle cells (HVSMCs) contributes to the inflammatory injury of blood vessels and the formation of atherosclerotic plaques. Artesunate reportedly exerts anti-inflammatory activity against AS. Herein, we aimed to explore the artesunate-mediated anti-inflammatory and HVSMC phenotypic switch effects against AS and elucidate potential underlying mechanisms. In vitro, artesunate decreased expression of NLRP3, caspase-1, and interleukin (IL)- 1β. Artesunate significantly inhibited low-density lipoprotein (LDL) expression in HVSMCs and macrophages. In vivo, artesunate reduced atherosclerotic plaque formation in high-fat diet (HFD)-fed ApoE-/- mice, as well as decreased NLRP3 and CD68 expression in atherosclerotic plaques. Artesunate decreased serum levels of triglycerides and increased high-density lipoprotein levels in HFD-med mice; however, serum levels of total cholesterol and LDL were unaltered. Treatment with artesunate substantially increased α-smooth muscle actin expression in aortic tissues while inhibiting expression levels of NLRP3, IL-1β, heparinase, matrix metalloproteinase 9, and Krüppel-like factor 4 (KLF4). Collectively, our findings suggest that artesunate-mediated effects may involve inhibition of the ERK1/2/NF-κB/IL-1β pathway in HVSMCs via the downregulation of NLRP3 expression. Thus, artesunate could serve as a novel strategy to treat AS by inhibiting AS plaque formation and suppressing macrophage-like phenotype switching of HVSMCs.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuqi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Keke Tian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yaowen Wang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing 400010, China.
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
27
|
Ni D, Lei C, Liu M, Peng J, Yi G, Mo Z. Cell death in atherosclerosis. Cell Cycle 2024; 23:495-518. [PMID: 38678316 PMCID: PMC11135874 DOI: 10.1080/15384101.2024.2344943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
A complex and evolutionary process that involves the buildup of lipids in the arterial wall and the invasion of inflammatory cells results in atherosclerosis. Cell death is a fundamental biological process that is essential to the growth and dynamic equilibrium of all living things. Serious cell damage can cause a number of metabolic processes to stop, cell structure to be destroyed, or other irreversible changes that result in cell death. It is important to note that studies have shown that the two types of programmed cell death, apoptosis and autophagy, influence the onset and progression of atherosclerosis by controlling these cells. This could serve as a foundation for the creation of fresh atherosclerosis prevention and treatment strategies. Therefore, in this review, we summarized the molecular mechanisms of cell death, including apoptosis, pyroptosis, autophagy, necroptosis, ferroptosis and necrosis, and discussed their effects on endothelial cells, vascular smooth muscle cells and macrophages in the process of atherosclerosis, so as to provide reference for the next step to reveal the mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Dan Ni
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Cai Lei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Minqi Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| |
Collapse
|
28
|
Caocci M, Niu M, Fox HS, Burdo TH. HIV Infection Drives Foam Cell Formation via NLRP3 Inflammasome Activation. Int J Mol Sci 2024; 25:2367. [PMID: 38397063 PMCID: PMC10889596 DOI: 10.3390/ijms25042367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Persistent immune activation is linked to an increased risk of cardiovascular disease (CVD) in people with HIV (PWH) on antiretroviral therapy (ART). The NLRP3 inflammasome may contribute to elevated CVD risk in PWH. This study utilized peripheral blood mononuclear cells (PBMCs) from 25 PWH and 25 HIV-negative controls, as well as HIV in vitro infections. Transcriptional changes were analyzed using RNAseq and pathway analysis. Our results showed that in vitro HIV infection of macrophages and PBMCs from PWH had increased foam cell formation and expression of the NLRP3 inflammasome components and downstream cytokines (caspase-1, IL-1β, and IL-18), which was reduced with inhibition of NLRP3 activity using MCC950. Transcriptomic analysis revealed an increased expression of multiple genes involved in lipid metabolism, cholesterol storage, coronary microcirculation disorders, ischemic events, and monocyte/macrophage differentiation and function with HIV infection and oxLDL treatment. HIV infection and NLRP3 activation increased foam cell formation and expression of proinflammatory cytokines, providing insights into the mechanisms underlying HIV-associated atherogenesis. This study suggests that HIV itself may contribute to increased CVD risk in PWH. Understanding the involvement of the inflammasome pathway in HIV atherosclerosis can help identify potential therapeutic targets to mitigate cardiovascular risks in PWH.
Collapse
Affiliation(s)
- Maurizio Caocci
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, 3500 N Broad St. MERB 760, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.N.); (H.S.F.)
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.N.); (H.S.F.)
| | - Tricia H. Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, 3500 N Broad St. MERB 760, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
29
|
Li J, Wang X, Bai J, Wei H, Wang W, Wang S. Fucoidan modulates SIRT1 and NLRP3 to alleviate hypertensive retinopathy: in vivo and in vitro insights. J Transl Med 2024; 22:155. [PMID: 38360728 PMCID: PMC10868079 DOI: 10.1186/s12967-024-04877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Hypertension influences the inflammatory pathological changes in the retina. The function of the inflammasomes is significant. To see if Sirtuin 1 (SIRT1) regulates angiotensin II (Ang II)-induced hypertensive retinopathy and inflammation by modulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation and the potential protective effects of fucoidan (FO) in mouse retinal vascular endothelial cells (mRECs) and mice retina. METHODS The diagnosis of hypertensive retinopathy was made after three weeks of Ang II infusion (3000 ng/kg/min). One day prior to the commencement of Ang II infusion, the mice were treatment with NLRP3 inhibitor MCC950 (10 mg/kg/day, intraperitoneal injections) or FO (300 mg/kg/day, oral gavage). A blood pressure was recorded. Hematoxylin and eosin (H&E) staining was used to conduct pathological alterations, dihydroethidium bromide (DHE) was utilized to assess oxidative stress damage in the retina, and fluorescence angiography was used to identify vascular disorders in the eye. Using immunohistochemical labeling, NLRP3 expression was found. Reactive protein and mRNA expression levels in mouse retina and cells were assessed using Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS NLRP3 inflammasome activation and SIRT1 decrease were brought about by Ang II infusion. Retinopathy and dysfunction were lessened by MCC950 target-induced NLRP3 inflammasome activation, while overexpression of SIRT1 had the opposite impact on NLRP3 inflammasome activation, indicating that SIRT1 functions as an upstream regulator of NLRP3 activity. FO may improve SIRT1 expression and decrease NLRP3 activation in retinopathy and dysfunction brought on by Ang II, and the effects were consistent across both in vivo and in vitro models. CONCLUSIONS SIRT1 adversely regulates the NLRP3 inflammasome pathway, which in turn increases Ang II-induced inflammation and hypertensive retinopathy. FO may mitigate Ang II-induced retinopathy and dysfunction via modulating the expression of SIRT1/NLRP3. This implies practical approaches to the management of hypertensive retinopathy.
Collapse
Affiliation(s)
- Jing Li
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaochen Wang
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jie Bai
- Department of Public Health Experimental Teaching Center, Dalian Medical University, Dalian, 116044, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenbo Wang
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shuai Wang
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
30
|
Liu MH, Lin XL, Xiao LL. SARS-CoV-2 nucleocapsid protein promotes TMAO-induced NLRP3 inflammasome activation by SCAP-SREBP signaling pathway. Tissue Cell 2024; 86:102276. [PMID: 37979395 DOI: 10.1016/j.tice.2023.102276] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The sterol regulatory element-binding protein (SREBP) activation and cytokine level were significantly increased in coronavirus disease-19. The NLRP3 inflammasome is an amplifier for cellular inflammation. This study aimed to elucidate the modulatory effect of SARS-CoV-2 nucleocapsid protein (SARS-CoV-2 NP) on trimethylamine N-oxide (TMAO)-induced lipogenesis and NLRP3 inflammasome activation and the underlying mechanisms in vascular smooth muscle cells (VSMCs). Our data indicated that SARS-CoV-2 NP activates the dissociation of the SREBP cleavage activating protein (SCAP) from the endoplasmic reticulum, resulting in SREBP activation, increased lipogenic gene expression, and NLRP3 inflammasome activation. TMAO was applied to VSMC-induced NLRP3 inflammasome by promoting the SCAP-SREBP complex endoplasmic reticulum-to-Golgi translocation, which facilitates directly binding of SARS-CoV-2 NP to the NLRP3 protein for NLRP3 inflammasome assembly. SARS-CoV-2 NP amplified the TMAO-induced lipogenic gene expression and NLRP3 inflammasome. Knockdown of SCAP-SREBP2 can effectively reduce lipogenic gene expression and alleviate NLRP3 inflammasome-mediated systemic inflammation in VSMCs stimulated with TMAO and SARS-CoV-2 NP. These results reveal that SARS-CoV-2 NP amplified TMAO-induced lipogenesis and NLRP3 inflammasome activation via priming the SCAP-SREBP signaling pathway.
Collapse
Affiliation(s)
- Mi-Hua Liu
- Department of Clinical Laboratory, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, People's Republic of China.
| | - Xiao-Long Lin
- Department of Pathology, Hui Zhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong 516002, People's Republic of China
| | - Le-Le Xiao
- Intensive Care Unit, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, People's Republic of China.
| |
Collapse
|
31
|
Yu C, Zhang Y, Yang L, Aikebaier M, Shan S, Zha Q, Yang K. Identification of pyroptosis-associated genes with diagnostic value in calcific aortic valve disease. Front Cardiovasc Med 2024; 11:1340199. [PMID: 38333413 PMCID: PMC10850341 DOI: 10.3389/fcvm.2024.1340199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Background Calcific aortic valve disease (CAVD) is one of the most prevalent valvular diseases and is the second most common cause for cardiac surgery. However, the mechanism of CAVD remains unclear. This study aimed to investigate the role of pyroptosis-related genes in CAVD by performing comprehensive bioinformatics analysis. Methods Three microarray datasets (GSE51472, GSE12644 and GSE83453) and one RNA sequencing dataset (GSE153555) were obtained from the Gene Expression Omnibus (GEO) database. Pyroptosis-related differentially expressed genes (DEGs) were identified between the calcified and the normal valve samples. LASSO regression and random forest (RF) machine learning analyses were performed to identify pyroptosis-related DEGs with diagnostic value. A diagnostic model was constructed with the diagnostic candidate pyroptosis-related DEGs. Receiver operating characteristic (ROC) curve analysis was performed to estimate the diagnostic performances of the diagnostic model and the individual diagnostic candidate genes in the training and validation cohorts. CIBERSORT analysis was performed to estimate the differences in the infiltration of the immune cell types. Pearson correlation analysis was used to investigate associations between the diagnostic biomarkers and the immune cell types. Immunohistochemistry was used to validate protein concentration. Results We identified 805 DEGs, including 319 down-regulated genes and 486 up-regulated genes. These DEGs were mainly enriched in pathways related to the inflammatory responses. Subsequently, we identified 17 pyroptosis-related DEGs by comparing the 805 DEGs with the 223 pyroptosis-related genes. LASSO regression and RF algorithm analyses identified three CAVD diagnostic candidate genes (TREM1, TNFRSF11B, and PGF), which were significantly upregulated in the CAVD tissue samples. A diagnostic model was constructed with these 3 diagnostic candidate genes. The diagnostic model and the 3 diagnostic candidate genes showed good diagnostic performances with AUC values >0.75 in both the training and the validation cohorts based on the ROC curve analyses. CIBERSORT analyses demonstrated positive correlation between the proportion of M0 macrophages in the valve tissues and the expression levels of TREM1, TNFRSF11B, and PGF. Conclusion Three pyroptosis-related genes (TREM1, TNFRSF11B and PGF) were identified as diagnostic biomarkers for CAVD. These pyroptosis genes and the pro-inflammatory microenvironment in the calcified valve tissues are potential therapeutic targets for alleviating CAVD.
Collapse
Affiliation(s)
- Chenxi Yu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifeng Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Yang
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mirenuer Aikebaier
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyao Shan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Zha
- Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Sun J, Zhu Q, Yu X, Liang X, Guan H, Zhao H, Yao W. RhoGDI3 at the trans-Golgi network participates in NLRP3 inflammasome activation, VSMC phenotypic modulation, and neointima formation. Atherosclerosis 2023; 387:117391. [PMID: 38029612 DOI: 10.1016/j.atherosclerosis.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIMS The pathological roles and mechanisms of Rho-specific guanine nucleotide dissociation inhibitor 3 (RhoGDI3) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. This study aimed to investigate how RhoGDI3 regulates the Nod-like receptor protein 3 (NLRP3) inflammasome in platelet-derived growth factor-BB (PDGF-BB)-induced neointima formation. METHODS For in vitro assays, human aortic VSMCs (HA-VSMCs) were transfected with pcDNA3.1-GDI3 and RhoGDI3 siRNA to overexpress and knockdown RhoGDI3, respectively. HA-VSMCs were also treated with an NLRP3 inhibitor (CY-09) or agonist (NSS). Protein transcription and expression, cell proliferation and migration, Golgi morphology, and protein binding and colocalization were measured. For the in vivo assays, balloon injury (BI) rats were injected with recombinant adenovirus carrying RhoGDI3 shRNA. Carotid arterial morphology, protein expression and colocalization, and activation of the NLRP3 inflammasome were measured. RESULTS PDGF-BB treatment induced transcription and expression of RhoGDI3 through PDGF receptor αβ (PDGFRαβ) rather than PDGFRαα or PDGFRββ in HA-VSMCs. RhoGDI3 suppression blocked PDGF-BB-induced VSMC phenotypic transformation. In contrast, RhoGDI3 overexpression further promoted PDGF-BB-induced VSMC dedifferentiation. The in vivo results also confirmed that RhoGDI3 expressed in VSMCs participated in neointima formation and muscle fiber and collagen deposition caused by balloon injury. In addition, PDGF-BB increased binding of RhoGDI3 to NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) at the trans-Golgi membrane, which depended on the normal Golgi network. However, recruitment of NLRP3 and ASC to the trans-Golgi network after PDGF-BB treatment was independent of RhoGDI3. Moreover, RhoGDI3 knockdown significantly inhibited ASC expression and NLRP3 inflammasome assembly and activation and reduced NLRP3 protein stability in PDGF-BB-treated HA-VSMCs. Inhibiting NLRP3 effectively prevented PDGF-BB-induced VSMC phenotypic modulation, and an NLRP3 agonist reversed the decline in VSMC phenotypic transformation caused by RhoGDI3 knockdown. Furthermore, RhoGDI3 suppression reduced the protein levels and assembly of NLRP3 and ASC, and the activation of the NLRP3 inflammasome in VSMCs in a rat balloon injury model. CONCLUSIONS The results of this study reveal a novel mechanism through which RhoGDI3 regulates VSMC phenotypic modulation and neointima formation by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jingwen Sun
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Qingyu Zhu
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Xiaoqiang Yu
- Department of Vascular Surgery, The First People's Hospital of Nantong, Nantong, 226001, China
| | - Xiuying Liang
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Haijing Guan
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Heyan Zhao
- Medical School, Nantong University, 19 QiXiu Road, Nantong, 226001, China.
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China.
| |
Collapse
|
34
|
Abstract
The medial layer of the arterial wall is composed mainly of vascular smooth muscle cells (VSMCs). Under physiological conditions, VSMCs assume a contractile phenotype, and their primary function is to regulate vascular tone. In contrast with terminally differentiated cells, VSMCs possess phenotypic plasticity, capable of transitioning into other cellular phenotypes in response to changes in the vascular environment. Recent research has shown that VSMC phenotypic switching participates in the pathogenesis of atherosclerosis, where the various types of dedifferentiated VSMCs accumulate in the atherosclerotic lesion and participate in the associated vascular remodeling by secreting extracellular matrix proteins and proteases. This review article discusses the 9 VSMC phenotypes that have been reported in atherosclerotic lesions and classifies them into differentiated VSMCs, intermediately dedifferentiated VSMCs, and dedifferentiated VSMCs. It also provides an overview of several methodologies that have been developed for studying VSMC phenotypic switching and discusses their respective advantages and limitations.
Collapse
Affiliation(s)
- Runji Chen
- Shantou University Medical CollegeShantouChina
| | - David G. McVey
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
| | - Daifei Shen
- Research Center for Translational MedicineThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | | | - Shu Ye
- Shantou University Medical CollegeShantouChina
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
- Cardiovascular‐Metabolic Disease Translational Research ProgrammeNational University of SingaporeSingapore
| |
Collapse
|
35
|
Liu X, Luo P, Zhang W, Zhang S, Yang S, Hong F. Roles of pyroptosis in atherosclerosis pathogenesis. Biomed Pharmacother 2023; 166:115369. [PMID: 37643484 DOI: 10.1016/j.biopha.2023.115369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Pyroptosis is a pro-inflammatory type of regulated cell death (RCD) characterized by gasdermin protein-mediated membrane pore formation, cell swelling, and rapid lysis. Recent studies have suggested that pyroptosis is closely related to atherosclerosis (AS). Previous studies reported that pyroptosis involving endothelial cells (ECs), macrophages, and smooth muscle cells (SMCs) plays an important role in the formation and development of AS. Pyroptosis not only causes local inflammation but also amplifies the inflammatory response and it aggravates plaque instability, leading to plaque rupture and thrombosis, eventually resulting in acute cardiovascular events. In this review, we clarified some novel pathways and mechanics and presented some potential drugs.
Collapse
Affiliation(s)
- Xiaohan Liu
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China
| | - Peiyi Luo
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Weiyun Zhang
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shuxian Zhang
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shulong Yang
- School of basic medical sciences, Fuzhou Medical College of Nanchang University, Fuzhou 344000, China; Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, China.
| | - Fenfang Hong
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China.
| |
Collapse
|
36
|
Lin YF, Li MH, Huang RH, Zhang SZ, Xu XF, Zhou HM, Liu MH, Liao XX, Liao LZ, Guo Y, Zhuang XD. GP73 enhances the ox-LDL-induced inflammatory response in THP-1 derived macrophages via affecting NLRP3 inflammasome signaling. Int J Cardiol 2023; 387:131109. [PMID: 37271284 DOI: 10.1016/j.ijcard.2023.05.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/29/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease with its molecular basis incompletely understood. Here, we determined whether the Golgi phosphoprotein 73 (GP73), a novel protein highly related to inflammation and disrupted lipid metabolism, was involved in the development of atherosclerosis. METHODS Public microarray databases of human vascular samples were analyzed for expression patterns. Apolipoprotein-E-gene-deficient (ApoE-/-) mice (8-week-old) were randomly assigned to either a chow diet group or a high-fat diet group. The levels of serum GP73, lipid profiles and key inflammatory cytokines were determined by ELISA. The aortic root plaque was isolated and used for by Oil Red O staining. PMA-differentiated THP-1 macrophages were transfected with GP73 small interfering RNA (siRNA) or infected with adenovirus expressing GP73, and then stimulated with oxidized low density lipoprotein (ox-LDL). The expressions of pro-inflammatory cytokines and signal pathway key targets were determined by ELISA kit and Western blot respectively. In addition, ichloro-dihydro-fluorescein diacetate (DCFH-DA) was used to measure the intracellular ROS levels. RESULTS The expressions of GP73 and NLRP3 were substantially upregulated in human atherosclerotic lesions. There were significant linear correlations between GP73 and inflammatory cytokines expressions. High-fat diet-induced atherosclerosis and increased levels of plasma inflammatory mediators (IL-1β, IL-18, and TNF-α) were observed in ApoE-/- mice. Besides, the expressions of GP73 in the aorta and serum were significantly upregulated and positively correlated with the NLRP3 expression. In the THP-1 derived macrophages, ox-LDL treatment upregulated the expressions of GP73 and NLRP3 proteins and activated the inflammatory responses in a concentration-dependent and time-dependent manner. Silencing of GP73 attenuated the inflammatory response and rescued the decreased migration induced by ox-LDL, inhibiting the NLRP3 inflammasome signaling and the ROS and p-NF-κB activation. CONCLUSIONS We demonstrated that GP73 promoted the ox-LDL-induced inflammation in macrophages by affecting the NF-κB/NLRP3 inflammasome signaling, and may play a role in atherosclerosis.
Collapse
Affiliation(s)
- Yi-Fen Lin
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Miao-Hong Li
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Ri-Hua Huang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Shao-Zhao Zhang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xing-Feng Xu
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Hui-Min Zhou
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Meng-Hui Liu
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xin-Xue Liao
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Li-Zhen Liao
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue Guo
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xiao-Dong Zhuang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
37
|
Wojtasińska A, Frąk W, Lisińska W, Sapeda N, Młynarska E, Rysz J, Franczyk B. Novel Insights into the Molecular Mechanisms of Atherosclerosis. Int J Mol Sci 2023; 24:13434. [PMID: 37686238 PMCID: PMC10487483 DOI: 10.3390/ijms241713434] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Atherosclerosis is one of the most fatal diseases in the world. The associated thickening of the arterial wall and its background and consequences make it a very composite disease entity with many mechanisms that lead to its creation. It is an active process, and scientists from various branches are engaged in research, including molecular biologists, cardiologists, and immunologists. This review summarizes the available information on the pathophysiological implications of atherosclerosis, focusing on endothelium dysfunction, inflammatory factors, aging, and uric acid, vitamin D, and miRNA expression as recent evidence of interactions of the molecular and cellular elements. Analyzing new discoveries for the underlying causes of this condition assists the general research to improve understanding of the mechanism of pathophysiology and thus prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Armanda Wojtasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Natalia Sapeda
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (W.L.)
| |
Collapse
|
38
|
Theofilis P, Oikonomou E, Chasikidis C, Tsioufis K, Tousoulis D. Inflammasomes in Atherosclerosis-From Pathophysiology to Treatment. Pharmaceuticals (Basel) 2023; 16:1211. [PMID: 37765019 PMCID: PMC10537692 DOI: 10.3390/ph16091211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by arterial plaque accumulation, remains a significant global health challenge. In recent years, inflammasomes, the intracellular multiprotein complexes crucial for initiating innate immune responses, have emerged as key players in atherosclerosis pathophysiology. This review article aims to provide a comprehensive overview of the current understanding of inflammasome activation and its impact on atherosclerosis development and progression. We explore the intricate interplay between traditional cardiovascular risk factors and inflammasome activation, leading to the perpetuation of inflammatory cascades that drive plaque formation and instability. The review focuses on the molecular mechanisms underlying inflammasome activation, including the role of pattern recognition receptors and cytokines in this process. Moreover, we discuss the contribution of inflammasomes to endothelial dysfunction, foam cell formation, and vascular inflammation. Additionally, recent advances in therapeutic strategies targeting inflammasomes are examined, including pharmacological agents and potential immunomodulatory approaches. By collating and analyzing the current evidence, this review provides valuable insights into the potential of inflammasome-targeted therapies for atherosclerosis management and treatment. Understanding the pivotal role of inflammasomes in atherosclerosis pathophysiology offers promising prospects for developing effective and personalized therapeutic interventions that can mitigate the burden of this prevalent cardiovascular disorder and improve patient outcomes.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Chasikidis
- Department of Cardiology, General Hospital of Corinth, 20100 Corinth, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.)
| |
Collapse
|
39
|
Bai Y, Zhang L, Zheng B, Zhang X, Zhang H, Zhao A, Yu J, Yang Z, Wen J. circACTA2 inhibits NLRP3 inflammasome-mediated inflammation via interacting with NF-κB in vascular smooth muscle cells. Cell Mol Life Sci 2023; 80:229. [PMID: 37498354 PMCID: PMC10374705 DOI: 10.1007/s00018-023-04840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023]
Abstract
circACTA2 derived from the smooth muscle α-actin gene plays an important role in the regulation of vascular smooth muscle cell (VSMC) phenotype. The activation of NLRP3 inflammasome is involved in VSMC phenotypic switching. However, the mechanistic relationship between circACTA2 and NLRP3 inflammasome during vascular remodeling remains poorly understood. Here, we showed that circACTA2 was down-regulated in human intimal hyperplasia. circACTA2 overexpression in circACTA2 transgenic mice significantly decreased the neointimal hyperplasia induced by vascular injury, which is concomitant with a decrease in IL-18, IL-1β, TNF-α, and IL-6 levels. Gain- and loss-of-function studies revealed that circACTA2 alleviated VSMC inflammation by suppressing the activation of NLRP3 inflammasome. Mechanistically, circACTA2 inhibited the expression of NF-κB p65 and p50 subunits and interacted with p50, which impedes the formation of the p50/p65 heterodimer and nuclear translocation induced by TNF-α, thus resulting in the suppression of NLRP3 gene transcription and inflammasome activation. Furthermore, circACTA2 overexpression mitigated inflammation via repressing NLRP3 inflammasome-mediated VSMC pyroptosis. Importantly, employing a decoy oligonucleotide to compete with circACTA2 for binding to p50 could attenuate the expression of NLRP3, ASC, and caspase-1. These findings provide a novel insight into the functional roles of circACTA2 in VSMCs, and targeting the circACTA2-NF-κB-NLRP3 axis represents a promising therapeutic strategy for vascular remodeling.
Collapse
Affiliation(s)
- Yang Bai
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Long Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
- Institution of Chinese Integrative Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Hong Zhang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Anning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jing Yu
- Department of Respiratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jinkun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| |
Collapse
|
40
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
41
|
Tanase DM, Valasciuc E, Gosav EM, Ouatu A, Buliga-Finis ON, Floria M, Maranduca MA, Serban IL. Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098162. [PMID: 37175869 PMCID: PMC10179095 DOI: 10.3390/ijms24098162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
42
|
Al-Hawary SIS, Jasim SA, Romero-Parra RM, Bustani GS, Hjazi A, Alghamdi MI, Kareem AK, Alwaily ER, Zabibah RS, Gupta J, Mahmoudi R, Hosseini-Fard S. NLRP3 inflammasome pathway in atherosclerosis: Focusing on the therapeutic potential of non-coding RNAs. Pathol Res Pract 2023; 246:154490. [PMID: 37141699 DOI: 10.1016/j.prp.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome pathway has a critical role in the pathogenesis of atherosclerosis. Activation of this pathway is implicated in the subendothelial inflammation and atherosclerosis progression. The NLRP3 inflammasome are cytoplasmic sensors with the distinct capacity to identify a wide range of inflammation-related signals, which enhance NLRP3 inflammasome assembly and allow it to trigger inflammation. This pathway is triggered by a variety of intrinsic signals which exist in atherosclerotic plaques, like cholesterol crystals and oxidized LDL. Further pharmacological findings indicated that NLRP3 inflammasome enhanced caspase-1-mediated secretion of pro-inflammatory mediators like interleukin (IL)- 1β/18. Newly published cutting-edge studies suggested that non-coding RNAs (ncRNAs) including microRNAs (miRNAs, miRs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are major modulators of NLRP3 inflammasome in atherosclerosis. Therefore, in this review, we aimed to discuss the NLRP3 inflammasome pathway, biogenesis of ncRNAs as well as the modulatory role of ncRNAs in regulating the various mediators of NLRP3 inflammasome pathway including TLR4, NF-kB, NLRP3, and caspase 1. We also discussed the importance of NLRP3 inflammasome pathway-related ncRNAs as a diagnostic biomarker in atherosclerosis and current therapeutics in the modulation of NLRP3 inflammasome in atherosclerosis. Finally, we speak about the limitations and future prospects of ncRNAs in regulating inflammatory atherosclerosis via the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedreza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Yang X, Wang C, Zhu G, Guo Z, Fan L. METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome. Exp Cell Res 2023; 427:113587. [PMID: 37044315 DOI: 10.1016/j.yexcr.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotypic switching contributes to VSMC proliferation and migration in atherosclerosis (AS). Nevertheless, the regulatory mechanism of VSMC phenotypic switching during AS progression is unclear. Here, the role and regulatory mechanism of UCHL5 in VSMC phenotypic switching during AS progression were investigated. METHODS ApoE-/- mice were fed with high fat diet to establish AS model in vivo. VSMCs stimulated by ox-LDL were used as AS cellular model. VSMC proliferation and migration were examined by CCK8 assay and transwell assay, respectively. The levels of pro-inflammatory cytokines were assessed using ELISA. The interactions between METTL14/YTHDF1, UCHL5 and NLRP3 were analyzed using RIP and/or dual-luciferase reporter gene and/or Co-IP assays. NLRP3 ubiquitination was analyzed by ubiquitination analysis. RESULTS UCHL5 was significantly upregulated in AS patients and ox-LDL-treated VSMCs. UCHL5 silencing ameliorated plaque formation and vascular remodeling in vivo and suppressed ox-LDL-induced VSMC proliferation, migration, inflammation and phenotypic switching in vitro. Moreover, METTL14 could increase UCHL5 mRNA m6A level and promoted UCHL5 expression by recruiting YTHDF1. Moreover, UCHL5 overexpression enhanced protein stability by deubiquitinating NLRP3. Rescue studies revealed that NLRP3 overexpression abrogated UCHL5 silencing-mediated biological effects in ox-LDL-treated VSMCs. CONCLUSION UCHL5 modified by METTL14/YTHDF1 axis could facilitate the inflammation and vascular remodeling in atherosclerosis by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Chen Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China.
| |
Collapse
|
44
|
Fei SF, Tong DB, Jia F. Antiatherosclerotic Effect and Molecular Mechanism of Salidroside. Rev Cardiovasc Med 2023; 24:97. [PMID: 39076283 PMCID: PMC11273014 DOI: 10.31083/j.rcm2404097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 07/31/2024] Open
Abstract
Atherosclerotic cardiovascular disease is currently the leading cause of death worldwide. Its pathophysiological basis includes endothelial dysfunction, macrophage activation, vascular smooth muscle cell (VSMC) proliferation, lipid metabolism, platelet aggregation, and changes in the gut microbiota. Salidroside has beneficial effects on atherosclerosis through multiple pathways. In this review, we present studies on the regulatory effect of salidroside on atherosclerosis. Furthermore, we report the protective effects of salidroside against atherosclerosis by ameliorating endothelial dysfunction, suppressing macrophage activation and polarization, inhibiting VSMC proliferation, adjusting lipid metabolism, attenuating platelet aggregation, and modulating the gut microbiota. This review provides further understanding of the molecular mechanism of salidroside and new ideas for atherosclerosis management.
Collapse
Affiliation(s)
- Si-Fan Fei
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213000 Changzhou, Jiangsu, China
| | - De-Bing Tong
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213000 Changzhou, Jiangsu, China
| | - Fang Jia
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
45
|
Yao J, Kong Q, Wang Y, Zhang Y, Wang Q. Mechanism of Kruppel-Like Factor 4 in Pyroptosis of Nasal Mucosal Epithelial Cells in Mice With Allergic Rhinitis. Am J Rhinol Allergy 2023; 37:337-347. [PMID: 36799547 DOI: 10.1177/19458924221148568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a chronic nasal inflammation, characterized by nasal epithelial dysfunction. Gene therapy targeting transcription factors is a promising strategy for quenching allergic inflammation, including AR. OBJECTIVE This study sought to probe the mechanism of Kruppel-like factor 4 (KLF4) in pyroptosis of nasal mucosal epithelial cells (NEpCs) in AR mice and provide targets for AR treatment. METHODS AR mouse models were established using sensitization with ovalbumin, followed by injection with short hairpin RNA KLF4 (sh-KLF4). AR symptoms were assessed by the times of sneezing and nose rubbing, hematoxylin-eosin, and periodic acid-Schiff staining. Levels of KLF4, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, and N-terminal domain (GSDMD-N) in nasal mucosal tissues were determined by Western blot assay, and levels of interleukin (IL)-1β and IL-18 in nasal lavage fluid were determined by enzyme-linked immunosorbent assay. The binding of KLF4 to the NLRP3 promoter was verified using chromatin immunoprecipitation and dual-luciferase assays. The functional rescue experiment was performed with oe-NLRP3 and sh-KLF4 in AR mice. RESULTS KLF4 was upregulated in nasal mucosal tissues of AR mice. KLF4 inhibition reduced the times of sneezing and nose rubbing, inflammatory cell infiltration, and goblet cell hyperplasia in nasal mucosal tissues, and levels of NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, and IL-18. KLF4 was enriched on the NLRP3 promoter and improved NLRP3 expression. NLRP3 overexpression reversed the inhibition of sh-KLF4 on pyroptosis of NEpCs in AR mice. CONCLUSION KLF4 bound to the NLRP3 promoter and promoted pyroptosis of NEpCs in AR mice via activating NLRP3.
Collapse
Affiliation(s)
- Jiaoli Yao
- Department of Otolaryngology, Shanxi children's Hospital, Taiyuan, China
| | - Qingfeng Kong
- Department of Otolaryngology, Shanxi children's Hospital, Taiyuan, China
| | - Yin Wang
- Department of Otolaryngology, Shanxi children's Hospital, Taiyuan, China
| | - Yanting Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Taiyuan, China.,Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Qinxue Wang
- Department of Otolaryngology, Shanxi children's Hospital, Taiyuan, China
| |
Collapse
|
46
|
Ouhaddi Y, Charbonnier B, Porge J, Zhang YL, Garcia I, Gbureck U, Grover L, Gilardino M, Harvey E, Makhoul N, Barralet J. Development of Neovasculature in Axially Vascularized Calcium Phosphate Cement Scaffolds. J Funct Biomater 2023; 14:jfb14020105. [PMID: 36826904 PMCID: PMC9966587 DOI: 10.3390/jfb14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1β expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Baptiste Charbonnier
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Juliette Porge
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
| | - Yu-Ling Zhang
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Isadora Garcia
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Uwe Gbureck
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, D-97070 Würzburg, Germany
| | - Liam Grover
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Mirko Gilardino
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Edward Harvey
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Nicholas Makhoul
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
| | - Jake Barralet
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
47
|
Fan X, Chen H, Jiang F, Xu C, Wang Y, Wang H, Li M, Wei W, Song J, Zhong D, Li G. Comprehensive analysis of cuproptosis-related genes in immune infiltration in ischemic stroke. Front Neurol 2023; 13:1077178. [PMID: 36818726 PMCID: PMC9933552 DOI: 10.3389/fneur.2022.1077178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Background Immune infiltration plays an important role in the course of ischemic stroke (IS) progression. Cuproptosis is a newly discovered form of programmed cell death. To date, no studies on the mechanisms by which cuproptosis-related genes regulate immune infiltration in IS have been reported. Methods IS-related microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database and standardized. Immune infiltration was extracted and quantified based on the processed gene expression matrix. The differences between the IS group and the normal group as well as the correlation between the infiltrating immune cells and their functions were analyzed. The cuproptosis-related DEGs most related to immunity were screened out, and the risk model was constructed. Finally, Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and drug target were performed using the Enrichr website database. miRNAs were predicted using FunRich software. Finally, cuproptosis-related differentially expressed genes (DEGs) in IS samples were typed, and Gene Set Variation Analysis (GSVA) was used to analyze the differences in biological functions among the different types. Results Seven Cuproptosis-related DEGs were obtained by merging the GSE16561 and GSE37587 datasets. Correlation analysis of the immune cells showed that NLRP3, NFE2L2, ATP7A, LIPT1, GLS, and MTF1 were significantly correlated with immune cells. Subsequently, these six genes were included in the risk study, and the risk prediction model was constructed to calculate the total score to analyze the risk probability of the IS group. KEGG analysis showed that the genes were mainly enriched in the following two pathways: D-glutamine and D-glutamate metabolism; and lipids and atherosclerosis. Drug target prediction found that DMBA CTD 00007046 and Lithocholate TTD 00009000 were predicted to have potential therapeutic effects of candidate molecules. GSVA showed that the TGF-β signaling pathway and autophagy regulation pathways were upregulated in the subgroup with high expression of cuproptosis-related DEGs. Conclusions NLRP3, NFE2L2, ATP7A, LIPT1, GLS and MTF1 may serve as predictors of cuproptosis and play an important role in the pathogenesis of immune infiltration in IS.
Collapse
|
48
|
Monomeric C-Reactive Protein in Atherosclerotic Cardiovascular Disease: Advances and Perspectives. Int J Mol Sci 2023; 24:ijms24032079. [PMID: 36768404 PMCID: PMC9917083 DOI: 10.3390/ijms24032079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This review aimed to trace the inflammatory pathway from the NLRP3 inflammasome to monomeric C-reactive protein (mCRP) in atherosclerotic cardiovascular disease. CRP is the final product of the interleukin (IL)-1β/IL-6/CRP axis. Its monomeric form can be produced at sites of local inflammation through the dissociation of pentameric CRP and, to some extent, local synthesis. mCRP has a distinct proinflammatory profile. In vitro and animal-model studies have suggested a role for mCRP in: platelet activation, adhesion, and aggregation; endothelial activation; leukocyte recruitment and polarization; foam-cell formation; and neovascularization. mCRP has been shown to deposit in atherosclerotic plaques and damaged tissues. In recent years, the first published papers have reported the development and application of mCRP assays. Principally, these studies demonstrated the feasibility of measuring mCRP levels. With recent advances in detection techniques and the introduction of first assays, mCRP-level measurement should become more accessible and widely used. To date, anti-inflammatory therapy in atherosclerosis has targeted the NLRP3 inflammasome and upstream links of the IL-1β/IL-6/CRP axis. Large clinical trials have provided sufficient evidence to support this strategy. However, few compounds target CRP. Studies on these agents are limited to animal models or small clinical trials.
Collapse
|
49
|
Jiapaer Z, Li C, Yang X, Sun L, Chatterjee E, Zhang L, Lei J, Li G. Extracellular Non-Coding RNAs in Cardiovascular Diseases. Pharmaceutics 2023; 15:pharmaceutics15010155. [PMID: 36678784 PMCID: PMC9865796 DOI: 10.3390/pharmaceutics15010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death despite the best available healthcare and therapy. Emerging as a key mediator of intercellular and inter-organ communication in CVD pathogenesis, extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed nano-sized vesicles released by virtually all cells, of which their RNA cargo, especially non-coding RNAs (ncRNA), has been increasingly recognized as a promising diagnostic and therapeutic target. Recent evidence shows that ncRNAs, such as small ncRNAs, circular RNAs, and long ncRNAs, can be selectively sorted into EVs or other non-vesicular carriers and modulate various biological processes in recipient cells. In this review, we summarize recent advances in the literature regarding the origin, extracellular carrier, and functional mechanisms of extracellular ncRNAs with a focus on small ncRNAs, circular RNAs, and long ncRNAs. The pathophysiological roles of extracellular ncRNAs in various CVDs, including atherosclerosis, ischemic heart diseases, hypertension, cardiac hypertrophy, and heart failure, are extensively discussed. We also provide an update on recent developments and challenges in using extracellular ncRNAs as biomarkers or therapeutical targets in these CVDs.
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Chengyu Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing 102400, China
| | - Lingfei Sun
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingying Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830046, China
| | - Ji Lei
- Center for Transplantation Science, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (J.L.); (G.L.)
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (J.L.); (G.L.)
| |
Collapse
|
50
|
Wang Y, Fang D, Yang Q, You J, Wang L, Wu J, Zeng M, Luo M. Interactions between PCSK9 and NLRP3 inflammasome signaling in atherosclerosis. Front Immunol 2023; 14:1126823. [PMID: 36911736 PMCID: PMC9992811 DOI: 10.3389/fimmu.2023.1126823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Atherosclerosis is an early pathological basis of numerous cardiovascular events that result in death or disability. Recent studies have described PCSK9 as a novel target for the treatment of atherosclerosis; PCSK9 is capable of degrading LDLR on the surface of hepatocytes through the regulation of lipid metabolism, and it can function as a novel inflammatory modulator in atherosclerosis. Inflammasomes are important intracellular multiprotein complexes that promote the inflammatory response in atherosclerosis. Among inflammasomes, the NLRP3 inflammasome is particularly notable because of its important role in the development of atherosclerotic disease. After activation, NLRP3 forms a complex with ASC and pro-caspase-1, converting pro-caspase-1 into activated caspase-1, which may trigger the release of IL-1β and IL-18 and contribute to the inflammatory response. Several recent studies have indicated that there may be interactions between PCSK9 and the NLRP3 inflammasome, which may contribute to the inflammatory response that drives atherosclerosis development and progression. On the one hand, the NLRP3 inflammasome plays an important role via IL-1β in regulating PCSK9 secretion. On the other hand, PCSK9 regulates caspase-1-dependent pyroptosis by initiating mtDNA damage and activating NLRP3 inflammasome signaling. This paper reviews the mechanisms underlying PCSK9 and NLRP3 inflammasome activation in the context of atherosclerosis. Furthermore, we describe the current understanding of the specific molecular mechanism underlying the interactions between PCSK9 and NLRP3 inflammasome signaling as well as the drug repositioning events that influence vascular cells and exert beneficial antiatherosclerotic effects. This review may provide a new therapeutic direction for the effective prevention and treatment of atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Qinzhi Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|